用户名: 密码: 验证码:
蛋白质结合小分子(离子)物质及变构效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小分子(离子)与生物大分子相互作用的研究是探索各类小分子(离子)生物学效应和功能的基本途径之一,此类课题的研究有助于人们从分子层面了解生命过程。
     采用荧光光谱(FS)、紫外光谱(UV)研究了中药有效成分盐酸小檗碱(BC)在胃蛋白酶(pepsin)分子上的结合过程,应用核磁共振(1H NMR)技术研究了BC、苯甲酸钠、葡萄糖、维生素C(VC)与牛血清白蛋白(BSA)和胃蛋白酶(pepsin)相互作用的关键结合部位以及咪唑型离子液体与BSA相互作用的关键结合部位。为探讨离子液体的潜在毒性,采用多种光谱手段研究了咪唑型离子液体与BSA的相互作用。考虑到生物体内小分子(离子)在结合蛋白质时相互作用的复杂性,采用光谱手段研究了共存物对中药有效成分七叶内酯-BSA、BC-pepsin相互作用的扰动以及金属离子(Cu2+、Zn2+)、BC与BSA结合过程中的变构效应,并结合圆二色(CD)光谱对其机理进行了探讨。为更准确的获取药物分子-蛋白质相互作用参数,基于同步荧光获得了BC与pepsin分子中色氨酸、酪氨酸相互作用的定量参数;借助SAS软件尝试建立药物小分子-血清白蛋白结合过程构效关系的一般数学规律。在本文实验范围内,主要结论如下:
     1. BC对Cu2+猝灭BSA内源荧光呈负变构效应,而对BSA-Cu2+复合物稳定性以及Cu2+在BSA分子上的结合位点呈正变构效应。Cu2+、Zn2+对BC猝灭BSA内源荧光呈正变构效应,而对BSA-BC复合物稳定性以及BC在BSA分子上的结合位点呈负变构效应。
     2. BC能够以特定取向方式插入pepsin分子的疏水空腔,且距酪氨酸残基的平均结合距离最近。BC与BSA和pepsin分子的关键结合部位为BC分子中的共轭π体系异喹啉环和苯环结构;苯甲酸钠(SB)、葡萄糖、VC与BSA、pepsin结合的关键部位各有不同,三者在蛋白质分子上的结合部位可能处于临近蛋白质分子表面的亲水区域层。
     3.实验所选的共存物对七叶内酯-BSA、BC-pepsin结合过程存在不同程度的扰动,与BSA结合引致BSA分子构象的改变是共存物参与并影响七叶内酯-BSA相互作用过程的共同机制,但各种共存物扰动的具体方式有所不同,如离子架桥(I-),同位取代(SB),对药物结合部位的破坏(SDS),使BSA构象的转变(TW-80、VC、葡萄糖)。
     4.咪唑型离子液体与BSA结合的关键部位为其阳离子部分,但阳离子部分不是使BSA内源性荧光产生猝灭的主要基团,且咪唑型离子液体在BSA上的结合部位不深,与BSA的相互作用比较复杂,作用结果使BSA的二级结构发生明显改变。
     5. BC猝灭pepsin分子内源性荧光的主要因素为静态猝灭,对色氨酸的猝灭最为显著,BC与色氨酸残基部位的结合最为强烈。
     6.药物分子结构参数与药物分子-血清白蛋白结合常数的关系并不严格遵循简单线性关系,单纯从药物分子结构的有限个参数考虑归纳药物分子-蛋白质结合过程的构效关系存在明显的局限性。
Investigation on the interaction between small molecules (ions) and biological macromolecules is a path to explore the biology effects and functions of small molecules (ions), which is helpful to understand life process from molecular level.
