用户名: 密码: 验证码:
Cry1Ab抗性亚洲玉米螟对不同Bt毒素的交互抗性及其产生的分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转Bt基因玉米为亚洲玉米螟(Ostrinia furnacalis)的防治开辟了新的途径,然而大面积种植转相同或相似的单基因Bt玉米将不可避免的引发靶标害虫对Bt产生抗性。研发具有不同杀虫机理的新基因,明确害虫对Bt毒素产生抗性的分子机理,培育双/多价转Bt基因玉米,对今后制定和实施合理的抗性治理策略,解决或延缓害虫抗性产生,保证转Bt基因玉米这一高效的玉米螟综合治理新措施的可持续利用具有重要的意义。本文通过饲料混合法,测定了Cry1Ab、Cry1Ac、Cry1Ah、Cry1Fa和Cry1Ie蛋白对亚洲玉米螟Bt敏感品系(ACB-BtS)和Cry1Ab抗性品系(ACB-AbR)的毒力;通过SDS-PAGE和配体杂交研究了生物素标记的Cry1Ac蛋白在亚洲玉米螟幼虫中肠BBMV上的受体蛋白及其与Cry1Ab、Cry1Ah、Cry1Fa和Cry1Ie蛋白在BBMV上的竞争结合模式;双向凝胶电泳、配体杂交、质谱鉴定等方法分析了Cry1Ab、Cry1Ac、Cry1Ah和Cry1Ie蛋白与亚洲玉米螟幼虫BBMV的结合图谱及结合位点蛋白;利用RT-PCR和RACE方法克隆亚洲玉米螟幼虫中肠4个氨肽酶N基因,进而采用荧光定量PCR技术分析4个APN和1个已知的钙粘蛋白基因在ACB-BtS和ACB-AbR品系不同龄期幼虫中肠的表达量。
     供试的5种Bt毒素Cry1Ab、Cry1Ac、Cry1Ah、Cry1Fa和Cry1Ie蛋白对ACB-BtS品系初孵幼虫的毒力存在显著差异,LC50分别为0.75、2.37、0.07、2.19和1.87μg/g。ACB-AbR品系对Cry1Ab蛋白产生了39.7倍的抗性,与此同时其对Cry1Ac、Cry1Ah和Cry1Fa蛋白分别产生了36.9、131.7和6.2倍的抗性,而对Cry1Ie没有产生抗性,这说明以Cry1Ab蛋白汰选得到的ACB-AbR品系与没有接触过的Cry1Ah和Cry1Ac蛋白具有很高的交互抗性,与Cry1Fa的交互抗性较低,而与Cry1Ie没有交互抗性。
     亚洲玉米螟幼虫中肠BBMV的蛋白质分子量在10->250 kDa,Cry1Ac蛋白与其结合的6个条带的分子量分别约在70、120、160、200、260和270 kDa,其中120 kDa和200 kDa与亚洲玉米螟氨肽酶和钙粘蛋白的分子量大小相符。Cry1Ac蛋白与ACB-BtS幼虫中肠BBMV的结合可被过量的Cry1Ab或Cry1Ah蛋白完全竞争抑制,也可被Cry1Fa蛋白部分竞争抑制,但不能被Cry1Ie竞争抑制。这说明亚洲玉米螟幼虫中肠BBMV上Cry1Ac蛋白的结合位点都是Cry1Ab及Cry1Ah的共同结合位点,Cry1Ac与Cry1Fa蛋白既存在共同的结合位点,亦存在不同的结合位点,而Cry1Ac与Cry1Ie的结合位点不同。不同Bt蛋白在亚洲玉米螟幼虫中肠上结合位点的差异是导致Cry1Ab抗性亚洲玉米螟与其它Bt蛋白有/无交互抗性的主要原因。发现了V-ATPase亚基A和热激蛋白70为Bt蛋白的受体蛋白。抗性品系可结合Bt蛋白的量更多。
     成功克隆了亚洲玉米螟幼虫中肠4个APN基因,即Ofapn1、Ofapn2、Ofapn3和Ofapn4,其cDNA分别编码994、940、1014和951个氨基酸的蛋白质,预测蛋白质分子量分别为113.1、106.8、115.1和107.8 kDa。其推导的氨基酸序列中具有鳞翅目昆虫APN典型结构特征,即N-末端具有18-20个氨基酸的剪切信号肽,谷氨酸锌化氨肽酶保守结构GAMEN,锌结合位点HEXXHX18E,C-末端具有21-22个氨基酸的糖基磷脂酰肌醇(GPI)锚信号肽。这4个APN氨基酸序列分别与欧洲玉米螟相对应的4个ANP序列的同源性高达96%、97%、96%和96%。与敏感品系相比,ACB-AbR品系的4个APN蛋白序列分别有9、5、10、和12个氨基酸发生改变,且Ofapn1的潜在O-糖基化位点增加1位,Ofapn2在3′UTR区2828-2838位有11个核苷酸发生缺失,在2893-2901位有9个核苷酸插入。
     与ACB-BtS品系相比,4个APN和钙粘蛋白基因在ACB-AbR品系幼虫中肠的表达量随着幼虫的生长总体呈现逐渐上升的趋势并显著高于敏感品系,这说明ACB-AbR对Cry1Ab蛋白的抗性水平上升可能与其对毒素的降解作用以及细胞本身的修复作用增强有关。
Despite the proven track record of biotech Bt maize to provide an new tool for easier and more consistent Ostrinia furnacalis control, it is known for their ability to develop resistance in target pest to Bt toxins, particularly when the same or similar Bt maize expressing single toxin protein is planed in area wide. It is necessary to discover novel Bt genes, to develop novel insect resistant Bt maize with double or multiple genes, as well as to understand the molecular mechanism for evolution of resistance to Bt toxins in target pest, which will play an important roll in sustainable use of Bt maize as a valuable and innovative O. furnacalis control tactic through a management plan to delay or avoid the risk of resistance.
