用户名: 密码: 验证码:
二化螟的抗药性及综合防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二化螟[Chilo suppressalis (Walker)]是水稻重要的钻蛀性害虫,化学防治是控制二化螟危害的重要途径。但由于防治水稻螟虫必须考虑水田用药的安全性、防治钻蛀性害虫的药剂有效性,以及粮食作物所能承担的用药成本,因此用药选择受到很多限制,防治用药相对单一,抗药性发展迅速。江、浙等地二化螟曾相继对六六六、杀虫单和三唑磷等主要水稻螟虫防治药剂产生了高水平抗性。在二化螟对三唑磷产生高水平抗性后,作用机制完全不同的氟虫腈曾作为应急农药品种,被引进用于抗性地区水稻螟虫的防治,随后又作为高毒农药的重要替代品种用于防治多种水稻害虫。但因该药剂的生态毒性问题,在推广使用后很快被禁止用于水稻害虫防治。因此,监测和研究二化螟对氟虫腈的抗性动态变化,对于了解二化螟对新型药剂的抗药性发展趋势,以及合理使用农药具有重要意义。此外,对于二化螟抗药性治理来说,由于用药选择余地相对较小,相应的开发有效的农业防控技术,降低二化螟的种群发生密度,通过减少化学农药用量来延缓抗药性的发生,就更为重要。
     本研究依据生产实际,在连续监测二化螟抗药性的基础上,通过室内汰选抗性品系,分析抗感品系适合度的变化,研究二化螟对氟虫腈抗性的机制和发生规律,同时以螟虫发生较重的超级稻田为对象,研究开发机械化农业中可以有效控制越冬二化螟虫口数量的农事操作技术,通过春季二化螟的繁殖地调查分析,揭示隔离育秧降低二化螟种群密度的原因。本研究试图从化学防治和农业防治两方面探索抗性二化螟的综合治理技术。
     1二化螟抗药性监测
     测定了浙江苍南地区田间二化螟对氟虫腈,以及其它常用药剂的抗性水平,为合理用药提供科学依据。采用四龄幼虫点滴法测定。结果发现苍南种群对三唑磷已经产生高水平抗性(297倍),对氟虫腈(16.0倍)和敌百虫(12.8倍)表现为中等水平抗性,对哒嗪硫磷(5.9倍)和二嗪磷(5.6倍)也已具有低水平抗性,但对阿维菌素、溴氰菊酯和乙酰甲胺磷尚没有产生抗性。讨论发现,二化螟仅对曾经集中大量或长期普遍使用的杀虫剂品种表现出显著抗性。进一步对新型杀虫剂氟虫腈抗性的监测发现,大部分地区的二化螟对氟虫腈保持敏感,氟虫腈抗性仅局限于曾大量集中使用的浙江苍南等地,而且随着氟虫腈使用的减少和禁用,抗性水平也在不断下降。这些结果不仅表明二化螟对氟虫腈具有产生抗性的风险,同时还说明任何新型杀虫剂只要大量集中使用,都会快速产生抗性。由此认为,进行二化螟抗药性治理,一方面要尽量提高用药品种的多样性,另一方面要利用农业技术措施和其他综合治理技术,降低水稻螟虫的种群数量,减少化学防治的用药量。此外,本文最后还根据药剂毒力测定结果,提出了目前二化螟防治用药的合理建议。
     2氟虫腈对抗、感二化螟的亚致死效应
     研究药剂对抗性和敏感性害虫的亚致死效应,有利于了解药剂的持效性及其对害虫抗药性发展的影响。本文通过利用氟虫腈亚致死剂量LD10和LD25分别处理浙江苍南抗性二化螟和安徽太湖敏感性二化螟来分析氟虫腈对二化螟的亚致死效应。结果表明,处理后两种群的存活率、产卵量都明显降低,幼虫期延长;氟虫腈对抗性种群存活率的降低作用大于对敏感种群的作用。此外,亚致死剂量处理后,敏感种群的羧酸酯酶(CarE)活性比对照明显升高,敏感、抗性种群的Km值均增大,表明氟虫腈诱导改变了酯酶的同工酶组成。最后讨论认为,氟虫腈对二化螟持效性较强,持续作用对抗性二化螟的负面影响更大,不利于抗性的快速发展。酯酶在二化螟对氟虫腈的解毒和抗性中发挥明显作用,但涉及的具体同工酶尚有待进一步研究。
     3氟虫腈对二化螟抗性选育及其生物适合度的研究
     为了探明二化螟对氟虫腈抗性的发生发展规律,以便为该药剂在生产上的合理使用提供依据。通过室内对浙江苍南二化螟进行氟虫腈抗性选育,得到近20倍的二化螟抗性品系;利用15代的选育结果,计算得到室内氟虫腈筛选抗性的现实遗传力h2为0.3532,说明二化螟对氟虫腈有一定抗性风险。通过构建种群生命表研究了氟虫腈的抗性生物适合度。结果表明,抗性品系与同源对照品系相比,在生长发育上二化螟表现为化蛹率显著降低,繁殖能力上表现为单雌卵粒数显著减少;用种群数量趋势指数来确定两个品系的相对适合度,抗性品系相对适合度仅为敏感品系的0.78。抗性品系在繁殖能力上存在明显的生存劣势。讨论认为,虽然二化螟对氟虫腈具有较大的抗性风险,但选育过程中,暂停筛选后其抗性表现明显下降,且抗性品系具有低的适合度,表明田间可以通过停用、轮用药剂的方法控制、延缓其抗性的发展。
     4二化螟对氟虫腈抗性的生化机制
     为了明确二化螟对氟虫腈的抗性生化机制,以室内选育的氟虫腈敏感和抗性二化螟为试虫,利用点滴法进行增效试验。结果发现,无论在敏感品系或是抗性品系中,PBO都有明显增效作用,在抗性品系中的增效是在敏感品系中的1.3倍;TPP和DEM在敏感品系中几乎不增效,但在抗性品系中都有不同程度的增效作用,其中DEM的增效比是敏感品系的3.4倍,而TPP为1.2倍。代谢酶活力测定结果显示,多功能氧化酶的对硝基苯甲醚(P-NA)活性、酯酶和谷胱甘肽转移酶(以CDNB底物)活力在抗性品系中都比敏感品系的高(活性比分别为1.29,1.34和1.76)。由此认为,二化螟对氟虫腈的抗性机理包括细胞色素多功能氧化酶、酯酶和谷胱甘肽转移酶活力的升高。本研究利用筛选的抗性品系测定其对不同药剂的抗性变化,发现抗性品系对杀虫单、氯氰菊酯和硫丹的抗性也分别增加了3.3倍,2.2倍和3.2倍,而对三唑磷、毒死蜱、阿维菌素和氯虫苯甲酰胺的抗性没有增加。分析认为交互抗性源于类似的解毒机制或者是靶标抗性。
     5二化螟GABA受体a亚基基因的克隆与序列分析
     为了检验二化螟对氟虫腈的抗性是否与其靶标的分子变异有关,利用RT-PCR及RACE技术进行了二化螟GABA受体的基因克隆及分析。结果成功克隆得到二化螟GABA受体的全长序列,该基因全长1957 bp,5'非翻译区为71bp,3'非翻译区为395bp,开放阅读框(ORF)1491 bp,编码496个氨基酸,推测分子量为55.1KDa。相似性分析发现,该基因具有昆虫GABA受体α亚基的典型特征,与昆虫GABA受体的相应亚基具有很高的相似性,高达64%-94%,因此认为是二化螟GABA受体的α亚基序列。抗、感品系GABA受体的序列比对未发现有差异,排除了本抗性品系的抗性与此克隆亚基突变有关,但其他亚基是否存在抗性相关变异尚有待进一步研究证实。
     6二化螟的农业防治研究
     利用综合防控技术手段减少农药用量是害虫抗药性治理的重要途径。本文针对二化螟的发生特点和目前水稻生产的农事操作习惯,试图通过调查研究建立有效的农业防控技术。首先调查了越冬二化螟幼虫的发生特点以及不同农事操作对稻桩中虫口数量的影响,结果发现常规稻中有40%以上的二化螟越冬幼虫分布在离地10 cm以内的稻秆中,约80%的二化螟分布在离地20 cm以内的稻秆中,而超级稻仅有14.3%分布在离地10 cm以内的稻秆中,离地20 cm以内的稻秆中也仅有39.2%;常规稻收割时60%以上的幼虫处于5龄,而超级稻收割时63.9%的幼虫发育到了6龄;水稻收割留茬高度对稻桩中二化螟的虫口数量影响很大;旋耕造成稻桩中越冬幼虫的虫口减退率不超过30%,但对二化螟残虫量降低有持续作用;烧田对于常规稻田稻桩中的越冬二化螟影响较小,但可以使高茬收割的超级稻稻桩中的螟虫减少84.8%;春季灌水可使超级稻田中越冬二化螟减少60-77%。综合利用低茬收割、处理稻草,旋耕灭茬和春灌灭蛹,可以有效控制越冬二化螟的种群数量,超级稻田越冬虫口累计减退率可达98%以上。其次通过调查春季田间二化螟成虫产卵选择性及初孵幼虫在不同寄主上的存活状况,发现田间自然情形下,二化螟更嗜好在水稻和茭白上产卵,在水稻上产卵数量较茭白上多,差异显著,而在小麦、甘蔗、玉米及杂草上未见产卵;初孵幼虫在水稻上存活率最高,小麦、休闲田杂草和茭白上次之,而在甘蔗、玉米中极低。结合二化螟落卵选择性及幼虫在不同寄主中的存活状况,初步判断,春季二化螟的主要繁殖地是水稻(秧)田,少量来自茭白田,在小麦田和休闲(杂草)田繁殖的可能性较小,而玉米及甘蔗田很难成为二化螟自然发生的有效繁殖地。因此认为,春季隔离育秧,阻止二化螟在稻田产卵,可以有效降低二化螟的发生量。
     本研究发现二化螟对不少常规杀虫剂都产生了不同程度的抗药性,氟虫腈在大量使用的抗性地区,也很快产生了中等水平抗性。但室内筛选、抗性生物适合度和亚致死剂量效应研究均表明,二化螟不容易对氟虫腈产生抗性,由此证实二化螟抗药性的产生主要是由于阶段性单一化大量用药所致,抗药性治理必须采取合理用药和减少农药用量的措施。在减少农药用量方面本研究证实了多种有效农事操作方法,并提出了一套控制越冬二化螟种群数量的农事操作技术,同时通过田间调查,初步判断出春季二化螟的主要繁殖地,证实利用隔离育秧等措施防治一代二化螟,可以有效压低全年二化螟的发生数量。以上结果对于二化螟抗药性治理具有重要的实践意义。
     此外,交互抗性和抗药性机制研究证实,二化螟对氟虫腈抗性主要是由于代谢解毒能力的加强。本研究还首次克隆到了二化螟GABA受体基因,这些结果为二化螟抗药性分子机理以及GABA受体的进一步研究奠定了理论基础。
The rice stem borer, Chilo suppressalis, is one of the most important pest insects on rice. Chemical control is an important way to control its damage. Because it must be taken into account the security of insecticide application in paddy field, effectiveness of controlling borers and insecticide cost endured in food crop, few insecticides could be practically used so that normally only single insecticide was used extensively and insecticide resistance developed rapidly in this pest. The rice stem borers from Jiangsu and Zhejiang were found developed high level resistance to most insecticides controling borers, such as BHC, monosultap and triazophos, in succession. Then fipronil was introduced to meet the urgent need to control borers in these resistant areas and used subsequently to control many others rice pest insects as an important substitute of highly toxic pesticides due to its different action mechanism. But fipronil was banned on rice pests control because of its ecotoxicity problem after it was used some time. Thus, monitoring and study on the resistance dynamic changes of C. suppressalis to fipronil has important significance in understanding resistance development trend of novel insecticides and reasonable use of insecticides. In addition, for resistance management of C. suppressalis, exploiting efficient agricultural control technology would be very important to reduce borer population density and decrease pesticides application to delay development of resistance, because there were not enough insecticides for alternative use.
     Based on practice, this work made continuous resistance monitoring of C. suppressalis field population, selection with fipronil in laboratory, and test resistance cost and fitness changes to reveal the development pattern and mechanisms of resistance in rice stem borer for reasonable chemical control. Efficient cultivation techniques were also developed for control of the overwintering C. suppressalis in mechanized agriculture taking super rice as sample because of the borer occuring seriously on it. And separated rice seedling nurse was proved to decrease C. suppressalis population density by survey on efficient host plants of borers in spring. In this study, it was tried to explore integrated management technology for resistant C. suppressalis on two aspects of chemical and agricultural control.
     1 Field survey on insecticide resistance in C. suppressalis