     To understand the interactions between small molecules (ions) and proteins thoroughly, fluorescence spectrum (FS), ultra-violet spectrum (UV) was used to study the binding site of a traditional Chinese Herb active component, berberine chloride (BC), on the pepsin in this paper, and nuclear magnetic resonance (1H NMR) was used to investigate the key segments of BC, sodium benzoate, glucose, Vitamin C(VC) binding bovine serum albumin (BSA) and pepsin , as well as that of imidazole ionic liquids binding BSA. In order to explore the latent toxicity of ionic liquid, multi-spectrum methods were used to study the interaction between imidazole ionic liquids and BSA. Considering the complexity of the interactions among small molecules (ions) binding proteins, the interference of coexisting substances in esculetin-BSA, BC-BSA binding process and the allosteric effects of Cu2+, Zn2+, BC-BSA binding process were studied, the mechanisms were also discussed combined the results of CD spectra. To make the drug-protein interaction parameters more accurate, the interaction parameters between BC and tryptophan, tyrosine were abtained respectively. Generally mathematics rule in structure-performance relationship of drug molecules-serum albumin interaction was also discussed with the model formed by SAS. In the experimental range of this paper, the main conclusions are listed as follow:
     1. The allosteric effect of BC on Cu2+ quenching BSA intrinsic fluorescence is negative, while the allosteric effect of BC on the stability of Cu2+-BSA complex and the binding sites of Cu2+ is positive. The allosteric effects of Cu2+, Zn2+ on BC quenching BSA intrinsic fluorescence is positive, while the allosteric effects of Cu2+, Zn2+ on the stability of BC-BSA complex and the binding sites of BC is positive.
     2. BC can insert the hydrophobic cavity of pepsin in special direction, and the average spatial distance between BC and tyrosine is smallest. The key segment of BC binding BSA and pepsin is the group of isoquinoline and benzene ring with conjugateπsystem, its binding orientations existence difference. The key segments of sodium benzoate (SB), glucose, VC binding BSA and the pepsin are different, while their binding site on BSA and pepsin are possibly located in the hydrophilic region on the protein molecular surface.
     3. Both esculetin-BSA and BC-pepsin binding process are interfered by each selected coexisting substances more or less. BSA molecular conformational transition due to coexisting substances bound to BSA is the common mechanism of coexisting substances participating in esculetin-BSA binding process. The interference mechanism of the selected coexisting substances is different among each other, such as ionic bridge (I-), appositional replacement (SB), destroying the binding sites (SDS), inducing the conformation of BSA changed (TW-80, VC, glucose).
     4. The key segment of imidazole ionic liquids binding BSA is its cationic part, while the cationic part is not the key group that makes BSA intrinsic fluorescence quenching, and the binding site of imidazole ionic liquids on BSA is not deep, the interaction mechanism is quite complex. Imidazole ionic liquids make BSA the secondary structure change obviously.
     5. The type of pepsin intrinsic fluorescence being quenched is mainly static quenching but with the dynamic character, the quenching extend of tryptophan is greatest. The BC-pepsin binding is strong, the binding extend of tryptophan is greatest.
     6. The mathematic rule in structure-performance relationship of drug molecules-serum albumin interaction is not a strict linear relationship. Thus, liminations consist in simply inducing structure-performance relationship of drug molecules-serum albumin interaction based on several specific parameters characterizing the structure of drug molecules.
引文
1.王夔. 20世纪化学的回顾与未来化学学科发展趋势[M].科学走向新世纪——中科院第十次院士大会学术报告,北京:科学出版社, 2001.
    2. FrydlováJ, Ku?erováZ, TicháM. Interaction of pepsin with aromatic amino acids and their derivatives immobilized to Sepharose [J]. Journal of Chromatography B, 2008, 863: 135—140.
    3. Bo T, Pawliszyn J. Characterization of bovine serum albumin–tryptophan interaction by capillary isoelectric focusing with whole column imaging detection [J]. Journal of Chromatography A, 2006, 1105: 25—32.
    4. Xiao J B, Shi J, Cao H, et al. Analysis of binding interaction between puerarin and bovine serum albumin by multi-spectroscopic method [J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45: 609—615.
    5. Sevilla P, Rivas J M, García-Blanco F, et al. Identification of the antitumoral drug emodin binding sites in bovine serum albumin by spectroscopic methods [J]. Biochimica et Biophysica Acta, 2007, 1774: 1359—1369.
    6. Shaikh S M T, Seetharamappa J, Kandagal P B, et al. In vitro study on the binding of anti-coagulant vitamin to bovine serum albumin and the influence of toxic ions and common ions on binding [J]. International Journal of Biological Macromolecules, 2007, 41: 81—86.
    7.王丛霞,叶玲,闫芳菲,等.利福布汀与人血清白蛋白相互作用的光谱研究[J].高等学校化学学报, 2007, 28 (12): 2280—2283.