     Susceptibility to Cry1Ab, Cry1Ac, Cry1Ah, Cry1Fa, and Cry1Ie proteins from Bt was determined for ACB-AbR and ACB-BtS strains of O. furnacalis, a Cry1Ab-selected strain and a Bt susceptible strain, through bioassay by exposing neonate larvae to semi-artificial diet incorporated with Bt proteins. Model Assays of competition binding to BBMV of O. furnacalis were performed with biotinylated Cry1Ac protein mixed with excessive unlabeled Cry1Ab, Cry1Ah, Cry1Fa, and Cry1Ie proteins, respectively. Binding receptors of Cry1Ac protein in BBMV of O. furnacalis were detected by using ligand blotting with biotainylated Cry1Ac protein. A proteomic approach was explored together with ligand blotting to identify Cry1Ab, Cry1Ac, Cry1Ah, and Cry1Ie binding proteins from ACB-BBMV. cDNAs of aminopeptidase N (APN) from both ACB-BtS and ACB-AbR strains were cloned and sequenced using RT-PCR and RACE technologies. The expressions of 4 APN genes and a known cadherin gene from O. furnacalis were detected by Real Time PCR.
     There were significant differences in susceptibility of ACB-BtS strain to Cry1Ab, Cry1Ac, Cry1Ah, Cry1Fa, and Cry1Ie proteins. Their LC50 were 0.75, 2.37, 0.07, 2.19, and 1.87μg/g. ACB-AbR strain developed significan levels of resistance to Cry1Ab (39.7-fold), Cry1Ac (36.9-fold), Cry1Ah (131.7-fold), and Cry1Fa (6.2). In contrast, the susceptibility to Cry1Ie protein was not increased in ACB-AbR strain. This results susgest that the highest level of cross-resistance was observed with Cry1Ah (131.7-fold), followed by Cry1Ac (36.9-fold). A low level of cross-resistance (6.2-fold) to Cry1F was also detected. In contrast, ACB-AbR was equally susceptible to Cry1Ie as the unselected control strain.
     There were six binding peptides were identified as Cry1Ac binding proteins with the molecular weight 70, 120, 160, 200, 260, and 270kDa, respectively, among which the 120 and 200 kDa bindings were similar to that of APN and cadherin’s molecular weights. The bindings of Cry1Ac protein to BBMV of O. funacalis were completely significantly inhibited by Cry1Ab and Cry1Ah proteins and partial inhibited by Cry1Fa protein. In contrast, no competitive binding was observed between Cry1Ie and Cry1Ac. These results indicated that Cry1Ac protein shares all receptors with Cry1Ab and/or Cry1Ah proteins in BBMV of O. furnacalis but partial with Cry1Fa protein. It was different in binding receptors between Cry1Ac and Cry1Ie proteins. Therefore, the variance of cross-resistance levels among 5 proteins was due to the difference in their bingding receptors on the BBMV. In addition, the V-type proton ATPase catalytic subunit A and heat shock 70 kDa proteins were identified as Cry toxins binding proteins in BBMV of O. furnacalis.
     Four APN isoforms, Ofapn1, Ofanp2, Ofapn3, and Ofapn4, were identified from O. furnacalis by cDNA cloning. The deduced amino acid sequences were included 994, 940, 1014, and 951 amino acid residues, respectively. The predicted molecular weights of Ofapn1, Ofapn2, Ofapn3 and Ofapn4 were 113.1, 106.8, 115.1, and 107.8kDa, respectively. Sequences analysis indicated that the deduced protein sequences are most similar to the aminopeptidases from Ostrinia nubilalis with 96%, 97%, 96%, and 96% sequence identity. Compared with APN sequences of ACB-BtS, there were 9, 5, 10, and 12 amino acid mutations in the deduced protein sequences of Ofapn1, Ofapn2, Ofapn3, and Ofapn4 in ACB-AbR, respectively. In addition, there was one more O-glycosylation site in Ofapn1r. At the non-translatable 3′-end region, a deletion of 11 nucleotides (positions 2828-2838) and an insert of 9 nucleotides (postion 2893-2901) occurred in the Ofapn2r. The expression of Ofapn1, Ofapn2, Ofapn3, and Ofapn4 mRNA were 2.03-fold, 1.61-fold, 2.69-fold, and 2.62-fold higher in ACB-AbR than in ACB-BtS. This suggest that the reduced susceptibility to Cry1Ab toxins in ACB-AbR strain may due to the increased ability of detoxification and repair effect of epithelial cell.
引文
1.韩海亮,李光涛,王振营,张杰,何康来. Cry1Ac抗性亚洲玉米螟对四种Bt蛋白的交互抗性.植物保护学报, 2009, (4): 329~334.
    2.韩海亮.亚洲玉米螟对几种Bt蛋白的交互抗性及其中肠上结合位点的研究. [硕士学位论文].北京:中国农业科学院, 2009.
    3.何康来,王振营,文丽萍,白树雄,周大荣.转Bt基因玉米对亚洲玉米螟的抗性评价.植物保护科学, 2004, 20 (6): 240~246.
    4.何康来,常雪,常雪艳,王振营, Ferry N., Gatehouse M.R.A.亚洲玉米螟对Cry1Ab蛋白抗性的遗传规律与分子机理,植物保护, 2007, 33(5): 92~93.
    5.梁革梅,谭维嘉,郭予元.棉铃虫对Bt的抗性筛选及交互抗性研究.中国农业科学, 2000, 33: 46~53.
    6.沈晋良,周威君,吴益东.棉铃虫对Bt生物农药早期抗药性及与转Bt基因棉的抗虫性关系.昆虫知识, 1998, 41 (1): 8~14.