     By means of topical application, the resistance to conventional insecticides was surveyed in rice stem borer, Chilo suppressalis, from Cangnan, Zhejiang, aiming to provid useful information for rational insecticides use in controlling rice stem borer. The results showed that Cangnan population developed high level of resistance to triazophos (RR=297), medium level of resistance to trichlorphon (RR= 12.8) and fipronil (RR=16), and also had low level resistance to pyridaphenthion and diazinon (RR=5.9 and 5.6 respectively), but had no resistance to deltamethrin, acephate and avermectin. It was found by the discussion that the rice stem borer only exhibit distinct resistance to the insecticides which were used intensively for long time. The resistance to fipronil was further monitored in different year and areas. It was found that most borer populations were susceptible to fipronil and the resistance was detected only in Cangnan and few other cities nearby where fipronil was used intensively. The level of resitance to fipronil kept on decreasing following its reduced using and forbidden.The results revealed not only that the stem borer had risk to develop resistance to fipronil but also that the resistance to any new insecticides could develop rapidly if used intensively. Thus, it is concluded that on the one hand, multiple use of different kinds of insecticides should be put into practice as far as possible for the resistance management of the rice stem borer, on the other hand, efficient agricultural measures and other integrated management measures should be developed to depress population density of borers and reduce insecticides application. In addition, based on toxicity test results, reasonable suggestions were proposed on use of insecticides for control of the borer.
     2 Sublethal effect of fipronil against resistant and susceptible rice stem borer
     Study on sublethal effects of insecticides to resistant and susceptible insects is helpful to understand their sustained efficiency and effect on resistance development. The rice stem borers from both resistant (Cangnan, Zhejiang) and susceptible (Taihu, Anhui) populations were treated with their own sublethal doses (LD10 and LD25) of fipronil to examine if there were any sublethal effects. The results showed that the sublethal doses obviously depressed survivorship and fecundity of the borers, and prolonged the larval duration of C.suppressalis. The effect of fipronil on survivorship of the resistant population was stronger than that of the susceptible one. In addition, specific activity of CarE in susceptible population increased significantly after the treatment with sublethal doses of fipronil. The Km value of CarE increased in both resistant and susceptible populations when treated, indicating that CarE was induced and isoenzyme compositions changed. Thus, it was thought that sublethal doses of fipronil had strong sustained effect on the borers, which had greater negative impact to resistant population than to susceptible one and was unfavorable for its rapid resistance development. CarE played apparent role on detoxification of fipronil and resistance development in C. suppressalis. Its isoenzymes involved need further studies.
     3 Resistance selecting with fipronil and fitness change of the resistant strain
     To ascertain the development pattern of resistance to fipronil of the rice stem borer and; offer the theoretical basis for rational use of the insecticide, the borers collected from Cangnan County were continuously selected with fipronil for 15 generations in the laboratory, and its level of resistance to fipronil reached almost 20-fold. The realized heritability (h2) estimated was 0.3532, indicating that the rice stem borer had definite resistance risk to fipronil. In addition, life table was used to compare the fitness of the resistant and susceptible strains of the rice stem borer. The results revealed that the rice stem borer experienced biological fitness loss when it evolved median level resistance to fipronil. The decreased pupation rate and number of effective eggs per female were observed in resistant strain. The calculated fitness was only 0.78 for the Cn-R resistant strain as compared with Cangnan susceptible strain. This showed that the resitant strain had significant survival disadvantages in reproduction. Obviously, though the rice stem borer had resistance risk to fipronil, resistant strain had low fitness and resistance level decreased siginificantly when the seclection was suspended. All of these indicated that fipronil resistance development could be delayed by limited using and rotational use with other insecticides.
     4 Biochemical mechanisms for resistance to fipronil in the rice stem borer
     Synergism experiments in vivo with TPP, PBO and DEM were performed to make clear the roles of detoxification enzymes in fipronil resistance with selected resistant and susceptible strains by topical application. The results revealed that PBO had significant synergism on fipronil in both resistant (SR=2.8) and susceptible borers (SR=2.1), and DEM also had obvious synergistic effect (SR=2.4) in resistant borers but not in susceptible ones (SR=0.7). TPP had slight effect in resistant strain (SR=1.1) and no effect in susceptible one (SR=0.9). Enzyme activity assays demonstrated that the resistant strain had higher activity of microsomal O-demethylase and esterase than the susceptible strain (1.29- and 1.34-fold, respectively), and glutathione S-transferase activity was obviously higher in the resistant strain than in the susceptible one when CDNB was used as substrate.
     So, these results confirmed that increased activity of esterase, microsomal-O-demethylase, and particularly glutathione S-transferase should be involved in the resistance mechanism of rice stem borer.
     After continuously selected with fipronil for 6 generations, the borers were tested for cross resistance. It was found that its resistance to fipronil rise by 4.2-folds (RR from 3.8 to 15.7). At the same time, its resistance to monosultap, cypermethrin and endosulfan increased by 3.3,2.2 and 3.2 times, respectively. So, there might be some cross resistance between fipronil and these pesticides. But its resistance to triazophos, abamectin, chlorpyrifos and chlorantraniliprole changed slightly, suggesting that there was no cross resistance among the insecticides and fipronil. It was deduced that the cross resistance was induced due to the same target-site or metabolic detoxification mechanisms.
