用户名: 密码: 验证码:
新农药HW-02的环境行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HW-02是华中师范大学农药化学研究所开发的有机磷类除草剂,可用于玉米田和草坪防除阔叶杂草。本文对HW-02的环境行为进行较为系统的研究,包括HW-02的土壤吸附规律,光解、水解速率和降解机理,HW-02对土壤中4种酶活性的影响,建立了玉米籽粒中HW-02的残留分析方法,进行了最终残留量测定,并对MRL进行了安全风险评估。具体研究结果如下:
     1.不同类型土壤对HW-02的吸附规律
     选取草甸黑土、盐化潮土、黄棕壤、白浆土和黑钙土5种不同类型的土壤,采用经典的振荡平衡法进行吸附性研究,结果表明,HW-02在5种土壤中的吸附速率较快,3-5 h后基本达到吸附平衡,其吸附特性均可用Freundlich方程描述;5种土壤的吸附能力为草甸黑土>盐化潮土>黑钙土>黄棕壤>白浆土,吸附自由能为-22.25--28.57 (kJ/mol),说明HW-02在土壤中的吸附以物理吸附为主。HW-02在土壤上的吸附能力与土壤有机质含量具有明显的相关性,而与土壤pH和阳离子交换量(CEC)相关性不显著,但二因子组合与KF的相关性较好。实验结果总体表明,HW-02在5种不同类型土壤中的吸附能力为中等至较强,反之其在土壤中的淋溶性为较弱至中等。
     2. HW-02在不同有机溶剂中的光解
     进行了HW-02在4种有机溶剂中的光降解实验,用GC-MS对HW-02母体化合物的光解速率进行测定,并对其光解产物进行分离和鉴定,结果表明,HW-02在4种有机溶剂中的光解反应均符合一级动力学规律,在强度为1.641×105 lux紫外光下照射40 min,HW-02在4种溶剂中的降解顺序为正己烷>甲醇>二甲苯>丙酮,降解速率分别为99.3%、72.72%、54.4%和42.9%,光解半衰期分别为11.72,21.74,30.27和39.40 min,说明HW-02在4种溶剂中的光解速度具有较大差异,原因是4种有机溶剂对紫外光的吸收强度差异所致,综合比较,HW-02在4种有机溶剂中的光解速率均较快。利用GC-MS技术鉴定了紫外光照射下HW-02在有机溶剂中的光降解产物,鉴定出主要8种光解产物,根据HW-02母体及其光降解产物的结构特征,可以看出在光解过程中发生了三种不同的反应:一是酯键断裂,二是脱氯反应,三是酯化反应。其光降解机理包括了光水解、光还原和酯化作用三种反应机制。研究中还发现HW-02的中间光解产物还可以进一步光解,并不产生积累,最终可能矿化成磷酸和碳氧化物。
     3. HW-02在不同条件下的水解
     用GC-MS测定了HW-02在不同缓冲溶液、不同温度、不同来源水体条件下的降解速率,研究结果表明,HW-02在上述条件下的水解反应均符合一级动力学规律,水解半衰期分别为0.40-167.99 h、0.81-4.08 h和5.09-6.50 h。HW-02在缓冲溶液中的水解速率随pH增加和温度的升高而加快,表现出明显的正相关,其提高幅度为5-400倍,在正常气候条件下,可推测HW-02在地表水中不会造成积累。利用GC-MS分离鉴定了不同pH的缓冲溶液中HW-02的水解产物,结果发现,在不同的缓冲溶液中,均发现了两种不同的水解产物,其浓度随着水解时间的延长而增大。与质谱库对比,确认两种产物为2,4-二氯苯氧基乙酸甲酯和2,4-二氯苯氧基乙酸。
     根据HW-02母体结构特点和所鉴定出的水解产物分子结构,对HW-02的水解机理进行推测,HW-02的水解是典型的双原子亲核取代反应,导致O-C键断裂,生成2,4-二氯苯氧基乙酸,再与有机磷母体结构上脱下的甲醇发生酯化反应,生成2,4-二氯苯氧基乙酸甲酯。
     根据HW-02水解活化能计算结果,可以判断出HW-02属于较易水解农药,不易在水域环境中长期残留,对环境影响较小。
     4. HW-02对土壤酶活性的影响
     测定了HW-02对土壤磷酸酶、脲酶、转化酶和过氧化氢酶活性的影响,结果表明, HW-02在使用后1天内,对脲酶和过氧化氢酶有激活作用,之后则表现为抑制作用; HW-02使用后1天内,对转化酶有较强的抑制作用,之后则表现为激活作用;磷酸酶则始终表现为激活作用。HW-02对土壤中4种主要酶的总体抑制率影响幅度为-33.41-43.95%,大部分都在20%以内。由此得出,HW-02对土壤中主要酶活性的影响较小。
     5. HW-02在玉米籽粒中最终残留量测定与安全风险评估
     本文建立了HW-02在玉米籽粒中最终残留量的气相色谱分析方法,该方法具有准确度高,重现性好,提取与净化简单等特点。用此方法测定了经两年田间试验所采集的玉米籽粒样本,提出了HW-02在玉米籽粒中MRL为0.25 mg/kg的建议,并对此建议值进行了安全风险评估。评估结果表明,HW-02在450-900 g a.i/hm2用量下所制定的MRL是安全的。
HW-02 is an organic phosphorus herbicide invented by Institute of Pesticide Chemistry, Central China Normal University, can be used to control broad-leaved weeds in corn field and lawn. The environmental behavior of HW-02 was systemically investigated in this dissertation, including the soil adsorption of HW-02, photolysis, hydrolysis, the degradation mechanism and the effect of HW-02 on four enzymes. In addition, the analysis method for HW-02 residue in maize grain was established, and the determination of the final residue and the risk assessment of MRL were conducted. The detailed results can be seen as follows:
     1. Absorption of HW-02 on different types of soil
     The absorption of HW-02 on five types of soil (i.e. meadow black, sandy loam, clay loam, baijiang soil and chernozem) was investigated by the method of the classical oscillation balance. The results indicated that the absorption of HW-02 on all five types of soil followed Freundlich equation. The absorption velocity was rapid. The absorption balance could be reached in 3-5 h. The absorption capability of these five soils was meadow black>sandy loam> chernozem>clay loam>baijiang soil. The absorption free energy was -22.25--28.57 (kJ/mol). This indicated that the absorption of HW-02 in soil was mainly physical adsorption. The absorption capability of HW-02 on soil was significant correlative with the content of soil organic matter, but little correlation with soil pH and cation exchange capacity was observed. All the results above showed that the absorption capability of HW-02 on these five soils was from medium to relatively strong. Contrarily, the eluviation of HW-02 in soil was from relatively weak to medium.
     2. Photolysis of HW-02 in different organic solvents
     The photolysis of HW-02 in four organic solvents was conducted, and the photolysis velocity of HW-02 matrix compound was determined by using GC-MS. The photolytic products were separated and analyzed, too. The results indicated that the photolysis of HW-02 in all four organic solvents followed the first order kinetics. After 40 min UV illumination (1.641×10~5 lux), the photolysis velocity was n-hexane > methanol > xylene>acetone in these four organic solvents, the photolysis rate were 99.3%,72.72%, 54.4% and 42.9%,the half life were 11.72,21.74,30.27 and 39.40 min, respectively. This indicated that the photolysis velocity of HW-02 in these four organic solvents varied greatly, which was due to the different UV light adsorption in these four organic solvents. Anyhow, the photolysis of HW-02 in these four organic solvents could be conducted rapidly.
     Under UV light, HW-02 could be photolyzed in organic solvents and eight photolytic products were identified by GC-MS. According to the HW-02 matrix and the photolytic products, it could be seen that three different reactions occurred in the photolytic processes: (i) ester bond cleavage, (ii) dechlorination and (iii) esterification reaction. The photolysis mechanism included photo-hydrolysis, photoreduction and esterification. Additionally, the Intermediate product of photolysis could photolyze further and did not accumulate. Phosphate and carbon oxides might be the final products.