    7.苏建亚,周晓梅,沈晋良.抗Bt棉棉铃虫幼虫Bt受体氨肽酶N(APN2)基因克隆.中国生物工程杂志, 2004, 24(10): 59~62.
    8.宋彦英,周大荣,何康来.亚洲玉米螟无琼脂半人工饲料的研究与应用.植物保护学报, 1999,
    26(4): 324~328
    9.徐永桂,杨亦桦,吴益东. Cry1A毒素与二化螟中肠刷状缘膜囊泡受体蛋白配基结合分析.昆虫学报, 2009, 52(2): 153~158.
    10.薛静.苏云金芽孢杆菌杀虫晶体蛋白Cry1Ah特性及其杀虫机理的研究. [博士学位论文].北京:中国农业科学院, 2007.
    11.王冬妍,王振营,何康来,丛斌,白树雄,文丽萍. Bt玉米杀虫蛋白含量的时空表达及对亚洲玉米螟的杀虫效果.中国农业科学, 2004, 37 (8): 1155~1159.
    12.王悦冰,郎志宏,张杰,何康来,宋福平,黄大昉.利用ubi1内含子增强Bt cry1Ah基因在转基因玉米中的表达.科学通报, 2008, 53(17): 2041~2046.
    13.王振营,鲁新,何康来,周大荣.我国研究亚洲玉米螟历史、现状与展望.沈阳农业大学学报, 2000, 31(5): 402~412.
    14.周大荣.我国玉米螟的发生、防治与研究进展.植保技术与推广, 1996, 16(2): 38~40.
    15. Abbott W.S. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 1925, 18: 265~267.
    16. Agrawal N., Malhotra P., Bhatnagar R.K. Interaction of gene-cloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C. Applied and Environmental Microbiology, 2002, 68: 4583~4592.
    17. Ali M.I., Luttrell R.G., Young S.Y. Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein. Journal of Economic Entomology, 2006, 99: 164~175.
    18. Angst B.D., Marcozzi C., Magee A.I. The cadherin superfamily: diversity in form and function. Journal of Cell Science, 2001, 114: 629~641.
    19. Angelucci C., Barrett-Wilt G.A., Hunt D.F., Akhurst R.J., East P.D., Gordon K.H.J., Campbell P.M. Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: Identification of proteins binding theδ-endotoxin, Cry1Ac of Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 2008, 38: 685~696.
    20. Armstrong C.L., Parker G.B., Pershing J.C., Brown S.M., Sanders P.R., Duncan D.R., Stone T., Dean D.A., DeBoer D.L., Hart J., Howe A.R., Morrish F.M., Pajeau M.E., Petersen W.L., Reich B.J., Rodriguez R., Santino C.G., Sato S.J., Schuler W., Sims S.R., Stehling S., Tarochione L.J., Fromm M.E. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Science, 1995, 35: 550~557.
    21. Aronson A.I., Geng C., Wu L. Aggregation of Bacillus thuringiensis Cry1A toxins upon binding to target insect larval midgut vesicles. Applied and Environmental Microbiology, 1999, 65(6): 2503~2507.
    22. Ballester V., Granero F., Tabashnik B., Malvar T., Ferre J. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth, Plutella xylostella. Applied and Environmental Microbiology, 1999, 65: 1413~1419.
    23. Banks D.J., Jurat-Fuentes J.L., Dean D.H., Adang M.J. Bacillus thuringiensis Cry1Ac and Cry1Faδ-endotoxin binding to a novel 110 kDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated. Insect Biochemistry and Molecular Biology, 2001, 31: 909~918.
    24. Banks D.J., Hua G., Adang M.J. Cloning of a Heliothis virescens 110 kDa aminopeptidase N and expression in Drosophila S2 cells. Insect Biochemistry and Molecular Biology, 2003, 33: 499~508.
    25. Barrett T., Gould H.J. Tissue and species specificity of non-histone chromatin proteins. Biochimica et Biophysica Acta, 1973, 294: 165~170.
    26. Bates S.L., Zhao J.Z., Roush R.T., Shelton A.M. Insect resistance management in GM crops: past, present and future. Nature Biotechnology, 2005, 23: 57~62.
    27. Bauer L.S. Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis. Florida Entomology, 1995, 78(3): 414~443.
    28. Bolin P.C., Hutchison W.D., Andow D.A. Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera: Crambidae). Journal of Economic Entomology, 1999, 92(5): 1021~1030.
    29. Candas M., Loseva O., Oppert B., Kosaraju P., Bulla L.A., Jr. Insect resistance to Bacillus thuringiensis: alterations in the Indianmeal moth larval gut proteome. Molecular Cell Proteomics, 2003, 2: 19~28.
    30. Chambers J.A., Jelen A., Gilbert M.P., Jany C.S., Johnson T.B., Gawron-Burke C. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. Journal of Bacteriology, 1991, 173: 3966~3976.
    31. Chaufaux J., Seguin M., Swanson J.J. Chronic exposure of the European corn borer (Lepidoptera:Crambidae) to Cry1Ab Bacillus thuringiensis toxin. Journal of Economic Entomology, 2001, 94(6): 1564~1570.
    32. Chen L.Z., Liang G.M., Jie Z., Wu K.M., Guo Y.Y. Proteomic analysis of novel Cry1Ac binding proteins in Helicoverpa armigera (Hübner). Archives of insect biochemistry and physiology, 2010, 73(3): 61~73.
    33. Chestukhina G.G., Kostina L.I., Mikhailova A.L., Tyurin S.A., Klepikova F.S., Stepanov V.M. The main features of Bacillus thuringiensis delta-endotoxin molecular structure. Archives of Microbiology, 1982, 132: 159~162.