    8. Carter D C, He X M, Munson S H, et al. Three-dimensional structure of human serum albumin [J]. Science, 1989, 244 :1195—1198.
    9. He X M, Carter D C. Atomic structure and chemistry of human serum albumin [J]. Nature, 1992, 358: 209—215.
    10. Carter D C, Ho J X. Structure of serum albumin [J]. Advances in Protein Chemistry, 1994, 45: 153—203.
    11. Rawel H M, Czajka D, Rohn S, et al. Interactions of different phenolic acids and flavonoids with soy proteins [J]. International Journal of Biological Macromolecules, 2002, 30: 137—150.
    12.喻东,黄新河,刘鑫,等.秋水仙碱与胃蛋白酶相互作用的光谱性质研究[J].化学研究与应用, 2005, 17(4): 474—476.
    13.谢光,刘芯韵,郑芸,等.茶碱与胃蛋白酶相互作用的光谱性质研究[J].天然产物研究与开发, 2006, 18: 558—561.
    14. Chakraborty T, Chakraborty I, Moulik S P, et al. Physicochemical Studies on Pepsin-CTAB Interaction: Energetics and Structural Changes [J]. Journal of Physical Chemistry B, 2007, 111: 2736—2746.
    15. Liu S C, Liu Y J, Li J, et al. Study on the interaction between DNA and protein induced by anticancer drug carboplatin [J]. Journal of Biochemical and Biophysical Methods, 2005, 63: 125—136.
    16. Amo-Ochoa P, Castillo O, Miguel P J S, et al. Unusual Dimeric Zn(II)-cytosine complexes: New models of the interaction of Zn(II) with DNA and RNA [J]. Journal of Inorganic Biochemistry, 2008,102: 203—208.
    17.赵琳,吴宝燕,高丽华,等.一种含吲哚咪唑基Ru(II)配合物的酸碱性质和与DNA相互作用的研究[J].化学学报, 2006, 64(13): 1402—1406.
    18.沈星灿,刘新艳,梁宏,等.牛血红蛋白与银纳米粒子相互作用的光谱研究[J].化学学报, 2006, 64(6): 469—474.
    19.郭子建,孙为银.生物无机化学[M].北京:科学出版社,2006: p 7.
    20.夏侯国论,钟凡,卑占宇.荧光猝灭法研究Fe(III)和Zn(II)与血清白蛋白的竞争结合[J].井冈山学院学报(自然科学), 2006, 27(8): 45—47.
    21. Zvimba J N, Jackson G E. Thermodynamic and spectroscopic study of the interaction of Cu(II), Ni(II), Zn(II) and Ca(II) ions with 2-amino-N-(2-oxo-2-(2-(pyridin-2-yl)ethyl amino)ethyl)acetamide, a pseudo-mimic of human serum albumin [J]. Polyhedron, 2007, 26: 2395—2404.
    22.吴根华,汪春华.荧光法研究Pb2+与牛血清白蛋白的相互作用[J].光谱学与光谱分析, 2005, 25 (12): 246—248.
    23.宋玉民,吴锦绣,郑秀荣,等.稀土金属离子与人血清白蛋白的相互作用[J].无机化学学报, 2006, 22(9): 1615—1622.
    24. Zhang Y, Wilcox D E. Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin [J]. Journal of Inorganic Biochemistry, 2002, 7: 327—337.
    25.陈晓波,李崧.铜、钠和钼离子与牛血清白蛋白作用的荧光光谱研究[J].光谱学与光谱分析, 2006, 26(2): 309—312.
    26.宋琤,梁宏.荧光猝灭法研究Cu(Ⅱ)和Zn(Ⅱ)离子与牛血清白蛋白结合竞争[J].光谱学与光谱分析, 2003, 23(5): 892—894
    27.张敏,彭毛,李小平,等.光谱法研究蛋白质与胆红素及铜的相互作用[J].化学与生物工程, 2007, 24(3): 27—30.
    28. Quagraine E K, Kraatz H B, Reid R S. Peptides mimicking the N-terminal Cu(II)-binding site of bovine serum albumin: synthesis, characterization and coordination with Cu(II) ions [J]. Journal of Inorganic Biochemistry, 2001, 85: 23—32.
