用户名: 密码: 验证码:
广聚萤叶甲对异常高温的生殖与生理代谢响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广聚萤叶甲(Ophraella communa)是入侵杂草豚草的专一性天敌,前期研究结果表明,36℃高温饲养一个世代对其发育与繁殖造成不利影响。结合湖南长沙夏季极端温度变化情况,本文设40、42、44℃,不同虫态在每天12:00-15:00时段连续处理3-5d和持续处理一个世代,随后考察广聚萤叶甲发育、繁殖、生理代谢物质及保护酶活性的变化。具体结果如下:
     1异常高温对广聚萤叶甲发育与繁殖的影响
     异常高温胁迫各虫态后,其存活率随温度升高而降低。卵和幼虫可耐受40℃高温胁迫,在各温度下蛹和成虫存活率均较高,耐高温能力为:成虫>蛹>幼虫>卵。持续高温胁迫整个世代后,对广聚萤叶甲的生存影响显著。高温胁迫下雌性比率明显增高。除40℃,异常高温胁迫显著降低雌虫繁殖力,且高温胁迫具有明显累积效应。异常高温胁迫各虫态后,成虫寿命总体上有所延长;42℃及以下高温持续胁迫一个世代后,成虫寿命延长,而44℃高温持续胁迫后,成虫寿命缩短。
     2异常高温对广聚萤叶甲体形特征参数的影响
     段性(不同虫态)和持续性(整个世代)异常高温胁迫均可显著抑制成虫体长的增长,且持续高温胁迫对成虫体长的影响更为显著。异常高温胁迫不同虫态后,成虫的体重降低不明显:异常高温持续胁迫整个世代后,成虫的体重显著降低。表明高温胁迫对成虫体长和体重的影响具有显著的累积效应。
     3广聚萤叶甲对异常高温响应的生理代谢机制
     异常高温胁迫对广聚萤叶甲体内含水率、总糖、糖原、脂肪、甘油和羟脯氨酸含量造成显著影响。异常高温胁迫各虫态后,各虫态以40℃胁迫处理的成虫含水率最高;各温度胁迫处理则以卵受胁迫后,成虫含水率最高。异常高温胁迫各虫态后,雌虫总糖含量总体上都有所增高,且高于雄虫。卵和幼虫经高温胁迫后,雄虫总糖含量增高,但蛹和成虫受胁迫后,雄虫总糖含量降低。在高温持续胁迫(整个世代)下,雌、雄成虫总糖含量随温度升高而降低。高温胁迫不同虫态后,成虫糖原含量高于对照;在高温持续胁迫下成虫糖原含量显著高于对照。除40℃胁迫卵及幼虫外,高温胁迫各虫态后,成虫体内脂肪含量均显著低于对照。除40℃胁迫的雄虫外,在高温持续胁迫下,成虫体内脂肪含量随温度升高而降低,雌虫显著高于雄虫。异常高温胁迫不同虫态后,雌虫体内的羟脯氨酸含量降低,而雄虫羟脯氨酸含量则呈增高趋势;在40℃及以上高温持续胁迫下,雄虫羟脯氨酸含量增高,且显著高于雌虫。异常高温胁迫不同虫态和整个世代后,成虫甘油含量均显著增高。这些成虫体内生理代谢物质的变化是广聚萤叶甲应对高温胁迫的一种积极响应。
     4异常高温胁迫下广聚萤叶甲体内保护酶活性变化
     异常高温胁迫不同虫态后,成虫蛋白质含量总体上有所降低;而在高温持续胁迫下,雌虫蛋白质含量降低,雄虫蛋白质含量有所增高。异常高温胁迫各虫态后,成虫体内SOD活性增高;但高温持续胁迫下,成虫体内SOD活性明显降低。异常高温胁迫各虫态后,成虫CAT活性有所增高,以胁迫幼虫后,成虫CAT的活性最高。异常高温持续胁迫下,雌虫CAT活性随温度升高先升后降,42℃下最高,雄虫CAT活性较平稳,44℃胁迫处理的雄虫CAT活性显著低于对照。异常高温胁迫各虫态后,成虫POD活性降低;异常高温持续胁迫下,雌虫POD活性随温度升高而降低,雄虫POD活性受影响较小。三种酶活性顺序为SOD>POD>CAT,抵抗氧化胁迫的贡献率为SOD>CAT>POD,说明高温引起了氧化胁迫,而广聚萤叶甲可抵抗42℃及以下高温造成氧化胁迫的影响。
Ophraella communa, a ragweed leaf beetle, is the host-specific natural enemy of the invasive ragweed, Ambrosia artemisiifolia. Previous study showed that laboratory rearing temperature of36℃affected adversely its development and reproduction. Based on abnormal high temperature changes in summer months in Hunan provinces, the3hours-heat-shock treatements of different stages of O. communa at temperature of40,42,44℃for continuous3-5days and were conducted, and the continuous high temperature treatments of a complete generation of of O. communa were also run at the above temperatures in order to test the heat-tolerance of the beetle,the reproduction, physiological metabolites and protective enzymes activity. The results as follows:
     1The effect of abnormal high temperature stresses on the development and reproduction of O. communa
     The survival rates of O. communa decreased with the increasing temperature when the different stages of O. communa were stressed by abnormal high temperatures. Egg and larva can suffer the high temperature stress of40℃, and the survival rates of pupae and adult were higher at all temperatures. Capability of tolerance to high temperature was adults> pupae> larvae> eggs. The survival of O. communa was significantly affected by continuous high temperature stress of a generation. Female ratio was significantly higher under high temperature stress. Except for40℃, abnormal high temperature stress was significantly lower female fecundity, and high temperature stress had a significant cumulative effect. The adult longevity was significantly extended when the different stages were stressed by abnormal high temperatures. The adult longevity would be extended when the generations were stressed by abnormal constant high temperatures, but when the temperature reached44℃, the adult longevity would be shorten.
     2The effect of abnormal high temperature stresses on the body characteristic parameters of O. communa
     The growth of the adult O. communa body length could be significantly inhibited by segmental (different stages) and continuous (a generation) abnormal high temperature stresses, and the effect of continuous (a generation) abnormal high temperature stress was more significant. The lost adult weight was not obvious when the different stages were stressed by abnormal high temperatures. When the generation were stressed by abnormal high temperatures the lost adult weight was significant. It showed that the cumulative effect of high temperature stress had a significant impact on adult body length and weight.