    34. Choma C.T., Surewicz W.K., Carey P.R., Pozsgay M., Raynor T., Kaplan H. Unusual proteolysis of the protoxin and toxin from Bacillus thuringiensis: Structural implications. European Journal of Biochemistry, 1990, 189: 523~527.
    35. Dale G., Latner A.L. Isoelectric focusing of serum proteins in acrylamide gels followed by electrophoresis. Clinica Chimica Acta, 1969, 24: 61~68.
    36. Denolf P., Jansens S., Peferoen M., Degheele D., Van Rie J. Two different Bacillus thuringiensis delta-endotoxin receptors in the midgut brush-border membrane of the European corn corer, Ostrinia nubilalis (Hübner) (Lepidoptera, Pyralidae). Applied and Environmental Microbiology, 1993, 59: 1828~1837.
    37. Denolf P., Hendrickx K., Van Damme J., Jansens S., Peferoen M., Degheele D., Van Rie J. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. European Journal of Biochemistry, 1997, 248:748~761.
    38. Dorsch J.A., Candas M., Griko N.B., Maaty W.S., Midboe E.G., Vadlamudi R.K., Bulla L.A., Jr. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 2002, 32: 1025~1036.
    39. Dringen R., Gutterer J.M., Gros C., Hirrlinger J. Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. Journal of Neuroscience Research, 2001, 66: 1003~1008.
    40. English L.H., Readdy T.L.δ-Endotoxin inhibits a phosphatase in midgut epithelial membranes of Heliothis virescens. Insect Biochemistry, 1989, 19: 145~152.
    41. Escudero I.R., Estela A., Porcar M., Martínez C., Oguiza J.A., Escriche B., FerréJ., Caballero P. Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families noctuidae. Applied and Environmental Microbiology, 2006, 72, 4796~4804.
    42. Estela A., Escriche B., FerréJ. Interaction of Bacillus thuringiensis Toxin with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Applied and environmental microbiology, 2004, 70(3): 1378~1384.
    43. FerréJ., Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. AnnualReview of Entomology, 2002, 47: 501~533.
    44. Flannagan R.D., Yu C.G., Mathis J.P., Meyer T.E., Shi X., Siqueira H.A., Siegfried B.D. Identification, cloning and expression of a Cry1Ab cadherin receptor from European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Insect Biochemistry and Molecular Biology, 2005, 35: 33~40.
    45. Forgac M. Structure and properties of the vacuolar H+-ATPases. Journal of Biological Chemistry, 1999, 274: 12951~12954.
    46. Gahan L.J., Gould F., Heckel D.G. Identification of a geneassociated with Bt resistance in Heliothis virescens. Science, 2001, 293: 857~860.
    47. Garner K.J., Hiremath S., Lehtoma K., Valaitis A.P. Cloning and complete sequence characterization of two gypsy moth aminopeptidase-N cDNAs, including the receptor for Bacillus thuringiensis Cry1Ac toxin. Insect Biochemistry and Molecular Biology, 1999, 29: 527~535.
    48. Gill M., Ellar D. Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1. Insect Molecular Biology, 2002, 11: 619~625.
    49. Gill S.S., Cowles E.A., Pietrantonio P.V. The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology, 1992, 37: 615~636.
    50. Gill S.S., Cowles E.A., Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. Journal of Biological Chemistry, 1995, 270: 27277~27282.
    51. Gomez I., Sanchez J., Miranda R., Bravo A., Soberon M. Cadherin-like receptor binding facilitates proteolytic cleavage of helix a-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Letters, 2002, 513: 242~246.
    52. Gould F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annual Review of Entomology, 1998, 43: 701~726.
    53. Gould F., Anderson A., Reynolds A., Bumgarner L., Moar W. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. Journal of Economic Entomology, 1995, 88: 1545~1559.
    54. Gould F., Martinez-Ramirez A., Anderson A., Ferre J., Silva F.J., Moar W.J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Processings of the National Academy of Sciences of the Unites States of America, 1992, 89: 7986~7990.
    55. Gr?f R., Harvey W.R., Wieczorek H. Purification and properties of a cytosolic V1-ATPase. Journal of Biological Chemistry, 1996, 271: 20908~20913.
    56. Griffitts J.S., Huffman D.L., Whitacre J.L., Barrows B.D., Marroquin L.D., Muller R., Brown J.R., Hennet T., Esko J.D., Aroian R.V. Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. Journal of Biological Chemistry, 2003, 278: 45594~45602.
    57. Griffitts J.S., Haslam S.M., Yang T., Garczynski S.F., Mulloy B., Morris H., Cremer P.S., Dell A., Adang M.J., Aroian R.V. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science,2005, 307: 922~925.
    58. Gumbiner B.M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996, 84:345~357.
    59. Hara H., Atsumi S., Yaoi K., Nakanishi K., Higurashi S., Miura N., Tabunoki H., Sato R. A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae. FEBS Letters, 2003, 538: 29~34.
    60. Harvey W.R., Maddrell S.H.P., Telfer W.H., Wieczorek H. H+ V-ATPases energize animal plasma membranes for secretion and absorption of ions and fluids. American Zoologist, 1998, 38: 426~441.
    61. Hatanaka Y., Ashida H., Hashizume K., Fukuda I., Sano T., Yamaguchi Y., Endo T., Tani Y., Suzukia K., Danno G. Up-regulation of CD13/aminopeptidase N induced by phorbol ester is involved in redox regulation and tumor necrosis factorαproduction in HL-60 cells. Inflammation, 2002, 26: 175~181.
    62. He K.L., Wang Z.Y., Zhou D.R., Wen L.P., Song Y.Y., Yao Z.Y. Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae). Journal of Economic Entomology, 2003, 96: 935~940.