    29. Stewart A J, Blindauer C A, Berezenko S, et al. Interdomain zinc site on human albumin [J]. Proceedings of the National Academy of Sciences, 2003, 100(7): 3701—3706.
    30.梁宏,沈星灿,蒋治良,等.共振Raileigh散射研究I-与血清白蛋白的结合平衡[J].中国科学(B辑), 2000, 30(5): 460—466.
    31. Ayranci E, Duman O. Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes [J]. Food Chemistry, 2004, 84: 539—543.
    32. Timerbaev A R, Hartinger C G, Aleksenko S S, et al. Interactions of antitumor metallodrugs with serum proteins: Advances in characterization using modern analytical methodology [J]. Chemical Review, 2006, 106: 2224—2248.
    33.王蓓,魏传晚,李霞,等. Fc-Arg(NO2)-Gly-Asp(OMe)-OMe的合成及其与牛血清白蛋白的相互作用[J].化学学报, 2008, 66(3): 349—354.
    34. Aleksenko S S, Hartinger C G, Semenova O, et al. Characterization of interactions between humanserum albumin and tumor-inhibiting amino alcohol platinum(II) complexes using capillary electrophoresis [J]. Journal of Chromatography A, 2007, 1155: 218—221.
    35. Pastukhov A V, Levchenko L A, Sadkov A P. Spectroscopic study on binding of rutin to human serum albumin [J]. Journal of Molecular Structure, 2007, 842: 60—66.
    36. Ghosh S K, Hossain S U, Bhattacharya S, et al. 2-(2-Selenocyanic acid ethyl ester)-1H-benz[de] isoquinoline-1,3-(2H)-dione, synthesis photophysics and interaction with bovine serum albumin: A spectroscopic approach [J]. Journal of Photochemistry and Photobiology B: Biology, 2005, 81: 121—128.
    37. Kandagal P B, Ashoka S, Seetharamappa J, et al. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41: 393—399.
    38.张国文,王安萍,蒋婷,等.荧光光谱法研究橙皮苷与牛血清白蛋白相互作用特征[J]. 2008, 27(1): 1—4.
    39. Li J C, Li N, Wu Q H, et al. Study on the interaction between clozapine and bovine serum albumin [J]. Journal of Molecular Structure, 2007, 833: 184—188.
    40. Kandagal P B, Seetharamappa J, Shaikh S M T, et al. Binding of trazodone hydrochloride with human serum albumin: A spectroscopic study [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185: 239—244.
    41. Singh S K, Kishore N. Calorimetric and Spectroscopic Studies on the Interaction of Methimazole With Bovine Serum Albumin [J]. Journal of Pharmaceutical Sciences, DOI 10.1002/jps.21140.
    42. Seedher N, Bhatia S. Reversible binding of celecoxib and valdecoxib with human serum albumin using fluorescence spectroscopic technique [J]. Pharmacological Research, 2006, 54: 77—84.
    43. Yuan J L, Lv Z, Liu Z G, et al. Study on interaction between apigenin and human serum albumin by spectroscopy and molecular modeling [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191: 104—113.
    44. Kanakis C D, Tarantilis P A, Polissiou M G, et al. Antioxidant flavonoids bind human serum albumin [J]. Journal of Molecular Structure, 2006, 798: 69—74.
    45.黄娟,陈秋云. 5, 7-二羟基黄酮与牛血清白蛋白相互作用的研究[J].光谱实验室, 2007, 24(6): 1095—1098.
    46.闻晓东,李萍,钱正明,等.三种抗氧化物质与牛血清白蛋白的相互作用[J].化学学报, 2007, 65(5): 421—429.
    47. Banerjee A, Basu K, Sengupta P K. Interaction of 7-hydroxyflavone with human serum albumin: A spectroscopic study [J]. Journal of Photochemistry and Photobiology B: Biology, 2008, 90: 33—40.
    48. Dufour C, Dangles O. Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy [J]. Biochimica et Biophysica Acta, 2005, 1721: 164—173.
    49. Jin J, Zhu J F, Yao X J, et al. Study on the binding of farrerol to human serum albumin [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191: 59—65.
    50. Kane R S, Stroock A D. Nanobiotechnology: protein-nanomaterial interactions [J]. Biotechnology Progress, 2007, 23: 316—319.