     3Physiological metabolic mechanisms of O. communa to abnormal high temperature stresses
     The water, total sugar, glycogen, fat, glycerin and hydroxyl proline content of O. communa were significantly affected by abnormal high temperature stress. When the different stages of O. communa were stressed by abnormal high temperatures, the adult water content of all treated stages of O. communa was the highest at40℃, while when the eggs after being stressed, the adult water content was the highest. Generally, the female total sugar content had increased after different stages stressed by abnormal high temperatures, and which was higher than male. Male total sugar content would increase after egg and larva were stressed by high temperature, which would decrease when pupa and adult were stressed by high temperature. Both female and male total sugar content decreased as the temperature increasing, when the high temperatures continued to stress (a generation). The adult glycogen content was higher than the control, when the different stages were stressed by high temperature, and male glycogen content was higher than female. In addition to the stress of egg and larva at40℃, adult body fat content were significantly lower than the control after different stages stressed by different high temperatures. In addition to the stress of male at40℃, the adult body fat content decreased as temperature increasing after high temperature continues being stressed, and female body fat content was significantly higher than male. After the different stages of O. communa were stressed by abnormal high temperatures, the female hydroxyproline content decreased, while the male body hydroxyproline content showed an increasing trend. When the continued stressed high temperature was no less than40℃, male hydroxyproline content increased, which was significantly higher than female. The adult glycerol content was significantly increased, when different stages and a generation were stressed by abnormal high temperatures. These changes of adult physiological metabolites were a positive response of O. communa to high temperature stress.
     4The protective enzyme activities of O. communa changes under abnormal high temperature stresses
     The adult protein content was significantly reduced after different stages of O. communa were stressed by abnormal high temperatures. After high temperature continues being stressed, the female protein content decreased, while the male protein content increased. After different stages of O. communa were stressed by abnormal high temperatures, adult body SOD activity increased, but the adult SOD activity was significantly decreased after high temperature continues being stressed. After different stages were stressed by abnormal high temperatures, adult CAT activity increased, and the adult CAT reached its peak after the larva was stressed. The female CAT activity raised at first, then decreased as the temperature increasing after high temperature continues being stressed, and reached its peak at42℃. The adult POD activity decreased after different stages of O. communa were stressed by abnormal high temperatures. After continues abnormal high temperature stressed, female POD activity decreased as the temperature increasing, and male POD activity was hardly affected. The order activity of the three enzymes was SOD> POD> CAT, the contribution rate of resistance to oxidative stress was SOD> CAT> POD, which showed that high temperature caused oxidative stress, and O. communa has the ability to resistant to oxidative stress impact caused by a temperature no more than42℃.
引文
常晓娜,韩超,肖能文,等.CO2倍增和转Bt水稻对二化螟幼虫的生理影响[J].昆虫知识,2010,47(5):904-909.
    陈铸尧,张之华,陈政.囟土白蚁蚁后体形与巢内群体发育及数量的关系[J].昆虫学报,1988,31(1):26-31.
    陈红松.豚草卷蛾和广聚萤叶甲对豚草的联合控制作用[D].武汉:华中农业大学,2009.
    陈建明,俞晓平,吕仲贤,等.白背飞虱取食抗虫品种过程中体内保护酶和自由基的变化[J].华东昆虫学报,2002,11(2):41-45.
    陈科伟,周靖,龚静,等.高温对玉米螟赤眼蜂实验种群的影响[J].应用生态学报,2006,17(7):1250-1253.
    陈磊,蔡笃程,陈青,等.短时高温对莲草直胸跳甲成虫存活及繁殖的影响[J].昆虫知识,2010,47(2):308-312.
    陈灵芝.生物多样性保护现状及其对策.见:中国科学院生物多样性委员会主编.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994,13-55.
    陈婷.Q型烟粉虱对高温胁迫的生理和生殖响应机制[D].北京:中国农业科学院,2011.
    陈永杰,孙绪艮,张卫光,等.桑螟越冬幼虫体内水分、脂肪、甘油的变化与抗寒性的关系[J].蚕业科学,2005,31(1):22-25.
    程登发,田喆,李红梅,等.温度和湿度对麦长管蚜飞行能力的影响[J].昆虫学报,2002,45(1):80-85.
    崔旭红,徐建信,李晓宇,等.短时高温暴露对Q型烟粉虱成虫存活和生殖适应性的影响[J].中国农学通报,2011,27(5):377-379.
    崔旭红,谢明,万方浩.短时高温暴露对B型烟粉虱和温室白粉虱存活以及生殖适应性的影响[J].中国农业科学,2008,41(2):424-430.
    邓振镛,张强,徐金芳,等.高温热浪与干热风的危害特征比较研究[J].地球科学进展,2009,24(8):865-873.
    杜尧,马春森,赵清华,等.高温对昆虫影响的生理生化作用机理研究进展[J].生态 学报,2007,27(4):1565-1572.
    方允中,李文杰.自由基与酶基础理论及其在生物学和医学中的应用[M].北京:科学出版社,1989.
    冯从经,戴华国,武淑文.褐飞虱高温条件下应激反应及体内保护酶系活性的研究[J].应用生态学报,2001,12(3):409-413.
    冯宏祖,刘映红,何林,等.阿维菌素和温度胁迫对朱砂叶螨自由基及保护酶活性的影响[J].植物保护学报,2008,35(6):530-536.
    高文兴,陈红印,张礼生.人工饲料pH值对桃蚜存活、繁殖及抗氧化酶活性的影响[J].应用昆虫学报,2011,48(3):605-610.
    郭薇,周忠实,郭建英,等.广聚萤叶甲成虫的形态特征[J].植物保护,2010,36(5):179-182.
    韩瑞东,徐延,王勇,等.高温对油松毛虫卵发育的影响[J].昆虫知识,2005,42(3):294-297.
    胡萃,万兴生.蝶蛹金小蜂性比的研究[J].昆虫学报,1988,31(3):332-335.
    胡亚鹏,孟玲.外来植食性广聚萤叶甲对非靶标植物的潜在影响[J].生态学杂志,2007,26(1):56-60.
    黄冠辉,马世俊.东亚飞蝗飞翔过程中脂肪和水分的消耗及温澡度所起的影响[J].动物学报,1964,16(3):372-380.
    黄水金,陈琼,陈红松,等.广聚萤叶甲和豚草卷蛾对江西南昌豚草的联合控制作用[J].生物安全学报,2011,20(4):310-313.
    蒋天骥,王幽兰.分析高温的久暂对蓖麻蚕蛹的影响[J].昆虫学报,1956,6(2):227-234.
    蒋志胜,尚稚珍,万树青,等.光活化杀虫剂α-三噻吩的电子自旋共振分析及其对库蚊保护酶系统活性的影响[J].昆虫学报,2003,46(1):22-26.
    金化亮.椰甲截脉姬小蜂耐热性生物学、生理学基础初步研究[D].海口:海南大学,2010.
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,167-169.
    李品明,杨丙贤,孙玉芳,等.高温胁迫对黄连幼苗活性氧代谢及保护酶活性的影响[J].安徽农业科学,2011,39(18):10796-10798.
    李庆,王思忠,封传红,等.西藏飞蝗(Locusta migratoria tibetensis Chen)耐寒性理 化指标[J].生态学报,2008,28(3):1314-1321.
    李毅平,龚和.昆虫体内抗氧化系统研究进展[J].生命科学,1998,10(5):240-243.
    李志明,陈青,金启安,等.高温对椰心叶甲啮小蜂保护酶系活性的影响[J].热带作物学,2010,31(6):994-998.
    李周直,沈惠娟,蒋巧根,等.几种昆虫体内保护酶系统活力的研究[J].昆虫学报,1994,37(4):399-403.