    63. He K., Wang Z., Wen L., Bai S., Ma X., Yao Z. Determination of baseline susceptibility to Cry1Ab protein for Asian corn borer (Lep., Crambidae). Journal of Appllied Entomology, 2005, 129(8): 407~412.
    64. Herrero S., Gechev T., Bakker P.L., Moar W.J., De Maagd R.A. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes, BMC Genomics, 2005, 6: 96~105.
    65. Higgins R., Buschman L., Bowing R., Sloderbeck P., Martin V. Evaluation of the corn borer resistance in Bt corn in western Kansas, 1995. Southwest Research Center, Field Day, Report of Progress 768. Kansas State University Agricultural Experimental Station and Cooperative Extension Service: 1996.21.24.
    66. Hilbeck A., Baumgartner M., Fried P.M., Bigler F. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 1998, 27: 480~487.
    67. Hofmann C., Vanderbruggen H., Hofte H., Van Rie J., Jansens S., Van Mellaert H. Specificity of Bacillus thuringiensisδ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Processings of the National Academy of Sciences of the Unites States of America, 1988, 85: 7844~7848.
    68. Hofmann C., Lüthy P., Hutter R., Pliska V. Binding of the dendotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). European Journal of Biochemistry, 1988, 173: 85~91.
    69. H?fte H., Whiteley H.R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 1989, 53, 242~255.
    70. Hossain D.M., Shitomi Y., Moriyama K., Higuchi M., Hayakawa T., Mitsui T., Sato R., Hori H.Characterization of a novel plasma membrane protein, expressed in the midgut epithelia of Bombyx mori, that binds to Cry1A toxins. Applied and Environmental Microbiology, 2004, 70: 4604~4612.
    71. Hua G., Jurat-Fuentes J.L., Adang M.J. Fluorescent-based assays establish Manduca sexta Bt-R1 a cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. Insect Biochemistry and Molecular Biology, 2004, 34: 193~202.
    72. Hua G., Masson L., Jurat-Fuentes J.L., Schwab G., Adang M.J. Binding analyses of Bacillus thuringiensis Cryδ-Endotoxins using brush border membrane vesicles of Ostrinia nubilalis. Applied and environmental microbiology, 2001, 67(2): 872~879.
    73. Huang F., Buschman L.L., Higgins R.A., McGaughey W.H. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science, 1999, 284: 965~967.
    74. Huang F., Higgins R.A., Bushman L.L. Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp kurstaki under selection pressure in European corn borer (Lepidoptera: Pyratidae). Journal of Economic Entomology, 1997, 90: 1137~1143.
    75. Huang J., Hu R., Pray C.E., Rozelle S., Qiao F. Small holders, transgenic varieties, and production efficiency: the case of cotton farmers in China. (in): Evenson R.E., Santaniello V., Zilberman D. (eds). Economic and Social Issues in Agricultural Biotechnology. New York: CABI publishing, 2002a, 393~407.
    76. Huang J.K., Rozelle S., Pray C.E., Wang Q.F. Plant biotechnology in China. Science, 2002b, 295: 674~677.
    77. Huber H.E., Lüthy P. Bacillus thuringiensis delta-endotoxin: composition and activation. (in): Davidson E. (eds). Pathogenesis of Invertebrate Microbial Diseases. Totowa, NJ: Allenheld Osmun, 1981, 209~234.
    78. James C. Global status of commercialized biotech/GM crops: 2007. ISAAA Brief No.37. ISAAA: Ithaca, NY.
    79. James C. Global status of commercialized biotech/GM crops: 2008. ISAAA Brief No. 39. ISAAA: Ithaca, NY.
    80. Janmaat A.F., Myers J. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2003, 270: 2263~2270.
    81. Jenkins J.L., Dean D.H. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors. BMC Biochemistry, 2001, 2: 12.
    82. Jurat-Fuentes J.L., Gahan L.J., Gould F.L., Heckel D.G., Adang M.J. The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry, 2004, 43: 14299~14305.
    83. Jurat-Fuentes J.L., Adang M.J. Characterization of a Cry1Acreceptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. European Journal of Biochemistry, 2004, 271: 3127~3135.
    84. Jurat-Fuentes J.L., Adang M.J. Cry toxin mode of action in susceptible and resistant Heliothisvirescens larvae. Journal of Invertebrate Pathology, 2006, 92: 166~171.
    85. Keeton T.P., Bulla Jr L.A. Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis Cry1A toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures. Applied and Environmental Microbiology, 1997, 63: 3419~3425.
    86. Keller M., Sneh T., Strizhov N., Prudovsky E., Regev A., Koncz C. Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect Biochemistry and Molecular Biology, 1996, 26: 365~373.
    87. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik, 1975, 26: 231~243.
    88. Knight P.J., Crickmore N., Ellar D.J. The receptor for Bacillus thuringiensis CrylA(c)δ-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Molecular Microbiology, 1994, 11: 429~436.
    89. Knight P.J., Carroll J., Ellar D.J. Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin. Insect Biochemistry and Molecular Biology, 2004, 34: 101~112.
    90. Koziel M.G., Beland G.L., Brown C., Carozzi N.B., Crenshaw R., Crossland L., Dawson J., Desai N., Hill M., Kadwell S., Launis K., Lewis K., Maddox D., McPherson K., Meghji M.R., Merlin E., Rhodes R., Warren G.W., Wright M., Evola S.V. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology, 1993, 11: 194~200.
    91. Krishnamoorthy M., Jurat-Fuentesa J.L., McNall R.J., Andacht T., Adang M.J. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. Insect Biochemistry and Molecular Biology, 2007, 37, 189~201.
    92. Lagnaoui A., Caňedo V., Douches D.S. Evaluation of Bt-cry1Ia1 (cryV) transgenic potatoes on two species of potato tuber moth, Phthorimaea operculella and Symmetrischema tangolias (Lepidoptera: Gelechiidae) in Peru. CIP (International Potato Center) Program Report, 2001, 117~121.