     5 Cloning and sequence analysis on a subunit gene of target GABAR
     To inspect if there is molecular differentiation relation to fipronil resistance in GABA receptor gene, we cloned the full sequence of a GABA receptor gene with full length 1957 bp,1491 bp ORF,71 bp 5'UTR and 395 bp 3'UTR in the susceptible rice stem borer with RT-PCR and RACE techniques. The deduced protein sequence includes 496 amino acids. Molecular weight was calculated as 55.1 Kda. The cloned gene from the rice stem borer had the typical characteristics of the GABARα-subunits. Homology analysis indicated that the cloned gene shared high similarity (64-94%) with those of other insects. So, the cloned gene was thought to be GABAR gene of the rice stem borer. GABAR genes from different individuals of the resistant and the susceptible strains of the rice stem borer were cloned and their full sequences were compared. But no difference was found between the genes from resistant and susceptible strains of the rice stem borer. So it may exclude that the selected resistance relate to the mutations in the cloned target gene. If there were some other mutations in other target subunits relation to fipronil resistance need further proved.
     6 Study on agricultural control of C. suppressalis
     It is an important parthway for insect resistace management to decrease the insecticides usage by integrated control methods. Based on occurring characteristics of the rice stem borer and farm operation habits, it tried to exploit efficient agricultural control techniques through investigations. Firstly, surveys on vertical distribution and development of C.suppressalis overwintering populations in common and super rice plants at harvesting time, and field trials were performed to seek efficient ways to lower the borer's population density. The results showed that the borer larvae were distributed to a greater height in the plants of super rice than in common rice, making control through agricultural operations more feasible. For common rice, over 40% of overwinting borer larvae were distributed whthin 10 cm plant, and 80% of the larvae whthin 20 cm plant above soil surface. In comparison, for super rice, only 14.3% of borer larvae distributed within 10 cm plant, 39.2% of the larvae within 20 cm plant above soil surface. Over 60% of the borers larvae developed to 5th instar in common rice, but 63.9% of larvae developed to 6th instar in super rice at harvesting time. Leaving stubble height had a great influence on density of rice stem borer overwinting in rice stub. Pre-winter rotary tillage only resulted in less than 30% decrease rate of overwintering borers but could enhance the population reduction effect of irrigation the following spring. Spring irrigation after the pre-pupation dispersal movements of borers killed 60-77% of the overwintering population in super rice. In addition, we found that burning fields after harvest, which had little effect on borers in common rice but killed 84.5% of borers in super rice, seemed the best remedy, though this practice is forbidden in China for ecological reasons. Based on the results obtained, efficient control of borers on rice can be achieved by harvesting leaving short stubbles, followed by rotary tillage and spring irrigation. This regime can reduce the borer population in super rice by more than 98%. Secondly, the host plant selection of rice stem borer adults for oviposition in spring and survival of neonate larvae in different hosts were investigated in fields. It was found that the borer adults much more prefer to oviposit on rice and water-oats plants than on other plants under natural condition. The borers oviposited more eggs on rice plants than on water-oats plants, with significant difference. But no eggs were examined on wheat, corn, sugar cane and weed in fallow field; The results indicated that survival rate of the neonate larvae was highest in rice plant, second in wheat, weed in fallow field and water-oats plants, and lowest in corn and sugar cane. It can be primarily concluded from above results that the reproduction host plants of the rice stem borer adults were most from rice and few from water-oats plant. There was little chance that borer adults oviposited on wheat and fallow field in spring, and com and sugar cane fields were difficult to be efficient reproduction sites for the rice stem borers. Thus, it was thought that separated rice seedling nurse to keep back C. suppressalis oviposit on rice may decrease borer population density efficiently in one year.
     It was found in this paper that C. suppressalis had developed different level of resistance to many conventional insecticides and also developed rapidly median level of resistance to fipronil in the areas where it was used largely. But the results on selection with fipronil in laboratory, test resistance cost fitness and sublethal effect of fipronil all indicated that C. suppressalis was difficult to develop further resistance to fipronil. It demonstrated that resistance of C. suppressalis was mainly due to intensive application of single insecticide in stages. Hence it must be taken measures of rational use and decreasing application of insecticides for resistance management. On the aspect of decreasing insecticides application, it was testified several efficient agricultural operations and a set of cultivation techniques was provided to control overwintering C. suppressalis population. Simultaneously, through survey in the fields it can be primarily concluded main reproduction host plants of C. suppressalis in spring and testified that separated rice seedling nurse to control 1st generation of C.suppressalis may decrease borer population density in one year.Above all of these results have important practical value for efficient integrated resistance management of the C.suppressalis.
     In addition,the results of study on cross-resistance and resistance mechanism reveled that resistance of C.suppressalis to fipronil was mainly due to enhanced detoxifying enzyme activity.Andαsubunit gene of GABA receptor from C.suppressalis was first cloned. There results will found the bases for resitance molecular mechanism of C. suppressalis and further study on GABA receptor.
引文
1.曹明章,沈晋良,张绍明,等.2002年江苏省二化螟抗药性检测及治理.植物保护,2003,29(5):34-37.
    2.曹明章,沈晋良,张金振,等.二化螟抗药性监测和对三唑磷抗性的遗传分析.中国水稻科学,2004a,18(1):73-79.
    3.曹明章.二化螟抗药性监测、对三唑磷和杀虫单抗性遗传分析及对氟虫腈抗性风险评估.博士论文,2004b.
    4.曹明章,沈晋良.二化螟对杀虫单抗性现实遗传力与遗传方式.中国水稻科学,2005,19(5):447-452.
    5.陈长琨,李秀峰,韩召军,等.二化螟抗性监测方法及相对敏感基线.南京农业大学学报,2000,23(4):38-41.
    6.陈克松,方学县,汪恩国,等.单双季稻混栽区二化螟种群演变规律与成因分析.浙江农业科学,2007,(4):465-467,475.
    7.陈文明,胡君,何月平,等.2007年江浙地区二化螟抗药性检测.中国农业科学,2009,42(3):1100-1107
    8.迟力勇,王玉荣.黑龙江省水稻二化螟的发生规律与防治方法.黑龙江农业科学,2008,(3):145-146.
    9.池仕运,彭宇,王荫长,等.二化螟对杀虫剂抗药性的研究进展.植物保护,2005,31(6):3-6.
    10.戴华国,孙丽娟,王琴.二化螟水稻类群和茭白类群成虫产卵与幼虫寄主选择行为的比较研究.应用生态学报,2003,14(5):741-743
    11.戴志一,杨益众,王春安,等.不同耕作技术对二化螟、三化螟冬存活率影响差异显著.植物保护,1993(4):48-49
    12.方继朝.水稻螟害上升态势及其主导因子分析.中国昆虫学会第六次全国代表大会暨学术讨论会论文摘要集.1997,278.
    13.方继朝,杜正文,程遐年.水稻螟害上升态势与控害减灾对策分析.昆虫知识,1998,35(4):193-197.
    14.高菊芳,陶黎明.小菜蛾对氟虫腈的抗性:遗传及其相关基因的数目.世界农药,2007,29(4):39-43,32.
    15.高希武.害虫抗药性的治理.世界农药,1987,(7):41-44.
    16.高希武,梁沛.李典谈主编,昆虫学创新与发展.北京:科技出版社,2002.282-283.
    17.龚坤元.害虫抗性问题概述.昆虫知识,1982,19(1):43-46.
    18.龚林根,张念环,张景飞,等.抗性二化螟综合治理研究初报.南京大学学报,2001,24(3):35-38.
    19.龚林根,张念环,张景飞,等.水稻二化螟大发生原因及防治对策.上海农业科技,2004,(2):38-39.
    20.顾晓军,田素芬.害虫适合度与害虫生态控制.世界科技研究与发展.2001,23(2):70-73.
    21.关瑞峰,孔丽萍,潘初沂,等.福建省水稻螟虫越冬特点及原因分析.福建农业科技,2008(5):49-52.
    22.韩启发.二化螟对杀螟硫磷抗药性机制的的机理.昆虫学报,1995,38(3):266-272.
    23.韩启发,庄佩君,唐振华.抗杀螟硫磷二化螟的抗性遗传力研究.昆虫学报,1995,38(4):402-406.
    24.韩招久,韩召军,陈长琨,等.杀虫单对二化螟谷胱甘肽转移酶(GSTs)的抑制作用.南京农业大学学报,2001,24(3):27-30.
    25.韩招久,韩召军,王荫长,等.二化螟对杀虫单和甲胺磷抗性监测及田间抗性动态.植物保护学报,2002,29(1):93-94.
    26.韩招久,韩召军,王荫厂,等.二化螟抗性种群的生化特性研究.昆虫学报,2003,46(2):161-170.
    27.郝艳丽,巨修练GABAAR研究进展.武汉化工学院学报,2006,28(2):12-18.
    28.何忠全,王建辉,张志涛,等.我国近年水稻重大病虫害可持续控制技术研究重要进展—非化学控害技术研究植物保护,2004,30(2):23-27.