    梁中贵,张卫光,刘学辉,等.松阿扁叶蜂越冬幼虫体内抗寒物质分析[J].昆虫知识,2005,42(6):695-699.
    林抗美,何玉仙,甘代耀,等.两个水稻抗源与其育成新品种对褐飞虱生物学特性的影响[J].华东昆虫学报,1995,4(2):99-102.
    刘缠民.不同温度对黄粉虫幼虫存活率和保护酶系的影响[J].西北林学院学报,2006,21(1):107-109.
    刘国华,傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报,2001,16(1):71-78.
    刘井兰,于建飞,吴进才,等.昆虫活性氧代谢[J].昆虫知识,2006,43(6):752-756.
    刘树生.连续低高温对两种蚜虫不利影响在代别之间的累加效应[J].昆虫学报,1994,37(4):501-503.
    刘文静,于毅,张安盛,等.高温冲击对东亚小花蝽存活及生殖特性的影响[J].山东农业科学,2011,2:77-79,85.
    路萍,张林生,曹让.动物脂肪组织中羟脯氨酸含量测定方法研究[J].氨基酸和生物资源,1994,(02):45-47,52.
    吕顺霖,减荣春,徐俊良.氟中毒对家蚕幼虫中肠组织糖原分解代谢调节的影响[J].蚕业科学,1994,20(2):110-114.
    吕昭智,张江国,罗亮,等.短时间高温处理对棉蚜存活的影响[J].昆虫知识,2010,47(4):685-689.
    罗举,张孝羲,翟保平,等.高温对二化螟实验种群生长、存活和繁殖的影响[J].生态学报,2005,25(4):931-936.
    罗敏,郭建英,周忠实,等.短时低温胁迫对广聚萤叶甲发育和生殖的影响[J].昆虫学报,2011,54(1):76-82.
    罗其荣,邱明生,张卫.60Co口辐射对亚洲玉米螟体内保护酶活力的影响[J].华东昆虫学报,1999,8(2):4-5.
    马巨法,胡国文,程家安.三种稻飞虱在恒定高温胁迫下的生态表现[J].华东昆虫学报,1998,7(2):80-84.
    马俊,万方浩,郭建英,等.入侵物种的综合治理[J].见:万方浩,李保平,郭建英主编.生物入侵:生物防治篇.北京:科学技术出版社,2008:112-135.
    马骏,万方浩,郭建英,等.豚草和三裂叶豚草的生物防治[M].见:万方浩,李保平,郭建英主编.生物入侵:生物防治篇.北京:科学出版社,2008:157-185.
    马延龙,候凤,马纪.荒漠昆虫光滑鳖甲的耐寒性季节变化及其生理机制[J].昆虫学报,2009,52(4):372-379.
    孟玲,李保平.新近传入我国大陆取食豚草的广聚萤叶甲[J].中国生物防治,2005,21(2):65-69.
    孟玲,李保平.豚草条纹萤叶甲的交配和产卵行为[J].昆虫知识,2006,43(6):806-809.
    孟玲,徐军,李海波.外来广聚萤叶甲在我国的扩散及生活史特征.中国生物防治,2007,23(1):5-10.
    农业部.全国农业植物检疫性有害生物名单[EB].北京:中华人民共和国农业部公告第617号,2006.
    齐国君,黄德超,高燕,等.广东省豚草及两种天敌昆虫的发生与分布[J].应用昆虫学报,2011,48(1):197-201.
    曲鹏.温度对B型烟粉虱和温室白粉虱的影响[D].泰安:山东农业大学,2005.
    宋菁,吕昭智,王登元,等.荒漠昆虫天花吉丁虫的呼吸及体内水分损失特征[J].昆虫学报,2008,51(2):132-136.
    宋月芹,孙会忠,仵均祥,等.不同温度对甜菜夜蛾保护酶活性的影响[J].西北农业学报,2009,18(3):285-288.
    苏丽娜,李晓晨,靳川.热驯化对鼎突多刺蚁热适应和运动行为的影响[J].生态学报,2006,26(10):3266-3270.
    田清涞,殷莹.羟脯氨酸和动物衰老相关性的研究[J].老年学杂志,1991,11(3):169-132.
    万方浩,刘万学,马骏,等.普通豚草和三裂叶豚草[J].见:万方浩,郑小波,郭建英主编.重要农林外来入侵物种的生物学与控制.北京:科学出版社,2005:662-692.
    万方浩,王韧,关广清,等.恶性害草豚草综合治理研究[M].见:万方浩,关广清,
    王韧主编.豚草及豚草综合治理.北京:中国科学技术出版社,1993:105-125.
    王代军,温洋.温度胁迫下几种冷季型草坪草抗性机制的研究[J].草业学报,1998,7(1):75-80.
    王生,阮长春,张俊杰,等.松毛虫赤眼蜂滞育及解除滞育阶段主要物质含量变化[J].吉林农业大学学报,2011,33(4):367-370,375.
    王晟,徐洪富,崔峰.高温处理对甜菜夜蛾雌虫成虫期生殖力及卵巢发育的影响[J].西南农业学报,2006,19(5):916-919.
    王孝娣,王海波,高东升,等.短时间高温处理下桃树活性氧代谢与桃芽自然休眠解除的关系[J].应用生态学报,2010,21(11):2749-2754.
    王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J].天津化工,2009,22(3):40-42.
    王亚维,张国洲,徐汉虹.β-谷甾醇等化合物对昆虫整体糖原含量的影响[J].青海大学学报(自然科学版),2000,18(5):7-9.
    王艳霞,万方浩,王鑫,等.不同温度锻炼对高温胁迫下Q型烟粉虱存活及生殖的影响[J].植物保护,2011,37(3):63-66.
    王智翔,陈永林.环境温湿度对狭翅雏蝗体温与含水量的影响[J].昆虫学报,1989,32(3):278-285.
    王宗舜,欧阳迎春.东方粘虫飞行初期糖类的动用和消耗[J].昆虫学报,1995,38(2):146-152.
    仵均祥,袁锋,苏丽.麦红吸浆虫幼虫滞育期间糖类物质变化[J].昆虫学报,2004,47(2):178-183.
    吴青君,张友军,徐宝云,等.保护酶系在小菜蛾对阿维菌素抗性中的作用[J].应用昆虫学报,2011,48(2):291-295.
    夏润玺,曹慧颖,刘限,等.高温条件下柞蚕血淋巴过氧化氢酶活性的变化[J].蚕业科学,2009,35(2):415-417.
    徐金芳,邓振镛,陈敏.中国高温热浪危害特征的研究综述[J].干旱气象,2009,27(2):163-167.
    徐胜,何兴元,陈玮,等.高羊茅对高温的生理生态响应[J].应用生态学报,2007,18(10):2219-2226.
    杨唐斌,梅尚筠.热休克对家蚕幼虫抗氧化酶活性的影响[J].生物化学与生物物理进展,1996,23(2):153-156.
    尹姣,陈巨莲,曹雅忠,等.外源化合物诱导后小麦对麦长管蚜和粘虫的抗虫性研究[J].昆虫学报,2005,48(5):718-724.