    51. Wang Y S, Jiang Q, Liu L R, et al. The interaction between bovine serum albumin and the self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan [J]. Polymer, 2007, 48: 4135—4142.
    52. Kavalak S, Guner A. Intermolecular interactions between bovine serum albumin and certain water-soluble polymers at various temperatures [J]. Journal of Applied Polymer Science, 2006, 100: 1554—1560.
    53. Shaikh S M T, Seetharamappa J, Ashoka S, et al. A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods [J]. Dyes and Pigments, 2007, 73: 211—216.
    54.邓世星,杨季冬.荧光法研究牛血清白蛋白与中性红的相互作用[J].分析科学学报, 2007, 23(2): 177—180.
    55. De S, Girigoswami A, Das S. Fluorescence probing of albumin–surfactant interaction [J]. Journal of Colloid and Interface Science, 2005, 285: 562—573.
    56. Bordbar A K, Taheri-Kafrani A, Mousavi S H A, et al. Energetics of the interactions of human serum albumin with cationic surfactant [J]. Archives of Biochemistry and Biophysics, 2008, 470: 103—110.
    57.王守业,徐小龙,刘清亮,解永树.荧光光谱在蛋白质分子构象研究中的应用[J].化学进展, 2001, 13(4): 257—260.
    58.李娜,魏永巨.药物分子与血清白蛋白结合反应的荧光法研究进展[J].河北师范大学学报(自然科学版),2003,27(2):176—180.
    59.魏晓芳,丁西明,刘会洲. pH诱导牛血清白蛋白芳香氨基酸残基微环境变化的光谱分析[J].光谱学与光谱分析, 2000, 20(14): 556—559.
    60. Wang Y Q, Zhang H M, Zhang G C, et al. Interaction of the flavonoid hesperidin with bovine serum albumin: A fluorescence quenching study [J]. Journal of Luminescence, 2007, 126: 211—218.
    61. Wu F Y, Ji Z J, Wu Y M, et al. Interaction of ICT receptor with serum albumins in aqueous buffer [J]. Chemical Physics Letters, 2006, 424: 387—-393.
    62. Xie M X, Long M, Liu Y, et al. Characterization of the interaction between human serum albumin and morin [J]. Biochimica et Biophysica Acta, 2006, 1760: 1184—1191
    63. Gotti R, Bertucci C, Andrisano V, et al. Study of donepezil binding to serum albumin by capillary electrophoresis and circular dichroism [J]. Anal Bioanal Chem, 2003, 377: 875—879.
    64. Zsila F, Molnar P, Deli J. Analysis of binding interaction between the natural apocarotenoid bixin and human serum albumin by circular dichroism and fluorescence spectroscopy [J]. Chemistry & Biodiversity, 2005, 2: 758—772.
    65. Greenfield N, Fasman G D. Computed circular dichroism spectra for the evaluation of protein conformation [J]. Biochemistry, 1969, 8(10): 4108—4115.
    66. Pasternack R F, Bustamante C, Collings P J, et al. Porphyrin Assemblies on DNA as Studied by a Resonance Light-Scatering Technique [J]. JACS,1993,115: 5393—5399.
    67. Huang C Z, Li K A, Tong S Y. Determination of nucleic acids by a resonance light scattering technique withα,β,γ,δ-tertrakis[4-(trimethylammonium)phenyl]prophine [J]. Anal Chem, 1996, 68(13): 2259—2264.
    68.胡庆红,江波.阴离子表面活性剂与蛋白质的共振瑞利散射及分析应用[J].分析化学, 2003,31(9): 1123—1126.
    69.范莉,刘绍璞,龙秀芬,等.某些变色酸双偶氮染料-蛋白质体系的共振瑞利散射及其分析应用[J].分析化学, 2002, 30(1): 81—85.
    70.刘绍璞,范莉,胡小莉,等.某些氨羧络合型染料与蛋白质相互作用的共振瑞利散射研究[J].化学学报, 2004, 62(17): 1635—1640.
    71.李晓燕.用荧光和共振光散射光谱研究甲硝唑与牛血清白蛋白的相互作用[J].物理化学学报, 2007, 23(2):262—267.
    72. Su?kowska A, Bojkoa B, Rownickaa J, et al. The competition of drugs to serum albumin in combination chemotherapy: NMR study [J]. Journal of Molecular Structure, 2005, 744: 781—787.