     3. The hydrolysis of HW-02
     The hydrolysis rate of HW-02 was tested by GC-MS under the condition of different buffer, temperature and water. The result indicated that the hydrolysis of HW-02 followed the first order kinetics. The half lifes were 0.40-167.99 h、0.81-4.08 h和5.09-6.50 h, respectively. The hydrolysis rate in buffer was enhanced with the increasing of pH value. The range was 5-400 times than control. In general conditions, HW-02 will not accumulated in water. The products of HW-02 hydrolysis indicated in different buffer were also different. The result indicated that the products were different in different buffers. The concentrations were increased with the extending of hydrolysis time. The two products were 2,4 -dichlorophenoxyacetic acid methyl ester and 2,4-dichlorophenoxy acetic acid. The hydrolysis reaction mechanism was the typical nucleophilic substitution, dued to the C-O bond cleavage and formed 2,4-dichlorophenoxy acetic acid. Since the composition of HW-02 were bridged by organophosphates and phenoxyacetate, the C-O bond cleavage could also formed 2,4-dichlorophenoxy acetic acid. The 2,4 -dichlorophenoxyacetic acid methyl ester was formed by esterification with methanol. The result also indicated that HW-02 was easier to hydrolysis and will not residue for long in aquatic environment. The influence of HW-02 to the environment was small.
     4. The influence of HW-02 on the enzyme activity
     These studies test the enzyme activity of phosphatase, urease, catalase and invertase. After the usage of HW-02, the soil urease and catalase activity were stimulated at first and were inhibited in the end. The invertase was inhibited after useage and was stimulated after that. The phosphatase was stimulated. The inhibition rate of HW-02 on the soil enzyme was -33.41-43.95%, most of them were under 20%. The result indicated that the influence of HW-02 on soil enzyme was low.
     5. The residue levels and risk assessment of HW-02 in corn
     The study established the analytical method of HW-02 in maize kernel. This method has the characteristics of high accuracy, good reproducibility and easier to extraction and purification. This method was tested maize kernels for two years field experiment. The result suggested that the MRL of HW-02 in maize kernel was 0.25mg/kg and the risk assessment were also done. The result was that the MRL was safe when the usage of HW-02 under the dosage of 450-900 g a.i/hm ~2.
引文
[1]张一宾,张怿.世界农药新进展[M].北京:化学工业出版社,2007.1、167.
    [2]兰剑平,柏亚罗.世界主要国家农药市场[J].世界农药,2009,31(5):13-15.
    [3]蔡道基.农药环境毒理学研究[M].北京:中国环境科学出版,1999.2、4.
    [4]杨明金.李文贵.土壤农药污染与稻谷残留的研究[J].福建农业科技,1984,(1):21-22.
    [5]施国涵.王进海.西藏高原有机氯农药的污染[J].生态学报,1988,8(4):368-370.
    [6]刘维屏.农药环境化学[M].北京:化学工业出版社,2006.1、7.
    [7]中华人民共和国国家标准.GB15618-1995土壤环境质量标准[S].北京:中国标准化出版社,1995.
    [8]张大弟,张晓红.农药污染与防治[M].北京:化学工业出版社,2001.
    [9]王瑚.全国水质调查评价[J].水文,1982,S1:16.
    [10]何光好.我国农药污染的现状与对策[J].现代农业科技,2005,23(1):57.
    [11]谭建强.洞庭湖环境中有机氯农药污染水平及有关迁移转化规律探讨[J].环境与可持续发展,1988,1:15.
    [12]单正军.除草剂拉索对地下水影响研究[J].环境科学学报,1994,14(1):72-78.
    [13]张伟玲等.西藏错鄂湖和羊卓雍湖水体及沉积物中有机氯农药的初步研究[J].地球化学,2003,32(4):363-367.
    [14]夏世钧.孙金秀.农药环境毒理学[M].北京:化学工业出版社,2008.5、137.