    张东营,孟玲.外来广聚萤叶甲对豚草取食和利用效率的测定[J].中国生物防治,2007,23(2):123-127.
    张蕾,蒋善军,江幸福,等CrylAb杀虫蛋白对淡足侧沟茧蜂生长发育的影响[J].植物保护,2011,37(6):107-111.
    张黎萍,荆奇,戴廷波,等.温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响[J].应用生态学报,2008,19(2):311-316.
    张瑞峰,任永霞,徐汉虹,等杀菌剂对斜纹夜蛾SL细胞系和幼虫的生物活性[J].昆虫学报,2007,50(7):689-694.
    张巍,张志罡,付秀芹,等.转Bt基因水稻对稻纵卷叶螟幼虫体内三种保护酶活性的影响[J].昆虫学报,2008,51(10):1022-1027.
    赵俊红,刘军侠,姜文虎,等.S02胁迫对异色瓢虫的生长发育及保护酶的影响[J].河北农业大学学报,2011,34(1):87-91.
    赵克非,戈林泉,程耀,等.三种杀虫剂对褐飞虱海藻糖含量和海藻糖酶活性的影响[J].昆虫学报,2011,5(7):786-792.
    赵小钒,弭忠祥.细胞壁羟脯氨酸的含量与大豆灰斑病抗性关系的研究[J].大豆科学,2000,19(2):146-149.
    赵鑫,傅建炜,万方浩,等.短时高温暴露对莲草直胸跳甲生殖特性的影响[J].昆虫学报,2009,52(10):1110-1114.
    赵玉国,王新忠,吴沿友,等.高温胁迫及恢复对水稻叶绿素荧光动力学特性和保护酶活性的影响[J].安徽农业科学,2011,39(27):16487-16488,16625.
    周利琳,司升云,汪钟信,等.甜菜夜蛾对虫酰肼抗性的生化机制[J].昆虫学报,2009,52(4):386-394.
    周亦红,姜卫华,赵志模,等.温度对美洲斑潜蝇及南美斑潜蝇种群增长的影响[J].生态学报,2001,21(8):1276-1284.
    周永丰,唐峻岭.高温对南美斑潜蝇的致死作用[J].昆虫知识,2003,40(4):372-373.
    周忠实,陈红松,郭建英,等.豚草生物防治技术在湖南汩罗的应用及其控制效果[J].生物安全学报,2011,20(3):186-191.
    周忠实,陈红松,郑兴汶,等.广聚萤叶甲和豚草卷蛾对广西来宾豚草的联合控制作 用[J].2011,20(4):267-269.
    周忠实,陈泽鹏,许再福.斜纹夜蛾和烟青虫在烟草上的生态位(英文)[J].生态学报,2006,26(10):3245-3249.
    Aebi H, Suter H. Acatalasemia[M]. In:Stanbury JB, Wyngaarden JB, Fredrickson DS (eds). The Metabolic Basis of Inherited Disease. New York:McGraw-Hill,1972, 1710-1729.
    Alexander LV, Hope P, Collins D, et al. Trends in Australia's climate means and extremes: a global context[J]. Australian Meteorological Magazine,2007,56:1-18.
    Allard HA. Flowering behavior and natural distribution of the eastern ragweeds (Ambrosia) as affected by length of day[J]. Ecology,1945,26(4):387-394.
    Anonymous.2005. Heat wave hits central and eastern parts of China. http://www.doule.Net/commonality/ywb/ENews/200508/16799.html
    Anonymous. Heatwave to Continue in China for Next 3 Days.2010. http://www.chinadaily.com.cn/china/2010-07/04/content_10055683.htm.
    Arbogast RT. Mortality and reproduction of Ephestia cautella and Plodia interpunctella exposed as pupae to high temperatures[J]. Environmental Entomology,1981,10: 708-710.
    Bagarozzi DA, Travis J. Ragweed pollen proteolytic enzymes:possible roles in allergies and asthma[J]. Phytochemistry,1998,47(4):593-598.
    Bale JS, Masters GJ, Hodkinson ID, et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores[J]. Global Change Biology, 2002,8(1):1-16.
    Bass DJ, Delpech V, Beard J, et al. Late summer and fall (March-May) pollen allergy and respiratory disease in Northern New South Wales, Australia[J]. Annals of Allergy, Asthma, and Immunology,2000,85(5):374-381.
    Bedick JC, Hoback WW, Albrecht MC. High water-loss rates and rapid dehydration in the burying beetle, Nicrophorus marginatus[J]. Physiological Entomology,2006,31(1): 23-29.
    Bors W, Saran M, Lengfelder E, et al. The relevance of the superoxide anion radical in biological systems[J]. Current Topics in Radiation Research Quarterly,1974,9(3): 247-309.
    Broufas GD, Pappas ML, Koveos DS. Effect of relative humidity on reproduction, longevity and ovarian maturation of the tephritid fly Bactocera (Dacus) oleae[J]. Annals of the Entomological Society of America,2009,102(1):70-75.
    Cao ZJ, Wang HY, Meng L, et al. Risk to nontarget plants from Ophraella communa (Coleoptera:Chrysomelidae), a potential biological control agent of alien invasive weed Ambrosia artemisiifolia (Asteraceae) in China[J]. Applied Entomology and Zoology,2011,46(3):375-381.
    Chauvel B, Dessaint F, Cardinal-Legrand C, et al. The historical spread of Ambrosia artemisiifolia L. in France from herbarium records[J]. Journal of Biogeography,2006, 33(4):665-673.
    Chauvel B, Dessaint F, Lonchamp JP, et al. Cinq elues et des candidates, enquete sur les mauvaises herbes envahissantes en grandes cultures en France[J]. Phytoma Defense Vegetaux,2005; 578:16-20.
    Colautti RI, Ricciardi A, Grigorovich IA, et al. Is invasion success explained by the enemy release hypothesis?[J]. Ecology Letters,2004,7(8):721-733.
    Comtois P, Gagnon L. Pollen concentration and frequency of pollinosis symptoms:a method of determination of the clinical threshold[J]. Revue Francaise de Allergologie et de Immunologie Clinique,1988,28:279-286.
    Covarrubias L, Hernandez-Garcia D, Schnabel D, Salas-Vidal E. Castro-Obregon S. Function of reactive oxygen species during animal development:passive or active?[J]. Developmental Biology,2008,320(1):1-11.
    Cui XH, Wan FH, Xie M, et al. Effects of heat shock on survival and reproduction of two whitefly species, trialeurodes vaporariorum and Bemisia tabaci Biotype B[J]. Journal of Insect Science,2008,8(4):1-10.
    Dahl A, Strandhede SO, Wihl JA. Ragweed-an allergy risk in Sweden?[J]. Aerobiologia, 1999,15(4):293-297.
    Danks HV. Insect Dormancy:An ecological perspective (Monogragh Ser No.1). Ottawa: Biological Survey of Canada,1987
    David JR, Allemand R, Van Herrewege J, et al. Ecophysiology:abiotic factors. In: Ashburner M, Carson HL, Thompson JN (eds). The genetics and biology of Drosophila. Academic Press, London,3 d,1983,105-170.