    29.胡君,陈文明,张真真,等.长江流域稻区二化螟抗药性监测.中国水稻科学,2010,24(5):509-515.
    30.胡仕孟,谢士杰,徐善刚,等.浙江慈溪水稻二化螟抗药性研究初报.浙江农业学报,2001,13(1):38-41.
    31.黄诚华,姚洪渭,叶恭银,等.氟虫腈亚致死剂量处理对二化螟和大螟幼虫体内解毒酶系活力的影响.中国水稻科学,2006,20(4):447-450.
    32.洪晓月,丁锦华主编.农业昆虫学(第二版).北京:中国农业出版社,2007,72-76.
    33.贾变桃,沈晋良,刘叙杆.甜菜夜蛾对虫酰肼的抗性选育、风险评估及交互抗性.昆虫学报,2007,50(11):1116-1121.
    34.姜卫华,韩召军,张国华.氟虫腈对二化螟抗、感种群的亚致死效应.农业大学学报,2004,27(2):51-54.
    35.姜卫华,韩召军,郝鸣丽.二化螟对氟虫睛抗性初探.中国水稻科学,2005,19(6): 577-579.
    36.蒋学辉,章强华.浙江省二化螟种群回升原因浅析及治理对策.植保技术与推广,1997,17(6): 15-17.
    37.蒋学辉,章强华,胡仕孟,等.浙江省水稻二化螟抗药性现状与治理对策.植保技术与推广,2001,21(3):27-29.
    38.金翠霞,吴亚.耕作制度变革与害虫的发生和演替.植物保护,1989,15(4):36-38.
    39.孔祥清,吴文君.疣枝卫矛根皮中麻醉成分F对昆虫作用的研究.黑龙江农垦八一大学学报,2000,12(2):21-24.
    40.雷虹,张战利.棉蚜对啶虫脒的抗性汰选与风险评估.西北农业学报2007,16(6):238-241.
    41.兰亦全,赵士熙.抗三氟氯氰菊酯甜菜夜蛾品系的相对适合度研究.华东昆虫学报,2004,13(1):88-91.
    42.李安祥,李慈厚.二化螟及其防治.北京:中国农业科技出版社,1996,1-276.
    43.李桂兰,封洪强,刘培友.辽宁省水稻二化螟生物学特性研究.沈阳农业大学学报,1999,30(2):93-97.
    44.李晓涛,黄青春,唐振华.二化螟抗性机理研究进展.世界农药,2006a,17-20,44.
    45.李晓涛,黄青春,唐振华.氟虫腈对二化螟生长发育的影响及对解毒酶的诱导效应.农药学学报,2006b,8(3):250-254.
    46.李秀峰,韩召军,陈长琨,等.二化螟对杀虫单4种杀虫剂的抗药性.南京农业大学学报,2001,24(1):43-46
    47.黎贤伟.水稻二化螟持续大发生的原因及综合治理对策.湖北植保,2005,(1):12-14.
    48.梁沛.小菜蛾对阿维菌素抗性的分子机制研究.北京:中国农业大学,博士学位论文,2001.
    49.林克剑,侯茂林,韩兰芝,等.二化螟寄主选择行为与种群消长机制的研究进展.植物保护,2008,34(1):22-28.
    50.林炜,韩永强,刘玉娣,等.二化螟越冬生物学研究进展.湖南农业科学,2008,(3):116-118.
    51.凌炎,周国辉,范桂霞,等.褐飞虱对吡虫啉、噻嗪酮和氟虫腈的抗性监测.植物保护,2009,35(1):104-107.
    52.刘波,高希武.杀虫剂亚致死剂量对昆虫的影响研究进展.植物保护21世纪展望第三届全国青年植物保护科技工作者学术研讨会论文集,1998,49-53.
    53.刘彩峰,董双林.不同地区烟粉虱对几种杀虫剂相对抗药性测定.中国棉花,2008,35(3):9-10.
    54.刘惠霞,吴文君,张翼,等.苦皮藤素对粘虫体内谷氨酸脱羧酶活性的影响.西北农业学报,1998,7(5):123.
    55.刘建,马忠友.华北地区水稻二化螟防治.北京农业科学,1998,16(6):22-23.
    56.刘开林,何林,王进军,等.害虫及害螨对阿维菌素抗药性研究进展.昆虫知识,2007,44(2):194-200.
    57.刘培斌,陈晓云,于凤泉,等.辽宁省水稻病虫害的农业防治效果研究.辽宁农业科学,2005(2):25-26.
    58.刘叙杆,赵兴华,王彦华,等.褐飞虱对氟虫腈和新烟碱类药剂的抗性动态变化.中国水稻科学,2010,24(1):73-80.
    59.卢文才,何林,薛传华,等.昆虫γ-氨基丁酸受体研究现状.昆虫知识,2009,46(1):152-158.
    60.陆玉荣,徐广和,苏建坤,等.扬州地区二化螟抗药性监测.安徽农业科学,2003,31(1):123-124.
    61.吕亮,陈其志,张舒,等.湖北省水稻螟虫抗药性水平测定与分析.湖北农业科学,2007,46(1):71-73.
    62.吕亮,陈其志,张舒,等.湖北省水稻二化螟和三化螟的抗药性监测.华中农业大学学报,2008,27(2):213-216.
    63.吕梅,沈晋良,郑周菲.棉铃虫对丙溴磷抗性遗传特性及相对适合度研究.棉花学报,2004,16(6):333-337.
    64.罗浑金,李梅,傅童生,等.拟除虫菊酯抗性家蝇的交互抗药性研究.生物技术通报,2007,(5):141-143.
    65.罗学义,谢炜,肖青,等.二化螟的发生特点与螟害变重原因分析.湖南农业科学,2004,(1):35-37
    66.牛洪涛,罗万春,宗建平,等.小菜蛾对丁烯氟虫腈的抗性遗传力及风险评估.植物保护学报,2008,35(2):165-168.
    67.潘欣葆.浙北二、三化螟1996-1997年大发生原因与综合治理对策.昆虫知识,2000,37(3):134-136.
    68.潘志萍,李敦松.昆虫抗药性监测与检测技术研究进展.应用生态学报,2006,17(8)1539-1543.
    69.彭永强,高聪芬,马崇勇,等.灰飞虱对氟虫腈抗性风险评估、遗传分析及杀虫剂敏感性研究.中国水稻科学(Chin J Rice Sci),2009,23 (6):645-652.
    70.彭宇,陈长琨,韩召军,等.江苏省水稻二化螟的抗药性测定对甲胺磷抗性机理的研究.植物保护学报,2001a,28(2):173-177.
    71.彭宇,陈长琨,韩召军,等.二化螟对3种杀虫剂的抗性测定及增效作用研究.湖北大学学报(自然科学版),2001b,23(3):265-268.
    72.彭宇,王荫长,韩召军,等.二化螟体内乙酰胆碱酯酶的分布及纯化方法.昆虫学报,2002,45(2):209-214.
    73.钱霞,陈建国.南通地区二化螟的发生危害严重的原因分析及其控制技术.安徽农学通报,2009,15(1):142,131.
    74.秦厚国,罗任华,叶正襄,等.二化螟大发生原因及控制对策.华东昆虫学报,2005,14(1):91-93.
    75.瞿洪法,黄贤夫,叶建人,等.超级稻甬优6号病虫发生特点及防治技术.现代农业科技,2007,(17):98-99.
    76.曲明静.二化螟对三唑磷的抗性及其机理研究.博士论文,南京农业大学,2005a.
    77.曲明静,韩召军.二化螟对三唑磷的抗性发生动态及风险评估.南京农业大学学报,2005b,28(3)38-42.
    78.曲明静,许新军,韩召军,等.二化螟抗药性研究现状.江西农业学报,2006,18(6):109-111.
    79.茹李军,范贤林,卢美光. Realized heritabilities of resistance to pyrethroids in Helicoverpa armigera.植物保护学报,1997,24(4):356-360.
    80.尚稚珍,王银淑,邹永华.二化螟饲养方法的研究.昆虫学报,1979,22(2):164-167.
    81.盛承发,王红托,盛世余,等.我国稻螟灾害的现状及损失估计.昆虫知识,2003,40(4):289-294.
    82.沈晋良,谭建国,肖斌,等.我国棉铃虫对拟除虫菊酯类农药的抗性监测及预报.昆虫知识,1991,28(6):337-341.
    83.沈群颜.二化螟为害蕉藕的观察.昆虫知识,1965,12(2):320.
    84.石会田,张胜来,黄孟龙.二化螟危害上升原因与防治策略.作物研究,2005,19(2):115-116,118.
    85.苏彪,陈友良,张益夫,等.水稻二化螟综合治理技术探索与推广.农药研究与应用,2007,11(2):5-9.
    86.苏建坤,刘怀阿,徐建,等.江苏里下河地区水稻二化螟抗药性监测.南京农业大学学报,1996,19(增刊):28-33.
    87.苏建坤,褚柏.扬州地区水稻二化螟对杀虫单的抗药性研究.扬州大学学报,2004,25(1):76-78.