    93. Li G., Wu K.M., Gould F., Wang F., Mikao J., Gao X., Guo Y.Y. Increasing tolerance to Cry1Ac cotton from cotton bollworm, Helicoverpa armigera, was confirmed in Bt cotton farming area of China. Ecological Entomology, 2007, 32: 366~375.
    94. Li H.R., Oppert B., Higgins R.A. Susceptibility of Dipel-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to individual Bacillus thuringiensis protoxins. Journal of Economic Entomology, 2005, 98(4): 1333~1340.
    95. Li H., Oppert B., Higgins R.A., Huang F., Zhu K.Y., Buschman L.L. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae). Insect Biochemistry and Molecular Biology, 2004, 34: 753~762.
    96. Liang G., Wang G.R., Xu G., Wu K.M., Guo Y.Y. Purification of aminopeptidase N protein and differences in cDNAs encoding APN1 between susceptible and resistant Helicoverpa armigerastrains to Bacillus thuringiensis toxins. Agricultural Sciences in China, 2004, 3(6): 456~467.
    97. Liu Y.J., Song F.P., He K.L., Yuan Y., Zhang X.X., Gao P., Wang J.H., Wang G.Y. Expression of a modified cry1Ie gene in E. coli and in transgenic tobacco confers resistance to corn borer. Acta Biochimica et Biophysica Sinica, 2004, 36: 309~313.
    98. Luo K., McLachlin J.R., Brown M.R., Adang M.J. Expression of a glycosylphosphatidylinositol-linked Manduca sexta aminopeptidase N in insect cells. Protein Expression and Purification, 1999, 17: 113~122.
    99. Luo K., Sangadala S., Masson L., Mazza A., Brousseau R., Adang M.J. The Heliothis virescens 170 kDa aminopeptidase functions as“receptor A”by mediating specific Bacillus thuringiensis Cry1Aδ-endotoxin binding and pore formation. Insect Biochemistry and Molecular Biology, 1997, 27: 735~743.
    100. Luo S.D., Wang G.R., Liang G.M., Wu K.M., Bai L., Ren X. Guo Y. Binding of three Cry1A toxins in resistant and susceptible strains of cotton bollworm (Helicoverpa armigera). Pesticide Biochemistry and Physiology, 2006, 85: 104~109.
    101. Loseva O., Ibrahim M., Candas M., Koller N., Bauer L.A., Bulla Jr L.A. Changes in protease activity and Cry3Aa toxin binding in Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Insect Biochemistry and Molecular Biology, 2001, 32: 567~577.
    102. Macko V., Stegemann H. Mapping of potato proteins by combined electrofocusing identification of varieties. Hoppe-Seylers Zeitschrift fur Physiologische Chemie, 1969, 350: 917~919.
    103. Martini O.H.W., Gould H.J. Enumeration of rabbit reticulocyte ribosomal proteins. Journal of Molecular Biology, 1971, 62: 403~405.
    104. Masson L., Lu Y.J., Mazza A., Brousseau R., Adang M.J. The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. Journal of Biological Chemistry, 1995, 270: 20309~20315.
    105. Matinez-Ramirez A.C., Baltasar E.A., Real D. Inheritance of resistance to a Bacillus thuringiensis toxin in a field population of diamondback moth (Plutella xylostella). Pesticide Science, 1995, 43: 115~120.
    106. Matten S.R., Head G.P., Quemada H.D. How government regulation can help or hinder the integration of Bt crops with IPM programs. (in): Romeis J., Shelton A.M., Kennedy G.G. (eds.). Integration of insect-resistant genetically modified crops within IPM programs. New York: Springer, 2008, 27~39.
    107. McGaughey W.H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 1985, 229: 193~195.
    108. McNall R.J., Adang M.J. Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca Sexta midgut through proteomic analysis. Insect Biochemistry and Molecular Biology, 2003, 33: 999~1010.
    109. Midboe E.G., Candas M., Dorsch J.A., Bulla L.A., Jr. Susceptibility of Manduca sexta larvae to the Cry1Ab toxin of Bacillus thuringiensis correlates inversely with the developmental expression ofthe toxin receptor BT-R1. SAAS Bulletin, Biochemistry and Biotechnology, 2001, 14: 73~80.
    110. Midboe E.G., Candas M., Bulla Jr L.A. Expression of a midgut-specific cadherin BT--R1 during the development of Manduca sexta larva. Comparative Biochemistry and Physiology Part B, 2003, 135: 125~137.
    111. Müller-Cohn J., Chaufaux J., Buisson C., Gilois N., Sanchis V., Lereclus D. Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to CryIC and cross-resistance to other Bacillus thuringiensis crystal toxins. Journal of Economic Entomology, 1996, 89: 791~797.
    112. Morin S., Biggs R.W., Sisterson M.S., Shriver L., Ellers-Kirk C., Higginson D., Holley D., Gahan L.J., Heckel D.G., Carriere Y., Dennehy T.J., Brown J.K., Tabashnik B.E. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 5004~5009.
    113. Nagamatsu Y., Toda S., Koike T., Miyoshi Y., Shigematsu S., Kogure M. Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin. Bioscience, Biotechnology, and Biochemistry, 1998a, 62: 727~734.
    114. Nagamatsu Y., Toda S., Yamaguchi F., Ogo M., Kogure M., Nakamura M., Shibata Y., Katsumoto T. Identification of Bombyx mori midgut receptor for Bacillus thuringiensis insecticidal CryIA (a) toxin. Bioscience, Biotechnology, and Biochemistry, 1998b, 62: 718~726.
    115. Nakanishi K., Yaoi K., Nagino Y., Hara H., Kitami M., Atsumi S., Miura N., Sato R. Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella– their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. FEBS Letters, 2002, 519: 215~220.