    David JR, Clavel MF. Influence de la temperature sur le nombre, le pourcentage d'eclosion et la taille des oeufs pondus par Drosophila melanogaster[J].Annales de la Societe Entomologique de France,1969,5:161-171.
    David PT, Gerard MJJ. The use of endogenous antioxidants to improve photoprotection[J]. Journal of Photochemistry and Photobiology B:Biology,1997,41(1-2):1-10.
    Davidowitz G, D'Amico LJ, Nijhout HF. Critical weight in the development of insect body size[J]. Evolution and Development,2003,5(2):188-197.
    Deen W, Hunt LA, Swanton CJ. Photothermal time describes common ragweed (Ambrosia artemisiifolia L.) phenological development and growth[J]. Weed Science, 1998a,46(5):561-568.
    Deen W, Hunt T, Swanton CJ. Influence of temperature, photoperiod and irradience on phenological development of common ragweed (Ambrosia artemisiifolia)[J]. Weed Science,1998b,46(5):555-560.
    Deisseroth A, Dounce AL. Catalase:physical and chemical properties, mechanism of catalysis and physiological role[J]. Physiological Reviews,1970,50(3):319-375.
    Della-Marta PM. Haylock MR, Luterbacher J, et al. Doubled length of western European summer heat waves since 1880[J]. Journal of Geophysical Research,2007,112: D15103.1-D15103.11
    Demovici S. Susceptibility of sunflower to Ophraella communa LeSage (Coleoptera: Chrysomelidae), a candidate for the biological control of common ragweed (Ambrosia artemisiifolia L.)[D]. Quebec, Canada:Department of Plant Science, Macdonald Campus of McGill University,2003.
    Dernovici SA, Teshler MP, Watson AK. Is sunflower (Helianthus annus) at risk to damage from Ophraella communa, a natural enemy of common ragweed (Ambrosia artemisiifolia)?[J]. Biocontrol Science and Technology,2006,16(7):669-686.
    Demple B. Radical ideas:genetic responses to oxidative stress[J]. Clinical and Experimental Pharmacology and Physiology,1999,26(1):64-68.
    Denlinger DL, Hallman GJ. Physiology of Heat Sensitivity[M]. In:Hallman GJ, Denlinger DL (eds). Temperature sensitivity in insects and application in integrated pest management. Boulder, Colo.:Westview Press,1998,7-57.
    Deutsch CA, Tewksbury JJ, Huey RB, et al. Impacts of climate warming on terrestrial ectotherms across latitude[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(18):6668-6672.
    Dixon AFG, Chambers RJ, Dharma TR. Factors affecting size in aphids with particular references to the black bean aphid, Aphis fabae[J].Entomologia Experimentalis et Applicata,1982,32(2):123-128.
    Downer RGH, Matthews JR. Pattern of lipid distribution and utilization in insects[J]. American Zoologist,1976,16(4):733-745.
    Downer RGH. Comprehensive insect physiology, biochemistry and pharmacology[M]. In: Kerkut GA, Gilbert LI (eds). Lipid Metabolism. Oxford:Pergmon Press,1985, 77-114.
    Economopoulos AP. Quality control and SIT field testing with genetic sexing Mediterranean fruit fly males[M]. In:McPheron BA, Gary (eds). Fruit fly pests:a world assessment of their biology and management. FL:St. Lucie Press,1996, 385-389.
    Elton CS. The ecology of invasions by animals and plants[M]. London:Methuen,1958.
    Emura K. The ragweed beetle Ophraella communa LeSage (Coleoptera:Chrysomelidae) which injures harmful exotic plants[J]. Shokubutsu Boeki (Plant Protection),1999, 53:138-141.
    Fridovich I. Superoxide radical and superoxide dismutase[J]. Accounts of Chemical Research,1972,5(10):321-326.
    Fridovich I. Oxygen is Toxic![J]. Bioscience,1977,27(7):462-466.
    Froud-Williams RJ. Varietal selection for weed suppression[J]. Aspects of Applied Biology,1997, (50):355-360.
    Fumanal B, Chauvel B, Bretagnolle F. Estimation of pollen and seed production of common ragweed in France[J]. Annals of Agricultural and Environmental Medicine, 2007,14:233-236.
    Futuyma DJ. Observations on the taxonomy and natural history of Ophraella Wilcox (Coleoptera:Chrysomelidae), with a description of a new species. Journal of the New York Entomological Society,1990,98(2):163-186.
    Futuyma DJ. A new species of Ophraella Wilcox (Coleoptera:Chrysomelidae) from the southeastern United States[J]. Journal of the New York Entomo-logical Society,1991, 99(4):643-653.
    Futuyma DJ, Keese MC, Scheffer SJ. Genetic constraints and the phylogeny of insect-plant associations:responses of Ophraella communa (Coleoptera: Chrysomelidae) to host plants of its congeners[J]. Evolution,1993,47(3):888-905.
    Goeden R, Ricker D. The life history of Ophraella notulata (F.) (Coleoptera: Chrysomelidae) on western ragweed, Ambrosia psilostachya De Candolle, in southern California(Coleoptera:Chrysomelidae)[J]. The Pan-Pacific Entomologist, 1985,61(1):32-37.
    Griffiths ML, Bradley RS. Variations of twentieth-century temperature and precipitation extreme indicators in the northeast United States[J]. Journal of Climate,2007,20 (21): 5401-5417.
    Guo JY, Zhou ZS, Zheng XW, et al. Control efficiency of leaf beetle, Ophraella communa, on the invasive common ragweed, Ambrosia artemisiifolia, at different growing stages[J]. Biocontrol Science and Technology,2011,21(9):1049-1063.
    Halliwell B. Superoxide dismutase, catalase and glutathione peroxidase:solutions to the problems of living with oxygen[J]. New Phytologist,1974,73(6):1075-1086.
    Halliwell B. Reactive oxygen species in living systems:source, biochemistry, and role in human disease[J]. The American journal of medicine,1991,91(3):14S-22S.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medcine[J]. Biological Sciences,1999,10(6):449-450.
    Hallman GJ, Denlinger DL. Temperature sensitivity in insects and application in integrated pest management[M]. Boulder, CO:Westview Press,1998.
    Harrington R, Woiwod I, Sparks T. Climate change and trophic interactions[J]. Trends in Ecology and Evolution,1999,14(1):146-150.
    Harris P, Piper GL. Ragweed (Ambrosia spp.:Compositae):Its North American insects and possibilities for its biological control[J]. Journal Technical Bulletin of the Commonwealth Institute of Biological Control,1970,13,117-140.
    Heap I. The occurrence of herbicide resistant weeds, worldwide[J]. Pesticide Science, 1997,51(3):235-243.
    Helmuth B, Kingsolver JG, Carrington E. Biophysics, physiological ecology, and climate change:does mechanism matter?[J]. Annual Review of Physiology,2005,67: 177-201.