    88.苏建伟,宣维健,盛承发,等.东北稻区二化螟越冬幼虫的生物学研究.昆虫知识,2003,40(4):323-325.
    89.唐振华编著.昆虫抗药性及其治理.北京:农业出版社,1993.
    90.唐振华,吴士雄.昆虫抗药性的遗传与进化.上海科学技术出版社,2000,290-292.
    91.唐振华,毕强编著.杀虫剂作用的分子行为.上海远东出版社,2003.
    92.田学志,高宝宗,石家胜,等.安庆地区水稻二化螟抗药性研究.安徽农业科学,1991,(1):61-66.
    93.王成菊,李学锋,吴学明,等.阿维菌素对棉铃虫毒力及增效剂的作用.中国农业大学学报,1999,4(5):6-10.
    94.汪恩国.二化螟种群数量变化规律研究.植物保护,1999,25(1): 14-17.
    95.汪明根,胡建中,谭秀芳,等.水稻二化螟上升原因及防治对策探讨.上海农业科技,2004,(1):24-25.
    96.王藕芳,包生土,贾华凑,等.晚稻不同收割方式对二化螟越冬虫量的影响.上海农业科技,2002,5:41.
    97.王强,谭福杰,尤子平.二化螟对六类杀虫剂的耐药性及增效剂的增效作用研究.南京农业大学学报,1987,4(增):44-55.
    98.王清清.2001年冬至2002年春长沙水稻一代二化螟发生情况调查.湖南农业科学,2003,(1):52-53.
    99.王晓丽,张晓波,孔祥梅,等.水稻二化螟发生规律及防治的初步研究.吉林农业科学,1996,(4):43-45.
    100.王小艺.杀虫剂对昆虫的亚致死效应.世界农药,2004,26(3):24-27.
    101.王新斌,赵益福,林友根.杂交稻甬优6号在温岭的种植表现及配套技术.浙江农业科学,2008,(1):49-51.
    102.王亚维,张国洲.农业害虫农业防治和物理防治方法的研究.安徽农业科学.2003,31(1):120-122,124
    103.王彦华,吴长兴,赵学平,等.害虫对氟虫腈的抗药性研究进展.昆虫知识,2009,46(6):846-854.
    104.王耀洲,韩召军.灰飞虱对氟虫腈的抗性及其机制研究.南京农业大学学报,2010,33(4):49-54.
    105.王争文,陈运康,彭国强.冬闲田深水灌溉放养群鸭控制二化螟越冬基数及其为害研究.中国植保导刊.2005,25(2):5-6.
    106.韦永保.皖南单季稻区二化螟发生特点及其回升原因.安徽农业科学,2000,28(6):762-763.
    107.韦永保,黄奇,黄正清.防治水稻害虫的高效药剂—锐劲特.安徽农业,2002,(4):22.
    108.吴孔明,刘芹轩.棉蚜抗杀灭菊酯品系的某些生物学特性.昆虫学报,1994,37(2):137-144.
    109.吴坤君,陈玉平,李明辉.二化温度对棉铃虫实验种群生长的影响.昆虫学报,1980,23(4):358-367.
    110.吴青君,张文吉,张友军,等.敏感和抗阿维菌素小菜蛾的生物适合度.农药学学报,2000,2(1):36-40.
    111.吴青君,张文吉,张友军,等.表皮穿透和GABAA受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报,2002,45(3):336-340.
    112.吴青君,张友军,徐宝云.抑制性谷氨酸受体(IGluRs)通道及其相关杀虫剂的作用.农药学学报,2008,10(3):251-25.
    113.吴益东,沈晋良,尤子平.棉铃虫对氰戊菊酯抗药性品系和敏感品系的相对适合度.昆虫学报,1996,39(3):233-236.
    114.夏冰,石泰,梁沛,等.杀虫剂亚致死剂量对小菜蛾羧酸酯酶的影响.农药学学报,2002,4(1):23-27.
    115.夏声广,李平良,胡志平,等.晚稻机割对二化螟越冬虫量的影响及其对策.植保技术与推广,2001,21(8):10.
    116.熊件妹,朱杏芬,程丽霞.南昌地区二化螟抗药性现状与治理对策.江西植保,2004,27(1):3-4.
    117.熊件妹,黄向阳,朱杏芬,等.江西省部分地区水稻二化螟抗药性测定.江西植保,2006,29(4):175-177.
    118.徐广春,顾中言,杨玉清,等.氟虫腈的应用和风险研究进展.现代农业,2008,7(2):1-5,11.
    118.徐汉虹,梁明龙,胡林.阿维菌素类药物的研究进展.华南农业大学学报,2005,26(1):1-6.
    120.徐心植,邓小强.江西省二化螟抗药性及其防治对策.江西农业学报,1992,4(1):42-50.
    121.徐学农,王刚,高仕朋.杀螨王的亚致死浓度处理桃叶对山楂叶螨雌成螨生殖的影响.安徽农业大学学报,1998,25(4):352-355.
    122.薛进,戈峰,黎家文,等.二化螟与作物的相互关系及其影响因素.昆虫知识,2005,42(3):259-263.
    123.杨捷.小菜蛾对多杀菌素的抗性及相关适合度变化.浙江大学.2004.
    124.杨清波,李锴员,肖安民.水稻螟虫无害化治理技术研究及应用.湖南农业科学,2006,(5):72-73.
    125.姚洪渭,叶恭银,程家安.害虫抗药性适合度与内分泌调控研究进展.昆虫知识,2002,39(3):181-187.
    126.尹显慧,吴青君,李学锋,等.多杀菌素亚致死浓度对小菜蛾解毒酶系活力的影响.农药学学报,2008,10(1):28-34.
    128.俞晓平,徐红星,吕仲贤,等.水稻田和茭白田二化螟的比较研究.生态学报,2002,22(3):341-345.
    129.曾晓楠,聂乾忠.湖南水稻二化螟的综合防治技术.现代农业科技,2009,94-95.
    130.翟启慧.昆虫分子生物学的一些进展:杀虫剂抗性的分子基础.昆虫学报,1995,4:493-501.
    131.张发成,盛仙俏,陈桂华,等.氯虫苯甲酰胺对水稻一代二化螟防效及对稻田蜘蛛的影响.中国稻米,2009,(5):58-59.
    132.张芳芳,洪雅青,张幸.氟虫腈的毒理学研究进展.职业与健康,2008,24(20):2211-2213.
    133.章士美,陈东.江西二化螟阶段性消长过程及其原因分析.江西农业大学学报,1993,15(1):33-35.
    134.张维军,郑平,毕妍,等.二化螟重发原因及防治措施.现代农业科技,2007, (22):85.
    135.张夕林,李晓霞,周玉,等.氟铃脲、氟啶脲防治水稻一、二代二化螟的药效试验.现代农药,2005,4(5):45-47.
    136.张友军、张文吉、韩熹莱.杀虫剂分子靶标:γ-氨基丁酸A型受体.昆虫知识,1996,33(5):315-317.
    137.赵国锋,张绵吉,金桂玉.γ-氨基丁酸抑制剂的研究进展.农药译丛,1999,21(1):17-23.
    138.赵学平,冯克强.二化螟对杀虫剂的敏感性及抗药性研究.浙江农业学报,2000,12(6):382-386.
    139.赵益福,王宏辉,江立斌.甬优6号的特征特性及单产750kg/667m2配套栽培技术.中国稻米,2006,(6):46-47.
    140.周斌芬,唐振华,高菊芳.昆虫代谢抗性的研究进展.农药,2008,47(5):313-315,323.
    141.周小军,朱国念,何锦豪.氯虫苯甲酰胺防治超级稻二化螟的效果.浙江农业科学,2009,(4):756-757.
    142.周晓梅,黄炳球.Y-氨基丁酸受体及其抑制剂的研究进展.世界农药,1999,21(6):17-22.
    143.周小毛.小菜蛾抗阿维菌素抗性的分子机理研究.广州:华南农业大学,博士学位论文,2006.
    144.周占魁,高景芝.吉林省水稻二化螟的发生规律及综合防治措施.现代农业科技,2008,(16):164.
    145.朱家琦,肖颖,刘泽嵌,等.杀虫双(单)在动物体内的代谢研究.卫生研究,1988,17(4):36-39.
    146.诸茂龙,陈亨康.单双季稻混栽地区第三代螟虫的发生特点及防治.浙江农业学报,1999,11(4):170-173.
    147.朱茱编译,唐振华校.氟虫腈对GABAA受体单通道电流的调节作用.世界农药,2005,24-26.
    148. Abalis I M, Eldefrawi M E, Eldefrawi A T, et al. High-affinity stereospecific binding of cyclodiene insecticides and y-aminobutyric acid receptors of rat brain. Pestic Biochem Physiol,1985,25: 279-287.
    149. Ahmad M, Arif M I, Ahmad Z. Susceptible of Helicoverpa armigera (Lepidoptera:Noctuidae) to new chemistries in Pakistan. Crop Prot,2003,22:539-544.