    [15]李玉浸,段武德.农业环境污染事故诊断技术指南[M].北京:化学工业出版社,2009.1、97.
    [16]刘静宜,汪安璞,陈定茂.我国环境化学研究的进展[J].环境化学,1994,13(5):371-381.
    [17]陈子元,陈传群,孙锦荷,等.标记磷有机杀虫剂的性质研究(Ⅱ)[J].化工技术资料—农药专业分册,1965,3:27-31.
    [18]北京农业大学农药教研组.我国常用的几种有机磷杀虫剂在农产品中残留量测定方法的探讨—乐果在黄瓜中残留量的测定[J].农药工业,1966,1(1):34-36.
    [19]齐平.我国农药研究工作的进展[J].农药,1973,2:58-76.
    [20]樊德芳.农作物和食品中的农药残留毒性[J].农药工业,1974,5-6:115-123.
    [21]浙江农业大学植保专业农药残毒组.甲胺磷在水稻上的残留问题[J].农药工业,1976,2:31-34.
    [22]浙江农科院原子能利用研究所.14C-多菌灵在水稻和土壤中的残留动态[J].农药工业,1977,5:17-20.
    [23]朱湘雄,陈志辅,李季达,等.氯丹在土壤中移动情况的研究[J].农药工业,1978,3:15-16.
    [24]刘乾开,陈忠明,樊德芳,等.二氯苯醚菊酯在柑桔上的残留动态[J].农药工业,1980,2:14-17.
    [25]朱寿彭,王崇道,江骥,等. 14C-二氯苯醚菊酯的体内代谢动态研究[J].农药工业,1980,4:17-19.
    [26]樊德芳,刘乾开,陈忠明.耐光性拟除虫菊酯残留特性研究--(Ⅲ)溴氰菊酯在水稻上残留动态初步研究[J].农药工业,1980,4:20-21.
    [27]樊德芳,刘乾开,陈忠明.耐光性拟除虫菊酯残留特性研究--(Ⅳ)氯氰菊酯在水稻上残留动态初步研究[J].农药工业,1980,5:1-2.
    [28]谢占武,刘瑞凝,严隽端,等.敌百虫在动物体内的残留动态研究[J].农业环境科学学报,1982,4:1-4.
    [29]刘乾开,陈忠明,樊德芳,等.溴氰菊酯在柑桔上的残留动态[J].浙江农业大学学报,1982,8(2):209-215.
    [30]徐家基,童英,戴宝明,等.戊酸醚酯在春包菜上的残留动态[J].农药,1982,8(4):16-18.
    [31]利用14C-示踪法研究脒基硫脲在水稻和土壤中的残留动态[J].核农学报,1982,1:48.
    [32]樊德芳,葛宪定.稻田施用杀虫脒后农药亲体与其代谢产物在糙米与稻壳上的残留动态[J].环境科学,1981,2(6):1-5.
    [33]马喆芬,刘永超.应用硫35标记研究乐果在小麦、高梁上的残留动态[J].辽宁农业科学,1981,4:30-32.
    [34]王维刚.除草剂“拉索”在土壤中残留动态试验[J].辽宁农业科学,1981,6:46-48.
    [35]孙连喜.35硫-巴丹在果实上残留的研究[J].江苏农业科学,1981,5:48-50.
    [36]孙锦荷,陈子元.乙酰甲胺磷在茶树上的残留、代谢、吸收和运转[J].核农学报,1980,3:48-50.
    [37]郭大智,王化新,蔡学林,等.35S-“敌枯双”在水稻和动物体内的吸收、分布与残留的测定[J].核农学报,1980,3:21-24.
    [38]陈铁保,鲍子金,王静芳,等.氟乐灵在土壤中残留动态的研究[J].植物保护,1980,2:17-19.
    [39]吴安仁,张清华,叶盂兆.敌百虫在柑桔上的残留量研究[J].重庆环境保护,1980,1:16-17.