    Henle KJ, Warters RL. Heat protection by glycerol in vitro[J]. Cancer Research,1982,42, 2171-2176.
    Hernandez-Garcia D, Wood CD, Castro-Obregon S, et al. Reactiveoxygen species: Aradicalrole in development?[J]. Free Radical Biology and Medicine,2010,49(2): 130-143.
    Hickling R, Roy DB, Hill JK, et al. The distributions of a wide range of taxonomic groups are expanding polewards[J]. Global Change Biology,2006,12(3):450-455.
    Hierro LJ, Maron JL, Callaway RM. A biogeographical approach to plant invasions:the importance of studying exotics in their introduced and native range[J]. Journal Ecology,2005,93(1):5-15.
    Hilgendorf JH, Goeden RD. Phytophagous insects reported for cultivated and weedy varieties of the sunflower, Helianthus annuus L., in north America[J]. Bulletin of the Entomological Society of America,1981,27(2):102-108.
    Hoffmann AA, Parsons PA. Evolutionary genetics and environmental stress[M]. Oxford University Press, New York. 1991
    Hoffmann AA, S0rensen JG, Loeschcke V. Adaptation of Drosophila to temperature extremes: bringing together quantitative andmolecular approaches[J]. Journal of Thermal Biology, 2003, 28(3): 175-216.
    Huang Z, Ren SX, Musa PD. Effects of temperature on development, survival, longevity, and fecundity of the Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) predator, Axinoscymnus cardilobus (Coleoptera: Coccinellidae)[J]. Biological Control, 2008, 46(2): 209-215.
    Huffaker CB, Berryman A, Turchin P. Dynamics and regulation of insect populations [J]. In: Huffaker CB, Gutierrez AP. (eds). Ecological Entomology, 2nd ed. New York: Wiley and Sons, 1999, chapter 12, 269-305.
    Hunt BG. A climatology of heat waves from a multimillennial simulation [J]. Journal of Climate, 2007, 20(15): 3802-3821.
    IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[DB/OL].IPCC, Geneva, Switzerland. Available at http://www. ipcc.ch/index.htm (accessed 19 March 2009).
    Ishiguro S, Li YP, Nakano K, et al. Seasonal changes in glycerol content and cold hardiness in two ecotypes of the rice stem borer, Chilo suppressalis, exposed to the environment in the Shonai district, Japan[J]. Journal of Insect Physiology, 2007, 53(4): 392-397.
    Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis[J]. Trends in Ecology and Evolution, 2002, 17(4): 164-170.
    Kirkman HN, Gaetani GF. Mammalian catalase: a venerable enzyme with new mysteries[J]. Trends in Biochemical Sciences, 2007, 32(1): 44-50.
    Kiss L. Why is biocontrol of common ragweed, the most allergenic weed in Eastern Europe, still only a hope?[M]. In: Vincent C, Goettel MS, Lazarovits G (eds). Biological control: a global perspective. Oxfordshire, UK: CAB International, 2007, 80-91
    Kiss L, Beres I. Anthropogenic factors behind the recent population expansion of common ragweed {Ambrosia artemisiifolia L.) in Eastern Europe: is there a correlation with political transitions? [J]. Journal of Biogeography, 2006, 33(12): 2154-2157.
    Klein Tank AMG, Peterson TC, Quadir DA, et al. Changes in daily temperature and precipitation extremes in central and south Asia[J]. Journal of Geophysical Research, 2006,111:D16105-1-D16105-8.
    Kostal V, Sula J, Simek P. Physiology of drought tolerance and cold hardiness of the Mediterranean tiger moth Cymbalophora pudica during summer diapause [J]. Journal of Insect Physiology,1998,4(2):165-173.
    Kovalev OV. Insects feeding on ragweeds (Ambrosia L.) in North America and their application in biological control of this weed in USSR[J]. Zoologichesky Zhurnal, 1971,50:199-209.
    Laaidi M, Laaidi K, Besancenot JP, et al. Ragweed in France:an invasive plant and its allergenic pollen[J]. Annals of Allergy, Asthma, and Immunology,2003,91(2): 195-201.
    Lale NE, Vidal S. Simulation studies on the effects of solar heat on egg-laying, development and survival of Callosobruchu smaculatus (F.) and Callosobruchus subinnotatus (Pic) in stored bambara groundnut Vigna subterranea (L.) Verdcourt[J]. Journa 1 of Stored Products Research,2003,39(5):447-458.
    Leong ECW, Ho SH. Techniques in the culturing and handling of Liposcelis entomophila (Enderlein) (psocoptera:Liposcelidae)[J]. Journal of Stored Products Research,1990, 26(2):67-70.
    LeSage L. A taxonomic monograph of the nearctic Galerucine genus Ophraella Wilcox (Coleoptera:Chrysomelidae)[J]. Memoirs of the Entomological Society of Canada, 1986,118(133):1-75.
    Liu H, Stiling P. Testing the enemy release hypothesis:a review and meta-analysis[J]. Biological Invasions,2006,8(7):1535-1545.
    Liu ZD, Gong PY,Wu KJ, et al. Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae)[J]. Journal of Insect Physiology,2007,53(10):1016-1026.
    Mahroof R, Subramanyam B, Flinn P. Reproductive performance of Tribolium castaneum (Coleoptera:Tenebrionidae) exposed to the minimum heat treatment temperature as pupae and adults[J]. Journal of Economic Entomology,2005,98(2):626-633.
    Maksimovic Z. In vitro antioxidant activity of (Ambrosia artemisiifolia L., Asteraceae) herb[J]. Industrial crops and products,2008,28(3):356-360.
    Marcelo HL, Tania ZS. Animal response to drastic changes in oxygen availability and physiological oxidative stress[J]. Comparative Biochemistry and Physiology Part C, 2002,133(4):537-556.
    Maron JL, Vila M. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses[J]. Oikos,2001,95(3):361-373.
    Mazau D, Esquerre-Tugaye MT. Hydroxyproline-rich glycoprotein accumulation in the cell walls of plants infected by various pathogens [J]. Physiological and Molecular Plant Pathology,1986,29(2):147-157.
    McCIAY, AS. Studies of some potential biocontrol agents for Parthenium hysterophorus in Mexico[M]. In:Proceedings of the fifth international symposium on biological control of weeds, Brisbane, Australia,1980. Delfosse ES (ed). Melbourne: Commonwealth Scientific and Industrial Research Organization,1981,472-482.
    Meinesz A, Hesse B. Introduction et invasion de l'algue tropicale Caulerpa taxifolia en Mediterranee nord-occidentale[J]. Oceanologica acta,1991,14(4):415-426.
    Mirone C, Albert F, Tosi A, et al. Efficacy and safety of subcutaneous immunotherapy with a biologically standardized extract of Ambrosia artemisiifolia pollen:a double-blind, placebo-controlled study[J]. Clinical and Experimental Allergy,2004, 34(9):1408-1414.
    Mitchell HK, Moller G, Petersen NS, et al. Specific protection from phenocopy induction by heat shock[J]. Developmental Genetics,1979,1(2):181-192.