    150. Ahmad M, Sayyed A H, Saleem M A, et al. Evidence for field evolved resistance to newer insecticides in Spodoptera litura ((Lepidoptera:Noctuidae) from Pakistan. Crop Prot,2008,27: 1367-1372.
    151. Anthony N M, Benner EA, Rauh J J, et al. GAB A receptors of insects susceptible and resistant to cyclodiene insecticides. Pestic Sci,1991,33,223-230.
    152. Anthony N M, Harrison J, Sattelle D B.GABA receptor molecules of insects. In:Pichon, Y (Ed.), Comparative Molecular Neurobiology. Birkhauser Verlag,1993,172-209.
    153. Anthony N M, Brown J K, Markham P G, et al. Molecular analysis of cyclodiene resistance-associated mutations among populations of the sweetpotato whitefly Bemisia tabaci. Pestic Biochem Physiol,1995,51:220-228.
    154. Anthony N, Unruh T, Ganser D, et al. Duplication of the Rdl GAB A receptor subunit gene in an insecticide-resistant aphid, Myzus persicae. Mol Gen Genet,1998,260:165-175.
    155. Bass C, Schroeder I, Turberg A, et al. Dentification of the Rdl mutation in laboratory and field strains of the cat flea, Ctenocephalides felis (Siphonaptera:Pulicidae). Pest Manag Sci, Dec, I,2004, 60(12):1157-1162.
    156. Bell-horner P. Das C L, Huang R Q, Raut A, et al. Inhibition of type A GABA receptors by L-type calcium channel blockers. Neuroscience,2004,I 124:195-206.
    157. Blackhall W J, Prichard R K, Beech R N. Selection at a y-aminobutyric acid receptor gene in Haemonchus contortus resistant to avermectins/milbemycins. Mol Biochem Parasitol,2003, 31:137-45.
    158. Bloomquist J R. Toxicology, mode of action and target site-mediated resistance to insecticides acting on chloride channels. Comparative Biochem Physiol, Ser C,1993,106:301-314.
    159. Bloomquist J R. Cyclodience resistance at the insect GABAreceptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides. Archives of Insect Biochemistry and Physiology,1994,26:69-79.
    160. Bloomquist J R, Robinson W H. Prevalence and magnitude of resistance to cyclodiene and phenylpyrazole insecticides in Blattella Germanica and Drosophila Melanogaster. Proceedings of the 3rd International Conference on Urban Pests,1999,27-34.
    161. Bradford M M. Arapid and sensitivemethod for quantitation ofmicrogram quantitiesof protein utilizingthe principle of protein-dye binding. Ana-lytical Biochemistry,1976,72:248-254.
    162. Brooke B D, Hunt R H, Coetzee M. Resistance to dieldrin-fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae. Med Vet Entomol,2000,14:190-194.
    163. Buckingham S D, Biggin P C, Sattelle B M, et al. Insect GABA Receptors:Splicing, Editing, and Targeting by Antiparasitics and Insecticides. Mol Pharmacol,2005,68:942-951.
    164. Carlier P R. The GABA A receptor is a pentameric, ligand-gated Cl-channel.2001.
    165. Chang H K. Resistance to organophosphorus insecticide in the rice stem borer, Chilo suppressalis Walker, in Korea. J Appl Entomol Zool,1970,14 (3):149-152.
    166. Chaton P F, Ravanel P, M eyran J C, et al. The toxicological effects and bioaccumulation of fipronil
    in larvae of the mosquito Aedes aegypti in aqueous medium. Pestic Biochem Physiol,2001,69:183-188.
    167. Chebib M, Johnston G A. GABA-Activated Ligand Gated Ion Channels:Medicinal Chemistry and Molecular Biology. J Med Chem,2000,43 (8):1427-1447.
    168. Chen L G, Durkin K A, Casida J E. Structural model for y-aminobutyric acid receptor noncompetiti ve antagonist binding:Widely diverse structures fit the same site. Proc Natl Acad Sci,2006,103 (13):5185-5190.
    169. Cole L M, Nicholson R A, Casida J.E. Action of phenylpyrazole insecticides at the GABA gated chloride channel. Pestic Biochem Physiol,1993,40:47-54.
    170. Cole L M, R Roush T, Casida J E. Drosophila GABA-gated chloride channel:Modified [3H] EBOB binding site associated with Ala-Ser or glymutants of Rdl subunit. Life Sci,1995,56:757-765.
    171. Colliot F A, Kukorowski K A, Hawkins D W. et al. Fipronil:A new soil and spectrum insecticide. Proceedings of the Brighton Crop Protection Conference-Pests and Diseases.British Crop Protection Council, Farnham, England,1992,29-34.
    172. Corronc H L, Alix P, Hue B. Different sensitivity of two insect GABA-gate chloride channels to dieldrin, fipronil and picrotoxinin. J Insect Physiol,2002,48:419-431.
    173. Davari B, Vatandoost H, Oshaghi M A, et al. Selection of Anopheles stephensi with DDT and dieldrin and cross-resistance spectrum to pyrethroids and fipronil. Pestic Biochem Physiol,2007,89: 97-103.
    174. David K R. Activity of avermectin B1 against codling moth (Lepidoptera:Olethreutidae). J Econ Entomol,1985,78:1067-1071.
    175. Deng Y, Palmer C J, Casida J E. House fly brain y-aminobutyric acid-gated chloride channel: target for multiple classes of insecticides, Pestic Biochem Physiol,1991,41:60-65.
    176. DesneuxN, Decourtye A, Delpuech J M.The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol,2007,52:81-106.
    177. Du W, Awolola T. S, Howell P, et al. Independentmutations in the Rdl locus confer dieldrin resistance to Anophelesgambiae and An arabiensis. Insect Mol Biol,2005,14 (2):179-183.
    178. Durham EW, Scharf M E, Siegfried B D. Toxicity and neurophysiological effects of fipronil and its oxidative sulfone metabolitee on European Corn Boreer larvae (Lepidoptera:Crambidae). Pestic Biochem Physiol,2001,71:97-106
    179. Eguchi Y, Ihara M, Ochi E, et al. Functionalcharacterization of Musca glutamate-and GABA-gated chloridechannels expressed independently and coexpressed in Xenopusoocytes. Insect Mol Biol, 2006,15(6):773-783.
    180. Ffrench-Constant R H, Roush R T, Mortlock D P, et al. Isolation of dieldrin resistance from field populations of Drodsophila melanogaster (Diptera:Drosphilidae). J Econ Entomol,1990, 83:1733-1737.
    181. Ffrench-Constant R H, Mortlock D P, Shaffer CD, et al. Molecular cloning and transformation of cyclodiene resistance in Drosophila:an invertebrate c-aminobutyric acid subtype A receptor locus, Proc Natl Acad Sci,1991,88:7209-7213.
    182. Ffrench-Constant R H, Rocheleau T A. Drosophila cyclodiene resistance gene shows conserved genomic organization with vertebrate γ-aminobutyric acidA receptors. J Neurochem,1992a, 59(4):1562-1565.183. Ffrench-Constant R H, Aronstein K, Roush R T. Use of a P-element mediated germline transformant to study the effect of gene dosage in cyclodiene insecticide-resistant Drosophila melanogaster (Meigen). Pestic Biochem Physiol,1992b,43 (1): 78-84.
    184. Ffrench-Constant R H, Rocheleau T A, Steichen J C, et al. A point mutaion in a Drosophila GABA receptor confers insecticide resistance. Nature,1993,363:449-451.
    185. Ffrench-Constant R H, Anthony N M, Andreev D. Singleversus multiple origins of insecticide resistance:inferences from the cyclodiene resistance gene Rdl. In:Brown, T.M. (Ed.), Molecular genetics and evolution of pesticide resistance ACS Symposium Series 645. Am Chem Soc, Washington D C,1996,106-116.
    186. Ffrench-Constant R H. Target site mediated insecticide resistance:what questions remain? Insect Biochem Mol Biol,1999,29:397-403.
    187. Ffrench-Constant R H, Anthony N M, Aronstein K, et al. Cyclodiene Insecticide Resistance:From Molecular to Population Genetics. Annu Rev Entomol,2000,45:449-466.
    188. Gant D B, Eldefrawi M E, Eldefrawi A T. Cyclodiene insecticide inhibit GABAA receptor regulated chloride transport. Toxicol Appl Pharmacol,1987,88:313-321.
    189. Gant D B, Chalmers Al E, Wolff M A. Fipronil:A novel insecticide acting at the GABA receptor. In:Eighth IUPAC International Congress of Pesticide Chemistry, July, Washington DC.1994.
    190. Gant D B, Chalmers A E, Wolff M A, et al. Fipronil:action at the GABA receptor. Rev Toxicol, 1998,2:147-156.
    191. Georghious G P, Saito T. Management of resistance in arthropods. In Pest Resistance to Pesticides, ed. GP Georgiou, New York:Plenum.1983,769-792.
    192. Ghiasuddin S M, Matsumura F. Inhibition of gamma-aminobutyric acid (GABA)-induced chloride uptake by gamma-BHC and heptachlor expoxide. Com Biochem Physiol,1982,73C:141-144.