    [40]农业部农药检定所.农药登记规定[J].农药检定,1982,9-11.
    [41]石利利,林玉锁,徐亦钢,等.毒死蜱农药环境行为研究[J].土壤与环境,2000,9(1):73-74.
    [42]王兴林,张兴.野燕枯的几种环境行为动态研究[J].农药科学与管理,1998,1:15-17.
    [43]刘维屏,陈子雯,吕琼嫣,等.稳杀得(Fluazifop-butyl)环境行为研究[J].环境科学学报,1991,11(4):458-467.
    [44]梅立永,赵智杰,尹璇,等.拟除虫菊酯类农药环境行为与归趋模拟[J].农业环境科学学报,2007,26(6):2316-2322.
    [45]刘维屏,Carla Gessa.利谷隆在土壤中的吸附过程与机理[J].环境科学,1995,16(1):16-18.
    [46]张祖麟,余刚,洪华生,等.河口水体中有机磷农药的环境行为及其风险影响评价[J].环境科学,2002,23:73-78.
    [47]赵华,李康,徐浩.甲氰菊酯农药环境行为研究[J].浙江农业学报,2004,16(5):299-304.
    [48]杨炜春,王琪全,刘维屏.除草剂莠去津(atrazine)在土壤-水环境中的吸附及其机理[J].环境科学,2000,21(4):94-97.
    [49]赵华,吴珉,彭金波.灭多威在土壤中的吸附、移动及降解行为[J].浙江农业学报,2008,20(4):287-290.
    [50]黄家章,郑永权,刘新刚,等.氟虫腈在水稻土和红壤中的淋溶研究[J].农业环境科学学报,2010, 29 (增刊):201-204.
    [51]温汉辉,祁士华,李杰.利用多介质模型研究有机氯农药的环境行为[J].水文地质工程地质,2009,6:104-108.
    [52]张卫,林匡飞,韩小波,等.阿维菌素在土壤中的光解研究[J].农业环境科学学报,2006,25(3):741-744.
    [53]宋卫国,李宝聚,叶志华,等.农田土壤中农药的环境行为浓度预测[J].农业环境科学学报,2008,27(4):1574-1581.
    [54]莫汉宏,杨克武,安凤春,等.农药和其它有机化合物环境参数的相关性及其预测[J].环境化学,1994,13(5):401-407.
    [55]石洁,徐亮,姜辉,等.二氰蒽醌的水解、光解和挥发性[J].农药,2010,49(1):23-25.
    [56]曹红英,梁涛,陶澍.1950年以来BHC在杭州环境中积累、迁移与残留动态的模拟研究[J].环境科学学报,2005,25(4):475-482.
    [57]宣日成,王琪全,郑巍.吡虫啉在土壤中的吸附及作用机理研究[J].环境科学学报,2000,20(2):198-201.
    [58] Ye C. M.,Gong A. J.,Lei Z. F.. Simulation study on vertical transport of atrazine in soil column[J].Journal of Environmental Sciences,2000,12(3):303-309.
    [59]江苏省轻化工科研所.滴滴涕乳剂在棉叶上残留量测定[J].化工技术资料—农药专业分册,1965,3:38-41.
    [60]周济省.大气中低浓度敌敌畏的比色测定法[J].化工技术资料—农药专业分册,1964,3:31.
    [61]浙江农业大学农学系生物物理教研室农药二组.应用同位素示踪法研究“六六六”在水稻上的残留动态和土壤中的污染程度[J].农药工业,1974,1:27-30.
    [62]周振惠,钱润明,王惠菊.薄层色谱板扫描定量测定水稻中1605残留量的方法[J].农药工业,1978,5:17-20.
    [63]云南省化工试验研究所分析研究室.薄层色谱法测定大米、玉米中六六六和滴滴涕残留量[J].云南化工技术,1978,3:13-17.
    [64]郑斐能,王仪,刘素云.甲六粉和乙六粉中丙体六六六分析方法的研究[J].农药工业,1979,5:16-19.