    73. Su?kowskaa A, Bojkoa B, Rownickaa J, et al. Competition of drugs to serum albumin in combination therapy [J]. Biopolymers, 2004, 74: 256—262.
    74.王勇,李林玺,赵东保,等. 5,7-二羟基-4’-甲氧基二氢黄酮与牛血清白蛋白的相互作用研究[J].化学学报, 2006, 64(13): 1361—1366.
    75. Simard J R, Zunszain P A, Ha C E, et al. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy [J]. Proceedings of the National Academy of Sciences, 2005, 102(50): 17958—17963.
    76.祁春华,韩凤梅,曹毅,陈勇.应用电喷雾质谱研究七叶皂苷钠与人血清白蛋白间的非共价结合特性[J].分析科学学报, 2007, 23(2): 129—132.
    77.涂楚桥,孙红莲,曾建强,等. ZnⅡ与人血清白蛋白或牛血清白蛋白的结合平衡研究[J].广西科学, 1999, 6 (4): 278—280.
    78. Shcharbin D, Mazurb J, Szwedzka M, et al. Interaction between PAMAM 4.5 dendrimer, cadmium and bovine serum albumin: A study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence [J]. Colloids and Surfaces B: Biointerfaces, 2007, 58: 286—289.
    79.王君,任百祥.药物与蛋白相互作用的分析测试[J].中国新医药, 2003, 2(5): 47—48.
    80.宋远志.对苯二酚与牛血清白蛋白相互作用研究[J].中国公共卫生, 2007, 23(3): 334—336.
    81.孙莉莉,张经纬,刘快之.抗坏血酸与牛血清白蛋白相互作用的电化学研究[J].分析试验室, 2007, 26(12): 7—9.
    82. Martínez-Gómez M A, Carril-Avilés M M, Sagrado S, et al. Characterization of antihistamine-human serum protein interactions by capillary electrophoresis [J]. Journal of Chromatography A, 2007, 1147: 261—269.
    83. Kim H S, Mallik R, Hage D S. Chromatographic analysis of carbamazepine binding to human serum albumin II. Comparison of the Schiff base and N-hydroxysuccinimide immobilization methods [J]. Journal of Chromatography B, 2006, 837: 138—146.
    84. Paal K, Shkarupin A, Beckford L. Paclitaxel binding to human serum albumin-Automated docking studies [J]. Bioorganic & Medicinal Chemistry, 2007, 15: 1323—1329.
    85. Gelamo E L, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants [J]. Spectrochimica Acta Part A, 2000, 56: 2255—2271.
    86. Jiang C Q, Gao M X, Meng X -Z. Study of the interaction between daunorubicin and human serumalbumin,and the determination of daunorubicin in blood serum samples[J]. Spectrochimica Acta Part A, 2003, 59: 1605-1610.
    87. Liu X F, Xia Y M, Fang Y. Effect of metal ions on the interaction between bovine serum albumin and berberine chloride extracted from Chinese Herb coptis chinensis franch[J]. Journal of Inorganic Biochemistry, 2005, 99: 1449—1457.
    88.刘雪锋,夏咏梅,曹玉华,等.香豆素类中药有效成分与牛血清白蛋白结合的构效关系[J].高等学校化学学报, 2006, 27(1): 150—152.
    89.刘雪锋,夏咏梅,方云,等.三种香豆素类中药小分子与牛血清白蛋白相互作用[J].化学学报, 2004, 62(16): 1684—1690.
    90. Zhang G, Keita B, Brochon J C, et al. Molecular interaction and energy transfer between human serum albumin and polyoxometalates [J]. Journal of Physical Chemistry B, 2007, 111, 1809—1814.
    91. Ross P D, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability [J]. Biochemistry, 1981, 20: 3096—3102.
    92. Messina P V, Prieto G, Ruso J M, et al. Conformational changes in human serum albumin induced by sodium perfluorooctanoate in aqueous solutions [J]. Journal of Physical Chemistry B, 2005, 109: 15566—15573.
    93. Petitpas I, Bhattacharya A A, Twine S, et al. Crystal structure analysis of warfarin binding to serum albumin [J]. The Journal of Biological Chemistry, 2001, 276(25): 22804—22809.