    193. Goff G L, Hamon A, Berge J-B, et al. Resistance to fipronil in Drosophila simulans:influence of two point mutations in the RDL GABA receptor subunit. J Neurochem,2005,92:1295-1305.
    194. Hainzl D, Cole L M, Casida J E. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem. Res. Toxicol.1998,11,1529-1535.
    195. Han Z J, Moores G D, Ian D, Devonshire A L. Association between biochemical marks and insecticide resistance in the cotton aphid, Aphis gossypii Glover. Pestic Biochem Physiol,1998, 62(3):164-171.
    196. Hansen L.G., Hodgson E. Biochemical characteristics of insect microsomes N-and O-demethylation. Biochem Pharmac,1971,20(7):1569-1573.
    197. Hamon A, Corronc H L, Hue B, et al. BIDN, a bicyclic dinitrile convulsant, selectively blocks GABA-gated Cl- channels. Brain Research,1998, (78):20-26.
    198. Hamon N M, Shaw R, Yang H. Worldwide development of fipronil insecticide. Proc. Beltwide Cotton Prod. Conf,1996,2:759-765.
    199. Harvey R J, Schmitt B, Hermans-Borgmeyer 1, et al. Sequence of a Drosophila ligand-gated ion-channel polypeptide with an unusual amino-terminal extracellular domain. J Neurochem,1994, 62 (6):2480-2483.
    200. Haynes K F. Sublethal effects of neurotoxic insecticides on insect behavior. Annu Rev Entomol, 1988,(33):149-168.
    201. He Y P, Chen W M, Shen J L, et al. Differential susceptibilities to pyrethroids in field populations of Chilo suppressalis (Lepidoptera:Pyralidae). Pestic Biochem Physiol,2007a,89:12-19.
    202. He Y P, Gao C F, Cao M Z, et al. Survey of susceptibilities to monosultap, triazophos, fipronil, and abamectin in the striped stem boer, Chilo suppressalis (Lepidoptera:Pyralidae). J Econ Entomol, 2007b,100(6):1854-1861.
    203. Henderson J E, Knipple D C, Soderlund D M. PCR-based homology probing reveals a family of GABA receptor-like genes in Drosophila melanogaster. Insect Biochem Mol Biol,1994, 24(4):363-371.
    204. Horoszok L, Raymond V, Sattelle D B, et al. GLC-3:a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Br J Pharmacol,2001,132:1247-1254.
    205. Hosie A M, Baylis H A, Buckingham S D, et al. Actions of the insecticide fipronil on dieldrin-sensitive and -resistant GABA receptors of Drosophila melanogaster. British J Pharmacol, 1995a,115:909-912.
    206. Hosie A M, Shirai y, Buckingham S D, et al. Blocking actions of BIDN, a bicyclic dinitrile convulsant compound, on wild-type and dieldrin-resistant GABA receptor homo-oligomers of Drosophila melanogaster expressed in Xenopus oocytes. Brain Research,1995b,6(93):257-260.
    207. Hosie A M, Aronstein K, Sattelle D B. et al. Molecular biology of insect neuronal GABA receptors. Trends Neurosci,1997,20(12):578-583.
    208. Hyne R V, Maher W A. Invertebrate Biomarkers:Links to Toxicosis that Predict Population Decline. Ecotoicol Environ Saf,2003,54:366-374.
    209. Ikeda T, Zhao X L, Kono Y, et al. Fipronil Modulation of Glutamate-Induced Chloride Currents in Cockroach Thoracic Ganglion Neurons. NeuroToxicology,2003,24 (6):807-815.
    210. Jiang X J, Qu M J, Denholm I, et al. Mutation in acetylcholinesterasel associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera:Pyralidae). Biochem Biophys Res Commun,2009,378:269-272.
    211. Kamijima M, Casida J E. Regional Modification of [3H] Ethynylbicycloorthobenzoate Binding in Mouse Brain GAB A A Receptor by Endosulfan, Fipronil, and Avermectin B1a. Toxicol Appl Pharmacol,2000,163,188-194.
    212. Kang C Y, Wu G, Miyata T. Synergism of enzyme inhibitors and mechanisms of insecticide resistance in Bimisia tabaci (Gennadius) (Hom, Aleyrodidae). J Appl Entomol,2006,130:377-385.
    213. Kaku K, Matsumura F. Dentification of the site of mutation within the M2 region of the GABA receptor of the cyclodiene-resistant German cockroach. Comp Biochem Physiol, Pharmacol Toxicol Endocrinol,1994,1108 (3):367-376.
    214. Klis Sjaak F L, Nijman Nic J, Vijverberg Henk P M, et al. Phenylpyrazoles, a new class of pesticide: Effects on neuromuscular transmission and acetylcholine responses. Pest Manag Sci,1991, 33(2):213-222.
    215. Knipple D C, Henderson J E, Soderlund D M. Structural and functional characterization of insect genes encoding ligand-gated chloride-channel subunits. In:Clark, J.M. (Ed.), Molecular Action of Insecticides on Ion Channels. American Chemical Society, Whashington DC,1995,207-215.
    216. Koike K, Tamura K, Saito Y. Potential of the Water-oat, Z izania latifolia Turcz, as an alternative host plant of the rice stem borer, Chilo supp ressalis Walker, in N iigata prefecture. Proceedings of the Association for Plant Protection of Hokuriku,1981,29:28-31.
    217. Konno Y, Shishido T. Inheritance of resistance to fenitrothion and pirimiphos-methyl in rce stem borer, Chilo suppressalis (Lepidopter- a:Pyralidae). Appl Entomol Zool,1991,26(4):535-541.
    218. Konno Y. Carboxylesterase of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae) responsible for fenitrothion resistance as sequestering protein. J Pestic Sci,1996c,21: 425-429.
    219. Konno Y, Tanaka F. Aliesterase isozymes and insecticide susceptibility in rice-feeding and water-oat-feeding strains of the rice stem borer, Chilo suppressulis (Walker). Appl Entomol Zool, 1996a,31 (2):326-329.
    220. Konno Y, Tanaka F. Mating time of the rice-feeding and water-oat-feeding strains of the rice stem borer, Chilo suppressulis (Walker). Jpn J Appl Entomol Zool,1996b,40:245-247.
    221. Konno Y. Mating-choice and host preference tests in the rice-feeding and water-oat-feeding types of the rice stem borer, Chilo suppressulis (Walker). The Annual Report of the Society of Plant Protection of North Japan,1998,49:102-104.
    222. Kristensen M, Jespersen J B, Knorr M. Cross-resistance potential of fipronil in Musca domestica. Pest Manag Sci,2004, sep,60(9):894-900.
    223. Kristensen M, Hansen K K, Jensen K M. Cross-resistance between dieldrin and fipronil in German cockroach (Dictyoptera:Blattellidae). J Econ Entomol,2005, Aug; 98(4):1305-10.
    224. Lee C Y, Yap H H, Chong N L. Sublethal effects of deltamethrin and propoxur on longevity and reproduction of German cockroaches (Blattella germanica). Entomologia Experimentalis et Applicata.1998,89(2):13-7-145.
    225. Li A G, Yang Y H, Wu S W, et al. Investigation of Resistance Mechanisms to Fipronil in Diamondback Moth (Lepidoptera:Plutellidae). J Econ Entomol,2006,99(3):914-919.
    226. Li X T, Huang Q C, Yuan J Z, et al. Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker. Pestic Biochem Physiol,2007,89:169-174.
    227. Lin X W, Shen J L. Risk assessment and prediction of resistance to phoxim in Helicoverpa armigera. Acta Entomol Sin,2001,44(4):462-468.
    228. Liu N N, Yue Xin. Insecticide resistance and cross-resistance in the House Fly (Diptera:Muscidae). J Econ Entomol,2000,93(4):1269-1275.
    229. Lu W C, He L, Xue C H, et al. Molecular cloning and characterization of GABA receptor subunit gene from Tetranychus cinnabarinus. Submitted (JAN-2008) to the EMBL/GenBankP/DDBJ databases.
    230. Lunt G G, Robinson T N, Miller T, et al. The identification of GABA receptor binding sites in insect ganglia, Neurochemistry International,1985,7(5):751-754.
    231. MacDonald R L, Olsen R W. GABAA receptor channels. Annu Rev Neurosci,1994,17,569-602
    232. Matsumura F, Tanaka K, Ozoe Y, et al. Sites and action of neurotoxic pesticides. Washington DC: American Chemical Society,1987,44-70.
    233. Miller L G. The molecular biology of anxiety:A status report. J Clin Psychopharm,1990,10(4): 235-236.
    234. Miyazaki M, Matsumura F, Beeman R W. DNA sequenceand site of mutation of the GABA receptor of cyclodiene-resistant red flour beetle, Tribolium castaneum. Comp Biochem Physiol, B: Biochem Mol Biol,1995,111(3):399-406.