    [65]陈镇华.我国环境标准物质的发展及其应用[J].中国环境监测,1986,2(3):54-57.
    [66]钱建国,王克欧,戴广茂.溴氰菊酯在溶液中的光化学降解[J].环境科学学报,1988,8(3):275-285.
    [67]李伟格,张乔.氟乐灵在土壤中残留量的检测和消解动态[J].中国农业科学,1980,2:84-89.
    [68]万海滨.杀螟松、马拉松、杀扑磷和杀灭磷在不同pH和温度的水解速率[J].环境科学学报,1989,9(4):500-504.
    [69]苏大水,樊德芳.甲氰菊酯在土壤中的降解和移动性[J].环境科学学报,1989,9(4):446-453.
    [70]蔡道基,江希流,杨佩芝,等.禾草克在大豆地中残留动态研究[J].农业环境保护,1988,7(1):19-23.
    [71]姚建仁,钱益新,焦淑贞,等.溴螨酯在苹果、山楂上的残留动态及土壤中残留研究[J].农业环境保护,1990,9(1):6-9.
    [72]戚道光,斯之正.托尔克农药在番茄中残留动态的研究[J].南京农业大学学报,1987,3:93-97.
    [73]王成江.溴氰菊酯在棉籽、棉田土壤中的残留量及棉叶中的残留动态[J].农药,1987,26(5):36-37.
    [74]张寿江,张济英,于建垒.辛硫磷在大葱上残留量及动态研究[J].农药,1987,27(5):30-31.
    [75]明九雪.氰戊菊酯和辛硫磷混剂在甘蓝上的残留及消解动态研究[J].农业环境保护,1990,9(4):18-20.
    [76]黄德智.苯噻酰草胺农药标准品的制备研究[J].安徽农业科学,2006,34(3):517-518.
    [77]黄德智,李学德,操海群.苯磺隆农药标准品的制备研究[J].安徽农业科学,2004,32 (2):246-247.
    [78]邹明强,陈明岩,张锁秦.豆磺隆农药标准品的制备研究[J].化学研究与应用,2001,13(5):581-583.
    [79]邹明强,陈明岩,付英文,等.氯嘧磺隆标准品的提纯与表征[J].光谱实验室2001,18(3):286-289.
    [80]宋金凤,张振祥,唐丹舟,等.农药标准物质的快速提纯--残留分析工作标样制备[J].标准物质,2001,8:29-36.
    [81]张书圣,白吉洪,沈玲,等.高效液相色谱法制备久效磷农药标准品的研究[J].青岛化工学院学报,1993,14(4):18-22.
    [82] Martijn A. Analysis of technical and formulated pesticides[M]. CIPAC Handbook D,England: Heffers Printeras Ltd,1990:205.
    [83]张百臻.农药标准品的制备与认可[J].农药科学与管理,1993,3:36-37.
    [84]雷霆,郝希成.粮油食品中主要污染物监测用标准物质的研究I马拉硫磷、敌敌畏、乐果标准溶液的制备和定值[J].粮食储藏,1993,22(6):24-30.
    [85]中华人民共和国农业部.中华人民共和国农业部公告第980号[J].农药科学与管理,2008,29(3):1.
    [86]庄无忌,周昱,刘胜利.毛细管法测定水果蔬菜中22种有机磷农药残留量[J].分析测试学报,1995,5(25):69-71.
    [87] Li F. S., Martens D., Kettrup A..Simultaneous Determination of Sixteen Phenylurea Herbicides in Water by High Performance Liquid Chromatography and Solid Phase Extraction[J]. Chinese Journal of Chromatography,2001,19(6):534-537.
    [88]刘永波,贾立华,牛淑妍.气-质联用快速检测蔬菜、水果中农药多残留的分析方法[J].青岛科技大学学报,2003,24(6):491-495.
    [89]王建华,储晓刚.凝胶渗透色谱-气相色谱-质谱测定花生中乙草胺的残留量[J].分析试验室,2007,26(12):31-34.