    94. Chen J Z, Hage D S. Quantitative analysis of allosteric drug-protein binding by biointeraction chromatography [J]. Nature Biotechnology, 2004, 22(11): 1445—1448.
    95. Wainer I W. Finding time for allosteric [J]. Nature Biotechnology, 2004, 22(11): 1376—1377.
    96. Chen J Z, Fitos I, Hage D S. Charomatographic analysis of allosteric effects between ibuprofen and benzodiazepines on human serum albumin [J]. Chirality, 2006, 18: 24—26.
    97.张锁江,吕兴梅等.离子液体——从基础研究到工业应用[M].北京:科学出版社, 2006, 1.
    98. Xin X, Guo X, Duan H F, Lin Y J, et al. Efficient Knoevenagel condensation catalyzed by cyclic guanidinium lactate ionic liquid as medium [J]. Catalysis Communications, 2007, 8 (2): 115—117.
    99. Antonietti M, Kuang D, Smarsly B, et al. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures [J]. Angewandte Chemie International Edition, 2004, 43, 4988—4992.
    100.Raab T, Bel-Rhlid R, Williamson G, et al. Enzymatic galloylation of catechins in room temperature ionic liquids [J]. Journal of Molecular Catalysis B: Enzymatic, 2007, 44 : 60—65.
    101. Lee B S, Chi Y S, Lee J K, et al. Imidazolium ion-terminated self-assembled monolayers on Au: Effects of counteranions on surface wettability [J]. Journal of the American Chemical Society, 2004, 126, 480-481.
    102. Matsumoto M, Mochiduki K, Kondo K. Toxicity of Ionic Liquids and Organic Solvents to Lactic Acid-Producing Bacteria [J]. Journal of Bioscience and Bioengineering, 2004, 98(5), 344—347.
    103. Sielecki A R, Fedorov A A, Boodhoo A, et al. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8? resolution [J]. J Mol Biol, 1990, 214: 143—170.
    104.范丽岩,廉淑芹,宛瑜,等. 1,4-二氢吡喃类化合物与牛血清白蛋白相互作用的研究[J].分析科学学报, 2007, 23(6): 669—672.
    105.张霞,倪永年.光谱法研究吡嗪酰胺与牛血清白蛋白的相互作用[J].化学研究与应用, 2007, 19(11): 1211—1214.
    106.黄薇,王峰,唐波,等.苏丹I与牛血清白蛋白的相互作用研究[J].食品科技, 2007(11): 127—131.
    107.苏忠,秦川,谢孟峡,等.罗布麻活性成分与人血清白蛋白结合的光谱学研究[J].化学学报, 2007, 65(4): 329—336.
    108. Kandagal P B, Seetharamappa J, Ashoka S, et al. Study of the interaction between doxepin hydrochloride and bovine serum albumin by spectroscopic techniques [J]. International Journal of Biological Macromolecules, 2006, 39: 234—239.
    109. Zhou N, Liang Y Z, Wang P. Characterization of the interaction between furosemide and bovine serum albumin [J]. Journal of Molecular Structure, 2008, 872: 190—196.
    110.王春,吴秋华,王志,等.马钱子碱与牛血清白蛋白相互作用的研究[J].光谱学与光谱分析, 2007, 27(4): 754—757.
    111. Xu C, Zhang A P, Liu W P. Binding of phenthoate to bovine serum albumin and reduced inhibition on acetylcholinesterase [J]. Pesticide Biochemistry and Physiology, 2007, 88 : 176—180.
    112. Maiti T K, Ghosh K S, Debnath J, et al. Binding of all-trans retinoic acid to human serum albumin: Fluorescence, FT-IR and circular dichroism studies [J]. International Journal of Biological Macromolecules, 2006, 38: 197—202.
    113. Campos A M, Cárcamo C, Silva E, et al. Distribution of urocanic acid isomers between aqueous solutions and n-octanol, liposomes or bovine serum albumin [J]. Journal of Photochemistry and Photobiology B: Biology, 2008, 90: 41—46.
    114. Li Y, He W Y, Liu H X, et al. Daidzein interaction with human serum albumin studied using optical spectroscopy and molecular modeling methods [J]. Journal of Molecular Structure, 2007, 831: 144—150.