    Moriya S, Shiyake S. Spreading the distribution of an exotic ragweed beetle, Ophraella communa LeSage (Coleoptera:Chrysomelidae), in Japan[J]. Japanese Journal of Entomology (New Series),2001,4(3):99-102
    Murdie G. Some causes of size variation in the pea aphid, Acyrthosiphon pisum Harris[J]. Transactions of the Royal Entomological Society of London,1969,121(10):423-442.
    Musolin DL. Insects in a warmer world:ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change[J]. Global Change Biology, 2007,13(8):1565-1585.
    Musolin DL, Numata H. Timing of diapause induction and its life-history consequences in Nezara viridula:is it costly to expand the distribution range?[J]. Ecological Entomology,2003,28(6):694-703.
    Musolin DL, Tougou D, Fujisaki K. Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera:Pentatomidae)[J]. Global Change Biology,2010,16(1):73-87.
    New M, Hewitson B, Stephenson DB, et al. Evidence of trends in daily climate extremes over southern and west Africa[J]. Journal of Geophysical Research,2006,111: D14102.1-D14102.11.
    Niedzwiecki A, Reveillaud I, Fleming JE. Changes in superoxide dismutase and catlase in aging heat-shocked Drosophila[J]. Free radical research communications,1992, 17(6):355-367.
    O'Brien PJ. Peroxidases[J]. Chemico-Biological Interactions,2000,129(1-2):113-139.
    Henry D, Prange HD. Evaporative cooling in insects[J]. Journal of Insect Physiology, 1996,42(5):493-499.
    Ohno H, Nakamura K. Distribution of Nezara viridula and N. antennata in Okayama Prefecture and Shikoku Island, Japan. Naturalistae,2007,11:1-8.
    Ostroumov AI. Hypersensitivity caused by Ambrosia pollen in the Kuban area. (Krasnodar Region)[J]. Allergie und Immunologie (Leipz),1971,17(3):202-207.
    Palmer WA, Goeden RD. The host range of Ophraella communa Lesage (Coleoptera: Chrysomelidae)[J]. The Coleopterists Bulletin,1991,45(2):115-120.
    Pappas ML, Broufas GD, Koveos DS. Effect of relative humidity on development, survival and reproduction of the predatory lacewing Dichochrysa prasina (Neuroptera:Chrysopidae)[J]. Biological Control,2008,46(2):234-241.
    Parmesan C. Ecological and Evolutionary Responses to Recent Climate Change[J], Annual Review of Ecology. Evolution and Systematics,2006,37:637-669.
    Parmesan C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming[J]. Global Change Biology,2007,13(9): 1860-1872.
    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature,2003(6918):421:37-42.
    Payne WW. The morphology of the inflorescence of ragweeds (Ambrosia-Franseria: Compositae)[J]. American Journal of Botany,1963,50(9):872-880.
    Roitt I, Brostof J, Male D. Immunology[M]. London:Mosby-Year Book Europe,1996.
    Rybncek O, Jager S. Ambrosia (ragweed) in Europe[J]. Allergy and Clinical Immunology International Journal of the World Allergy Organisation,2001,13(2):60-66.
    Salvucci ME, Stecher DS, Henneberryn TJ. Heat shock proteins in whiteflies, an insect that accumulates sorbitol in response to heat stress. Journal of Thermal Biology,2000, 25(5):363-371.
    Saunders BC, Holmes-Siedlea AG, Stark BP. Peroxidase[J]. London:Buttersworth,1964.
    Schmitz U. The potential effects of climate change on the growing season and degree of naturalization of alien Amaranthus species on banks of the river Rhine. In:Kuhn I, Klotz S (eds). Biological Invasions:Challenges for Science. Neobiota,2004,3: 135-145.
    Schnebel EM, Grossfield J. Mating-temperature range in Drosophila[J]. Evolution 1984, 38(6):1296-1307.
    Shimizu T, Moriya S. Estimation of dispersal distance in the ragweed beetle Ophraella communa by light. Proceedings,45th National Conference of the Japanese Society of Applied Entomology and Zoology,31 March to 2 April 2001, Matsue, Shimane, Japan.
    Shiyake S, Moriya S. Expansion of Ophraella communa LeSage in east Asia[J]. Insect Nat, 2005,40:11-13.
    Shultz JT. Insect Pests[M]. In:Carter JF (ed). Sunflower science and technology. Agronomy Series, No 19. Madison, WI:American Society of Agronomy,1978, 169-223.
    Sies H. Biochemistry of the peroxisome in the liver cell[J]. Angewandte Chemie International Edition in English,1974,13(11):706-718.
    Sies H. Biochemistry of oxidative stress[J]. Angewandte Chemie International Edition in English,1986,25(12):1058-1071.
    Singer BD, Ziska LH, Frenz DA, et al. Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration[J]. Functional Plant Biology,2005,32(7):667-670.
    Sohal RS, Muller A, Koletzko B, et al. Effect of age and ambient temperature on n-pentane production in adult housefly, Musca domestica[J]. Mechanisms of Ageing and Development,1985,29(3):317-326.
    Sohn JC, An SL, Li JE, et al. Notes on exotic species, Ophraella communa LeSage (Coleoptera:Chrysomelidae) in Korea[J]. Korean journal of applied entomology, 2002,41(2):145-150.
    Stinson KA, Bazzaz FA. CO2 enrichment reduces reproductive dominance in competing stands of Ambrosia artemisiifolia (common ragweed)[J]. Oecologia,2006,147(1): 155-163.
    Storey JM, Storey KB. Winter survival of the gall fly larva, Eurosta solidaginis:profiles of fuel reserves and cryoprotectants in a natural population[J]. Journal of Insect Physiology,1986,32(6):549-556.
    Sugaya A, Tsuda T, Ohguchi H. Marked increase of atmospheric pollen dispersion of ragweed (Ambrosia spp.):annual changes in atmospheric pollen counts of major allergen plants in autumn in Saitama Prefecture[J]. Arerugi,1997,46(7):585-593.
    Tammaru T. Determination of adult size in a folivorousmoth:constraints at instar level?[J]. Ecological Entomology,1998,23(1):80-89.
    Tamura Y, Hattori M, Konno K, et al. Triterpenoid and caffeic acid derivatives in the leaves of ragweed, Ambrosia artemisiifolia L. (Asterales:Asteraceae), as feeding stimulants of Ophraella communa LeSage (Coleoptera:Chrysomelidae)[J]. Chemoecology,2004,14(2):113-118.
    Tanaka K, Yamanaka T. Factors Affecting Flight Activity of Ophraella communa (Coleoptera:Chrysomelidae), an Exotic Insect in Japan[J]. Environmental Entomology,2009,38(1):235-241.
    Taramarcaz P, Lambelet C, Clot B, et al. Ragweed (Ambrosia) progression and its health risks:will Switzerland resist this invasion?[J]. Swiss Medical Weekly,2005,138(7): 538-548.
    Teshler M, Ditommaso A, Gagnon J, et al. Ambrosia artemisiifolia L., common ragweed (Asteraceae)[M]. In:Mason P, Huber J (eds). Biological Control Programmes in Canada,1981/2000. Wallingford, UK:CABI Publishing,2002, Chapter 60,290-294.