    [90]邵华,刘肃,杨锚.石墨化碳黑分散固相萃取-气相色谱-质谱法测定蔬菜中农药多残留[J].质量监督与检验,2008,3:43-45.
    [91]季思伟,马辰.中药材农药多残留快速检测方法的研究[J].分析试验室,2010,29(增刊):251-258.
    [92]楼正云,陈宗懋,罗逢健,等.固相萃取-气相色谱法测定茶叶中残留的92种农药[J].色谱,2008 26(5):568-576.
    [93]秦亚萍.NCI-GC-MS在农残分析中的应用[J].质量监督与检验,2004,2:31.
    [94]毛秀红,郏征伟,陈钶,等.液相色谱-串联质谱法同时测定中药材中74种农药残留量[J].中国药学杂志,2010,45(1):64-70.
    [95]张伟国,储晓刚,李重九.气相色谱/离子阱质谱-选择离子方法同时检测大米中百种农药残留[J].分析化学,2006,34(4):484-488.
    [96]余万俊,鲁长豪,肖志芳,等.单克隆抗体酶免疫分析法测定大米中杀虫脒残留量[J].环境科学,1995,16(4):51-53.
    [97]董国伟,王沫,刘贤进.兔抗甲胺磷多克隆抗体的制备[J].华中农业大学学报,2001,20(4):340-343.
    [98]薛小平,张美顺,李荣源.高亲和力抗有机磷杀虫剂单克隆抗体的制备与鉴定[J].中国生物工程杂志,2003,23(6):68-71.
    [99]胡芹芹,李娜,张华,等.ELISA及电化学法检测藠头中氨基甲酸酯类农药残留[J].农药,2009,48(5):352-354.
    [100]韩丽君,钱传范,李文明,等.酶联免疫吸附分析法测定土壤中的毒死蜱[J].河南农业科学,2005, 8:53-55.
    [101]韩丽君,贾明宏,钱传范,等.甲基对硫磷的酶联免疫吸附分析(ELISA)研究[J].农业环境科学学报,2005,24(1):187-190.
    [102]余向阳,骆爱兰,刘媛,等.拟除虫菊酯类农药多残留直接竞争ELISA建立及初步应用[J].分析测试学报,2008,27(3):249-252.
    [103]夏敏,王欣欣,杨文学,等.酶联免疫技术快速测定蔬菜和水果中的农残[J].现代科学仪器,2006,1:104-105.
    [104]龚荐.14C-二氯苯醚菊酯在土壤中的残留研究:Ⅰ吸附性和移动性[J].江苏农学院学报,1980,1(3):48-52.
    [105]施国涵.有机磷农药在土壤中的吸附与降解[J].环境科学,1982,3(4):69-72.
    [106]翟延路,李夕坤.农药马拉松在土壤中的吸附、移动[J].西北农学院学报,1982,3:97-101.
    [107]陈子元,徐步进.林丹(γ-六六六)在土壤中的吸附性与其在土壤和小麦中残留量的关系[J].环境科学学报,1982,3(4):299-306.
    [108]杨宏伟,贾长宽,乌地等.敌敌畏在土壤中吸附特性的研究[J].环境科学研究,2006,19(2):35-38.
    [109]薛南东,杨仁斌.丙硫克百威在几种土壤中的吸附[J].土壤与环境,2001,10(4):263-266.
    [110]苏大水,樊德方.甲氰菊酯在土壤中的降解与移动性[J].环境科学学报,1989,9(4):446-453.
    [111] Wang J. H., Zhang L. Z..The model test of leaching behaviour of trifluralin, lindane and aldicarb through the plough layer in three typea of soil[J].Journal of environmental science(china), 1990,2(1):17-25.
    [112] Liu W. P., Alba P., Carlo G..Contribution of organic matter to metolachlor adsorption on some soils[J].Journal of environmental science(china), 1995,7(1):121-125.
    [113] Liu W. P., Alba P., Fang Z., et al.Adsorption of herbicide triclopyr on homoionic clays[J].Journal of environmental science(china), 1995,7(4):385-390.