    115.黄新河,刘鑫,李佳,等.秋水仙碱与牛血清白蛋白相互作用的光谱性质研究[J].四川大学学报(自然科学版), 2005, 42(2): 377—381.
    116.颜承农,上官云凤,林立敏,等.氯霉素与牛血清蛋白质结合反应热力学特征研究[J].华中师范大学学报(自然科学版), 2006, 40(1): 66—69.
    117.卞伟,卫艳丽,王亚萍,等.荧光法研究咖啡因和茶碱与牛血清白蛋白相互作用[J].光谱学与光谱分析, 2006, 26 (3): 505—508.
    118. He W Y, Li Y, Lin J Q, et al. Specific interaction of chalcone-protein: Cardamonin binding siteⅡon the human serum albumin molecular [J]. Biopolymers, 2005, 79, 48—57.
    119. Yue Y Y, Zhang Y H, Li Y, et al. Interaction of nobiletin with human serum albumin studied using optical spectroscopy and molecular modeling methods [J]. Journal of Luminescence, 2008, 128, 513—520.
    120. Qi Z D, Zhou B, Xiao Q, et al. Interaction of rofecoxib with human serum albumin : Determination of binding constants and the binding site by spectroscopic methods [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193: 81—88.
    121. Li D J, Zhu J F, Jin J, et al. Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling [J]. Journal of Molecular Structure, 2007, 846: 34—41.
    122. Xiao J B, Chen J W, Cao H, et al. Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191: 222—227.
    123. Lata?a A, Stepnowski P, Nedzi M, et al. Marine toxicity assessment of imidazolium ionic liquids: Acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana [J]. Aquatic Toxicology, 2005, 73: 91—98.
    124. Ranke J, M?lter K, Stock F, et al. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays [J]. Ecotoxicology and Environmental Safety, 2004, 58(3): 396—404.
    125. Ranke J, Müller A, Bottin-Weber U, et al. Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity [J]. Ecotoxicology and Environmental Safety, 2007, 67(3):430—438.
    126.宁永成.有机化合物结构鉴定与有机波谱学(第二版)[M].北京:科学出版社, 2005, 29-30.
    127.刘媛,谢孟峡,康娟.三七总皂甙对牛血清白蛋白溶液构象的影响[J].化学学报, 2003, 61(8): 1305—1310.
    128.朱书法,汤俊明,马晓明,等.碳酸钙结晶对胃蛋白酶二级结构的影响[J].光谱学与光谱分析, 2003, 23(3): 477—480.
    129. Zhang F J, Skoda M W A, R. Jacobs M J, et al. Protein Interactions Studied by SAXS:Effect of Ionic Strength and Protein Concentration for BSA in Aqueous Solutions[J]. J Phys. Chem. B 2007, 111, 251—259.
    130.张朝红,董殿波,赵哲,等.三丁基锡(TBT)化合物与牛血清白蛋白(BSA)的相互作用[J].光谱学与光谱分析, 2007, 27(12): 309—312.
    131.王亚俐,王海芳.光谱法研究苯甲酸钠与牛血清白蛋白的作用[J].北京大学学报自然科学版, 2002, 38(2): 159—163.
    132.俞天智,陶祖贻.水杨酸与人血清白蛋白的相互作用[J].光谱学与光谱分析, 1999, 19(3): 453—455.
    133. Xia J L, Paul L D, Kim Y. Complex formation between poly(oxyethylene) and sodium dodecylsulfate micelles: light scaterring, electrophoresis, and dialysis equilibrium studies [J]. Journal of Physical Chemistry, 1992, 96: 6805—6811.
    134. Shobini J, Mishra A K, Sandhya K, et al. Interaction of coumarin derivatives with human serum albumin: investigation by fluorescence spectroscopic technique and modeling studies [J]. Spectrochim Acta, Part A, 2001, 57: 1133—1147.
    135.魏晓芳,刘会洲. Triton X-100与牛血清白蛋白的相互作用[J].分析化学, 2000, 28(6): 699—701.
    136. Bal W, Christodoulou J, Sadler P J, et al. Multi-metal binding site of serum albumin [J]. Journal of Inorganic Biochemistry, 1998, 70: 33—39.
    137.刘家琴,翟红林,张继友,等.香豆素类化合物与人血清白蛋白结合常数的QSPR研究[J].光谱实验室, 2006, 23(3): 602-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700