    235. Moffat A S.1993. New chemicals seek to outwit insect pests. Science.161:550-551. Mohan M, Gujar G T. Local variation in susceptibility of the diamondbackmoth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Protection,2003,22:495-504.
    236. Nakao T, Naoi A, Kawahara N, et al. Mutation of the GABA receptor associated with fipronil resistance in the whitebacked planthopper, Sogatella furcifera Pestic Biochem Physiol,2010, 262-266.
    237. Narahashi T, Zhao X, Ikeda T, et al. Differential actions of insecticides on target sites:basis for
    selective toxicity. Hum Exp Toxicol,2007, April; 26(4):361-366.
    238. Olsen Richard W, Szamraj O, Miller T. t-[35S] Butylbicyclophosphorothionate binding sites in invertebrate tissues. J Neurochem,1987,1311-1318.
    239. Olsen Richard W. Picrotoxin-like channel blockers of GABAA receptors. Proc Natl Acad Sci,2006, 103(16):6081-6082.
    240. Oppenoorth F J, Smissaert H R, Welling W. Insensitive acetylcholinesterase, high glutathione-S-transferase, and hydrolytic activity as resistance factors in a tetrachlorvinphos-resistant strain of house fly. Pestic Biochem Physiol,1977,7:34-47.
    241. Ozaki K. Botyu-Kagaku,1962,27:81.
    242. Payne G T, Soderlund D M. Activation of y-aminobutyric acid insensitive chloride channels in mouse brain synaptic vesicle by avermectin B1a. J Biochem Toxicol,1992,6:283-92.
    243. Plapp F W Jr, Frisbie R E, Jackman J A. Monitoring for pyrethriod resistance in Heliothis spp. In Texas in 1988. Proc. Of the Beltwide Cotton Production and Research Confenence, Nashville, Tennessee,1989,347-348.
    244. Qu M J, Han Z J, Xu X J, et al. Triazophos ResistanceMechanism in Rice Stem Borer (Chilo suppressalis Walker). Pestic Biochem Physiol,2003,77:99-105.
    245. Raymond-Delpech V, Matsuda K, Sattelle B M, et al. Ion channels:molecular targets of neuroactive insecticides. Invertebrate Neuroscience,2005,5:119-133.
    246. Ratra G S, Casida J E. GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicology Letters,2001a,122:215-222.
    247. Ratra, G S, Kamita S G, Casida J E. Role of human GABA(A) receptor beta3 subunit in insecticide toxicity. Toxicol Appl Pharmacol,2001b,172:233-240.
    248. Reidy G F, Rose H A, Visetson S, et al. Increased glutathione-S-transferase activity and glut-athione content in an insecticide resistance strain of Tribolium castaneum (Herbst). Pestic Biochem Physiol,1990,36:269-276.
    249. Rosenzweig M R, Leiman A L, Breedlove S M. Biological psychology:An introduction to behavioral, cognitive, and clinical neuroscience (2nd). Massachusetts:Sinauer Associates, Inc.1999.
    250. Rufingier Catherine, Pasteur Nicole, Lagnel Jacques, et al. Mechanisms of insecticide resistance in the aphid Nasonovia ribisnigri (Mosley) (Homoptera:Aphididae) from France. Insect Biochem Mol Biol,1999,29:385-391.
    251. Sattelle D B, Holyoke C W, Schnee M E, et al. A bicyclic dinitrile radioligand for studying GABA-gated Cl- channels. J Physiol,1995,483:193.
    252. Salgodo V L. Resistance target sites and insecticide discovery. In:Brooks GT, Roberts TR, editors. Pesticide chemistry and bioscience. The food-environment challenge. London, UK:Royal Society of Chemistry,1999,236-246.
    253. Sayyed A H, Wright D J. Fipronil resistance in the diamondback moth (Lepidoptera:Plutellidae):-inheritance and number of genes involved. J Econ Entomol,2004, Dec,97(6):2043-50.
    254. Sayyed A H, Attique M N, Khaliq A, et al. Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera:Plutellidae) from Pakistan. Pest Manag Sci,2005, Jul; 61(7):636-42.
    255. Scharf M E, Siegfried B D, Meinke K J, et al. Fipronil metabolism, oxidative sulfone formation and toxicity among organophodphate-and carbamate-resistant and susceptible western corm rootworm populations. J Pest Manag Sci,2000,56(9):757-766.
    256. Schofield P R, Darlison M G, Fujita N, et al. Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature,1987,328(6127):221-227.
    257. Scott J G, Wen Z M. Toxicity of fipronil to susceptible and resistant strains of German cockroaches (Dictyoptera:Blattellidae) and house flies (Diptera:Muscidae). J Econ Entomol,1997,90(5): 1152-1156.
    258. Shang Q L, L P, Gao X W. Cloning, developmental and tissue-specific expression of c-aminobutyric acid (GABA) receptor alpha2 subunit gene in Spodoptera exigua (Hubner). Pestic Biochem Physiol,2009,93:1-7.
    259. Shotkoski F, Morris A C, James A A, et al. Functional analysis of mosquito y-aminobutyric acid receptor gene promoter. Gene,1996,168:127-133.
    260. Sieghart W. Structure and pharmacology of gamma-aminobutyric acid A receptor subtypes. Pharmacol Rev,1995,47:181-234.
    261. Smith M M et al. Fipronil blocks invertebrate ligand-gated chloride channels. Society for Neuroscience Abstract,1999,25:1483.
    262. Soderlund D M, Bloomquist J R, Wong F, et al. Molecular neurology:implications for insecticide action and resistance. Pestici Sci,1989,26(4):359-374.
    263. Tabashnik B E. Resistance risk assessment:Realized heritability of resistance to Bacillus thuringiensisin diamondback moth (Lepidoptera:Plutellidea), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera:Chrysomelidae). J Econ Entomol,1992,85(5): 1551-1559.
    264. Tang J, Li J, Shao Y, et al. Fipronil resistance in the whitebacked planthopper(Sogatella furcifera): possible resistance mechanisms and cross resistance. Pest Manag Sci,2009,66(2):121-125.
    265. Tatsuki S. The effect of the plant host to subspecies differentiating in rice and water-oats-population of stem borer, Otoshibumi,2001,21:83-97.
    266. Thompson M, Steichen J C, Ffrench-Conctant R H. Conservation of cyclodiene insecticide resistance-associated mutations in insects. Insect Mol Biol,1993a,2(3):149-154.
    267. Thompson M, Shotkoski F, ffrench-Constant R H. Cloning and sequencing of the cyclodiene insecticide resistance gene from the yellow fever mosquito Aedes aegypti-Conservation of the gene and resistance associated mutation with Drosophila. FEBS LETTERS,1993b,325(3):187-190.
    268. Valles S M, Koehler P G, Brenner R J. Antagonism of fipronil toxicity by piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in the German cockroach (Dictyoptera:Blattellidae). J Econ Entomol,1997,90(5):1254-1258.
    269. Wang C G, Scharf M E, Bennett G W. Genetic Basis for Resistance to Gel Baits, Fipronil, and Sugar-Based Attractants in German Cockroaches (Dictyoptera:Blattellidae). J Econ Entomol,2006, 99(5):1761-1767.
    270. Weinberger D R. Anxiety at the frontier of molecular medicine. New England Journal of Medicine, 2001,344:1247-1249.
    271. Wen Z, Scott J G. Genetic and biochemical mechanism limiting fipronil toxicity in the LCR strain of house fly, Musca domestica. Pestic Sci,1999, (55):988-992
    272. Wolff M A, Wingate V P. Characterization and comparative pharmacological studies of a function y-aminobutyric acid (GABA) receptor cloned from the tobacco budworm, Heliothis virescens (Noctuidae:Lepidoptera). Invertebrate Neuroscience,1998,3:305-315.
    273. Wu G, Jiang S, Miyata T. Effects of synergists on toxicity of six insecticides in parasitoid Diaeretiella rapae (Hymenoptera:Aphidiidae). J Econ Entomol,2004, Dec; 97(6):2057-66.
    274. Yagle M A, Martin M W, de Fiebre C M, et al. [3H]Ethynylbicycloorthobenzoate ([3H] EBOB)Binding in Recombinant GABAA Receptors. NeuroToxicol,2003,24:817-824.
    275. Yuhas D A, Halling B P. Multiple isoforms of an rdl homologue in Helicoverpa virescents. Bubmitted (JUN-1997) to the EMBL/GenBank/DDBJ databases.
    276. Zheng Y, Priest B, Cully D F, Ludmerer S.W. RdlDv, a novel GABA-gated chloride channel gene from the American dog tick Dermacentor variabilis. Insect Biochem Mol Biol,2003,33:595-599.
    277. Zhou X M, Wu Q J, Zhang Y J, et al. Cloning and Characterization of a GABA Receptor from Plutella xylostella (Lepidoptera:Plutellidae). J Econ Entomol,2008,101(6):1888-1896.
    278. Zhu Z R, Cheng J, Zuo W, et al. Integrated Management of Rice Stem Borers in the Yangtze Delta, China. Area-Wide Control of Insect Pests,2007,4:373-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700