    116. Nakanishi K., Yaoi K., Shimada N., Kadotani T., Sato R. Bacillus thuringiensis insecticidal Cry1Aa toxin binds to a highly conserved region of aminopeptidase N in the host insect leading to its evolutionary success. Biochimica et Biophysica Acta, 1999, 1432, 57~63.
    117. Nagamatsu Y., Koike T., Sasaki K., Yoshimoto A., Furukawa Y. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Letters, 1999, 460: 385~390.
    118. NASS. National agricultural statistics service. 2008. State Information (http://www.gov.nass/). USDA. Washington, D. C.
    119. Niederstatter H, Pelster B. Expression of two vacuolar-type ATPase B subunit isoforms in swimbladder gas gland cells of the European eel: nucleotide sequences and deduced amino acid sequences. Biochimica et Biophysica Acta, 2000, 1491: 133~142.
    120. Oppert B. Protease interactions with Bacillus thuringiensis insecticidal toxins. Archives of Biochemistry and Biophysics, 1999, 42: 1~12.
    121. Oppert B., Kramer K.J., Johnson D., Upton S., McGaughey W.H. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. Insect Biochemistry and Molecular Biology, 1996, 26: 571~83.
    122. O’Farrell P.H. High resolution two-dimensional electrophoresis of proteins. Journal of BiologicalChemistry, 1975, 250: 4007~4021.
    123. Oppert B., Kramer K.J., Johnson D.E., MacIntosh S.C., McGaughey W.H. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochemical and Biophysical Research Communications, 1994, 198: 940~47.
    124. Oppert B., Kramer K.J., Beeman R.W., Johnson D., McGaughey W.H. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. Journal of Biological Chemistry, 1997, 272: 23473~23476.
    125. Pereira E.J.G., Lang B.A., Storer N.P., Siegfried B.D. Selection for Cry1F resistance in the European corn borer and cross-resistance to other Cry toxins. Entomologia Experimentalis et Applicata, 2008, 126(2): 115~121.
    126. Pigott C., Ellar D.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Review, 2007, 71(2): 255~281.
    127. Pray C.E., Ma D.M., Huang J.K., Qiao F.B.“Impact of Bt cotton in China”. World Development, 2001, 29: 813~825.
    128. Pray C.E., Huang J.K., Hu R.F., Rozelle S. Five years of Bt cotton in China - the benefits continue. The Plant Journal, 2002, 31(4): 423~430.
    129. Rajagopal R., Agrawal N., Selvapandiyan A., Sivakumar S., Ahmad S., Bhatnagar R.K. Recombinantly expressed isozymic aminopeptidases from Helicoverpa armigera midgut display differential interaction with closely related Cry proteins. Biochemical Journal, 2003, 370: 971~978.
    130. Raymond S., Weintraub L. Acrylamide gel as a suppurting medium for zone electrophoresis. Science, 1959, 30: 711.
    131. Roush R.T. Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pesticide Science, 1997, 51: 328~334.
    132. Sangadala S., Walters F.S., English L.H., Adang M.J. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb+-K+ efflux in vitro. Journal of Biological Chemistry. 1994, 269: 10088~10092.
    133. Santoro M.G. Heat shock factors and the control of the stress response. Biochemical Pharmacology, 2000, 59: 55~63.
    134. Santoni V., Molloy M., Rabilloud T. Membrane proteins and proteomics: Un amour impossible? Electrophoresis, 2000, 21: 1054~1070.
    135. Scheele G.A. Two-dimensional gel analysis of soluble proteins. Journal of Biological Chemistry, 1975, 250: 5375~5385.
    136. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Review, 1998, 62: 775~806.
    137. Selvapandiyan A., Reddy V.S., Kumar P.A., Tewari K.K., Bhatnagar R.K. Transformation of Nicotiana tabacum with a native cry1Ia5 gene confers complete protection against Heliothis armigera. Molecular Breeding, 1998, 4: 473~478.
    138. Shelton A.M., Robertson J.L., Tang J.D., Perez C., Eignbrods S.D., Preisler H.K., Wilsey W.T., Cooley R.J. Resistance of diamondback moth (Lepidoptera: Plutellidae) subspecials in the field. Journal of Economic Entomology, 1993, 86: 697~705.
    139. Shelton A.M., Zhao J.Z., Roush R.T. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annual Review of Entomology, 2002, 47: 845~881.
    140. Simpson R.M., Newcomb R.D. Binding of Bacillus thuringiensisδ-endotoxins Cry1Ac and Cry1Ba to a 120-kDa aminopeptidase-N of Epiphyas postvittana purified from both brush border membrane vesicles and baculovirus-infected Sf9 cells. Insect Biochemistry and Molecular Biology, 2000, 30: 1069~1078.
    141. Siqueira H.A.A., Moellenbeck D., Spencer T., Siegfried B.D. Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensisδ-endotoxins. Journal of Economic Entomology, 2004, 97: 1049~1057.
    142. Sivakumar S., Rajagopal R., Venkatesh G.R., Srivastava A., Bhatnagar R.K. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. The Journal of Biological Chemistry, 2007, 282 (10): 7312~7319.
    143. Sloderbeck P.E., Jeff Whitworth R. Corn insect management. Kansas State University, January, 2009.
    144. Smithies O., Poulik M.D. Two-dimensional electrophoresis of serum proteins. Nature, 1956, 177: 1033.
    145. Stegemann H. Proteinfraktionierungen in polyacrylamid und die anwendung auf die genetische analyse bei pflanzen. Angewandte Chemie, 1970, 82: 640.
    146. Sun-Wada G.H., Wada Y., Futai M. Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments. Biochimica et Biophysica Acta, 2004, 1658: 106~114.