    Teshler MP, Briere SC, Stewart RK, et al. Life table and feeding ability of Ophraella communa (Coleoptera:Chrysomelidae) a potential biocontrol agent for Ambrosia artemisiifolia[M]. In:Moran VC, Hoffmann JH (eds). IX International Symposium on Biological Control of Weeds, Stellenbosch, South Africa. Cape Town, South Africa:University of Cape Town,1996,420.
    Throop HL. Nitrogen deposition and herbivory affect biomass production and allocation in an annual plant[J]. Oikos,2005,111(1):91-100.
    Torchin ME, Mitchell CE. Parasites, pathogens, and invasions by plants and animals[J]. Frontiers in Ecology and the Environment,2004,2(4):183-190.
    Tougou D, Musolin DL, Fujisaki K. Some like it hot! Rapid climate change promotes shifts in distribution ranges of Nezara viridula and N. antennata in Japan[J]. Entomologia Experimental is et Applicata,2009,130(3):249-258.
    Tripathee R. Effect of CO2 on the Response of C and N Relations to a Heat Wave in Sunflower and Corn[D]. Toledo, USA:the University of Toledo,2008.
    Uva R, Neal J, Ditomaso J. Weeds of the Northeast[M]. Ithaca:Cornell University Press, 1997.
    Vasilyiev DS. Common ragweed and methods of its control[M]. Krasnodar, USSR: Krasnodar publishing house,1958,97.
    Velazquez JM, Sonoda S, Bugaisky G, et al. Is the major Drosophila heat shock protein present in cells that have not been heat shocked?[J]. Journal of Cell Biology,1983, 96(1):286-290.
    Vollmer JH, Sarup P, Kaersgaard CW, et al. Heat and cold-induced male sterility in Drosophila buzzatii:genetic variation among populations for the duration of sterility[J]. Heredity,2004,92:257-262.
    Waisel Y, Eshel A, Keynan N, et al. Ambrosia:a new impending disaster for the Israeli allergic population[J]. Israel Medical Association Journal,2008,10(12):856-857.
    Walther GR, Post E, Convey P, et al. Ecological responses to recent climate change[J]. Nature,2002,416(6879):389-395.
    Wan FH, Wang R, Ding JQ. Biological control of Ambrosia artemisiifolia with introduced insect agents, Zygogramma suturalis and Epiblema strenuana, in China[C]. In:Proc. 8th Int. Symp. Biol. Contr. Weeds (ed. by Delfosse E, Scott RR), DSIR/CSIRO, Melbourne.1995,193-200.
    Wang HS, Kang L. Effect of cooling rates on the cold hardiness and cryoprotectant profiles of locust eggs[J]. Cryobiology,2005,51(2):220-229.
    Wang SY, Spongberg SA, Rubenstein JS. Ragweed in China[J]. Nature,1985,316(6027): 386.
    Watanabe M. Photoperiodic control of development and reproductive diapause in the leaf beetle Ophraella communa LeSage[J]. Entomological Science,2000,3(2):245-253.
    Watanabe M, Hirai Y. Host-use pattern of the ragweed beetle Ophraella communa LeSage (Coleoptera:Chrysomelidae) for overwintering and reproduction in Tsukuba[J]. Appl. Entomol. Zool,2004,39 (2):249-254.
    Welch KA. Biology of Ophraella notulata (Coleoptera:Chrysomelidae)[J]. Annals of the Entomological Society of America,1978,71(1):134-136.
    Wolfe GR, Hendrix DL, Salvucci ME. A thermoprotective role for sorbitol in the silverleaf whitefly, bemisia argentifolii[J]. Journal of Insect Physiology,1998,44(7-8): 597-603.
    Yamanaka T, Tanaka K, Otuka A, et al. Detecting spatial interactions in the ragweed (Ambrosia artemissifolia L.) and the ragweed beetle (Ophraella communa LeSage) populations[J]. Ecological Research,2007,22(7):185-196.
    Yamazaki K, Imai C, Natuhara Y Rapid population growth and food-plant exploitation pattern in an exotic leaf beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), in western Japan[J]. Applied Entomology and Zoology,2000,35(2): 215-223.
    Yin H, Chen QM, Yi MF. Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum[J]. Plant Growth Regulation, 2008,54(1):45-54.
    Yukawa J, Kiritani K, Gyoutoku N, et al. Distribution range shift of two allied species, Nezara viridula and N. antennata (Hemiptera:Pentatomidae), in Japan, possibly due to global warming[J]. Applied Entomology and Zoology,2007,42(2):205-215.
    Zhou ZS, Guo JY, Chen HS, et al. Effect of humidity on the development and fecundity of Ophraella communa (Coleoptera:Chrysomelidae)[J]. BioControl,2010a,55(2): 313-319.
    Zhou ZS, Guo JY, Chen HS, et al. Effects of temperature on survival, development, longevity, and fecundity of ophraella communa (Coleoptera:Chrysomelidae), a potential biological control agent against Ambrosia artemisiifolia (Asterales: Asteraceae)[J]. Environ. Entomol,2010b,39(3):1021-1027.
    Zhou ZS, Guo JY, Guo W, et al. Synergistic effects of olfactory and tactile cues in shortrange mate finding of Ophraella communa[J]. Entomologia Experimentalis et Applicata,2011a,138(1):48-54.
    Zhou ZS, Guo JY, Min L, et al. Effect of short-term high temperature stress on the development and fecundity of Ophraella communa (Coleoptera:Chrysomelidae)[J]. Biocontrol Science and Technology,2011b,21(7):809-819.
    Zhou ZS, Guo JY, Li M, et al. Seasonal changes in cold hardiness of Ophraella communa[J]. Entomologia Experimentalis et Applicata,2011c,140(1):85-90.
    Zhou ZS, Guo JY, Michaud JP, et al. Variation in cold hardiness among geographic populations of the ragweed beetle, Ophraella communa LeSage (Coleoptera: Chrysomelidae), a biological control agent of Ambrosia artemisiifolia L. (Asterales: Asteraceae), in China[J]. Biol Invasions,2011d,13:659-667.
    Zhou ZS, Guo JY, Ai HM, et al. Rapid cold-hardening response in Ophraella communa LeSage (Coleoptera:Chrysomelidae), a biological control agent of Ambrosia artemisiifolia L[J]. Biocontrol Science and Technology,2011e,21(2):215-224.
    Zhou ZS, Guo JY, Zheng XW, et al. Reevaluation of biosecurity of Ophraella communa against sunflower(Helianthus annuus)[J]. Biocontrol Science and Technology,2011f, 21(10):1147-1160.
    Zhou ZS, Guo JY, Guo W, et al. Effects of morphological traits, age and copulation experience on mate choice in Ophraella communa[J]. Biocontrol Science and Technology,2012,22(1):81-91.
    Ziska LH, Caulfield FA. Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species:implications for public health[J]. Australian Journal of Plant Physiology,2000,27(10):893-898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700