    147. Sumner J.P., Dow J.A.T., Earley F.G., Klein U., J?ger D., Wieczorek H. Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. Journal of Biological Chemistry, 1995, 270: 5649~5653.
    148. Tabashnik B.E., Cusing N.L., Finson N., Johnson M.W. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 1990, 83: 1671~1676.
    149. Tabashnik B.E. Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 1994a, 39: 47~79.
    150. Tabashnik B.E., Carrière Y., Dennehy T.J., Sims M.A., Sisterson M., Roush R.T., Shelton A.M., Zhao J.Z. Insect resistance to transgenie Bt crops: lessons from the laboratory and field. Journal of Economic Entomology, 2003, 96: 1031~1038.
    151. Tabashnik B.E., Gassmann1 A.J., Crowder1 D.W., Carrière1 Y. Insect resistance to Bt crops: evidence versus theory. Nature Biotechnology, 2008, 26: 199~202.
    152. Tabashnik B.E., Finson N., Johnson M.W., Heckel D.G. Cross-resistance to Bacillus thuringiensis toxin CryIF in the diamondback moth (Plutella xylostella). Applied and Environmental Microbiology, 1994b, 60: 4627~4629.
    153. Tabashnik B.E. Delaying insect adaptation to transgenic plants: seed mixtures and refugia reconsidered. Proceedings of the Royal Society of London, 1994c, 255: 7~12.
    154. Tsuda Y., Nakatani F., Hashimoto K., Ikawa S., Matsuura C., Fukada T., Sugimoto K., Himeno M. Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm). Biochemical Journal, 2003, 369: 697~703.
    155. Vadlamudi R.K., Ji T.H., Bulla L.A., Jr. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. Journal of Biological Chemistry, 1993, 268: 12334~12340.
    156. Vadlamudi R.K., Weber E., Ji I., Ji T.H., Bulla L.A., Jr. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. Journal of Biological Chemistry, 1995, 270: 5490~5494.
    157. Valaitis A.P., Jenkins J.L., Lee M.K., Dean D.H., Garner K.J. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity. Archives of Insect Biochemistry and Physiology, 2001, 46: 186~200.
    158. Valaitis A.P., Mazza A., Brousseau R., Masson L. Interaction analyses of Bacillus thuringiensis Cry1A toxins with two aminopeptidases from gypsy moth midgut brush border membranes. Insect Biochemistry and Molecular Biology, 1997, 27: 529~539.
    159. Van Rensburg J.B.J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. South African Journal of Plant and Soil, 2007, 24: 147~151.
    160. Van Rie J., Jansens S., H?fte D., Degheele, Van Mellaert H. Specificity of Bacillus thuringiensisδ-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. European Journal of Biochemistry, 1989, 186: 239~247.
    161. Van Rie J., Jansens S., H?fte H., Degheele D., Van Mellaert H. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensisδ-endotoxin. Applied and Environmental Microbiology, 1990, 56(5): 1378~1385.
    162. Wang G.R., Liang G.M., Wu K.M., Guo Y.Y. Gene cloning and sequencing of aminopeptidase N3, a putative receptor for Bacillus thuringiensis insecticidal Cry1Ac toxin in Helicoverpa armigera (Lepidoptera: Noctuidae). European Journal Entomology, 2005, 102: 13~19.
    163. Wang P., Zhang X., Zhang J. Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni. Insect Biochemistry and Molecular Biology, 2005, 35: 611~620.
    164. Whalon M.E., Wingerd B.A. Bt: mode of action and use. Archives of Insect Biochemistry and Physiology, 2003, 54: 200~211.
    165. Wolfersberger M.G. The toxicity of two Bacillus thuringiensisδ-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia, 1990, 46: 475~477.
    166. Wu X.Y., Leonard B.R., Zhu Y.C., Abel C.A., Head G.P., Huang F. Susceptibility of Cry1Ab-resistant and -susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins. Journal of Invertebrate Pathology, 2009, 100: 29~34.
    167. Xu X., Yu L., Wu Y. Disruption of a cadherin gene associated with resistance to Cry1Acδ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology, 2005, 71: 948~954.
    168. Xue J., Liang G.M., Crickmore N., Li H.T., He K.L., Song F.P., Feng X., Huang D.F., Zhang J. Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiology Letters, 2008, 280: 95~101.
    169. Yaoi K., Kadotani T., Kuwana H., Shinkawa A., Takahashi T., Iwahana H., Sato R. Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin. European Journal Biochemistry, 1997, 246: 652~657.
    170. Yaoi K., Nakanishi K., Kadotani T., Imamura M., Koizumi N., Iwahana H., Sato R. cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxin binding 120 kDa aminopeptidase N from Bombyx mori. Biochimica et Biophysica Acta, 1999a, 1444:131~137.
    171. Yaoi K., Nakanishi K., Kadotani T., Imamura M., Koizumi N., Iwahana H., Sato R. Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N. FEBS Letters, 1999b. 463: 221~224.
    172. Zhang X., Candas M., Griko N.B., Taussig R., Bulla L.A., Jr. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 9897~9902.
    173. Zhang X., Candas M., Griko N.B., Rose-Young L., Bulla L.A., Jr. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ, 2005, 12: 1407~1416.
    174. Zhao J.Z., Cao J., Collins H.L., Bates S.L., Roush R.T., Earle E.D., Shelton A.M. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proceedings of the National Academy of Sciences of the Unites States of America, 2005, 102(24): 8426~8430
    175. Zhu Y.C., Kramer K.J., Oppert B., Dowdy A.K. cDNAs of aminopeptidase-like protein genes from Plodia interpunctlla strains with different susceptibilities to Bacillus thuringiensis toxin. Insect Biochemistry and Molecular Biology, 2000, 30(3): 215~224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700