    [114]刘维屏,方卓,Alba Pusino,等.新农药环境化学行为研究(Ⅴ)—三氟羧草醚在土壤和水环境中的滞留、转化[J].环境科学学报,1995,15(3):295-301.
    [115] Yang H., Wu X., Zhou L. X., et al.Effect of Dissolved Organic Matter on Chlorotoluron Sorption and Desorption in Soils[J].Pedosphere, 2005, 15(4): 432-439.
    [116] Ling W. T., Wang H. Z., Xu J. M., et al.Sorption of dissolved organic matter and its effects on the atrazine sorption on soils[J].Journal of Environmental Sciences, 2005, 17(3):478-482.
    [117] Wang Y. J., Zhou D. M., Sun R. J.. Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils[J].Journal of Environmental Sciences, 2005, 17(5):711-715.
    [118]吴志华,龚道新,汪传刚,等.咪鲜胺及其制剂在六种水稻土中的吸附[J].农药学学报,2006,8(1):46-50.
    [119] Liao M., Xie X. M.. Adsorption of metsulfuron and bensulfuron on a cationic surfactant-modified paddy soil[J].Pedosphere, 2007, 17(1):101-108.
    [120]蒋凡,张伟,张中明,等.烟嘧磺隆在土壤中的解吸特性及pH值对其吸附的影响[J].西南农业学报,2008,21(3):702-708.
    [121]龚道新,汪传刚,胡湘望,等.噻吩磺隆在土壤中的吸附及表面活性剂对吸附的影响[J].农业环境科学学报,2007,26(5):1689-1693.
    [122]张玉超,梅向东2,胡继业,等.新农药呋喃虫酰肼在四种土壤中吸附行为的研究[J].现代农药,2009,8(3):11-14.
    [123]孔德洋,石利利,单正军,等.除草剂甲基磺草酮在土壤中的吸附及淋溶特性[J].中国环境科学,2008,28(8):753-757.
    [124]刘松长,李继睿,何文.农药在土壤环境中的吸附-解吸作用[J].广东化工,2007,34(11):101-103.
    [125]刘维屏.Carla Gessa.利谷隆在土壤中的吸附过程与机理[J].环境科学,1995,16(1):16-19.
    [126]赵元慧.有机物在土壤上的吸附理论[J].环境科学丛刊,1990,11(2):41-44.
    [127]李克斌,刘维屏,许中坚,等.灭草松在腐殖酸上的吸附及其机理[J].环境科学学报,2002,22(6):754-758.
    [128]谢吉民,初亚飞,刘军,等.烯酰吗啉在土壤中的吸附及机理[J].江苏大学学报(自然科学版),2010,31(1):88-92.
    [129]高海英,杨仁斌,龚道新,等.三唑酮在土壤中的吸附及其机理[J].湖南农业大学学报(自然科学版),2006,32(2):203-205.
    [130]陈朝晖.戴广茂.六六六在水溶液中的光异构化与光化学降解[J].环境科学学报,1984,4(3):266-274.
    [131]钱建国.溴氰菊酯在溶液中的光化学降解[J].应用化学,1987,4(5):94.
    [132]毕刚.田世忠等.拟除虫菊醋在不同碎灭体系中的光化学降解[J].环境化学,1995,14(5):425-429.
    [133]郑和晖.叶长明.乙草胺在水中的光化学降解动态研究[J].农药科学与管理,2001,22(6):12-13.
    [134]花日茂.岳永德.乙草胺在水中的光化学降解[J].农药学学报,2000,12(1):71-74.
    [135]花日茂.李湘琼.丁草胺在不同类型水中的光化学降解[J].应用生态学报,1999,10(1):57-59.
    [136]徐宝才.岳永德.多菌灵的光化学降解研究[J].环境科学学报,2000,20(5):616-620.
    [137]岳永德.王如意.毒死蜱在土壤中的光催化降解[J].安徽农业大学学报,2002,29(1):1-3.
    [138]任丽萍.田芹.己唑醇的光化学降解[J].农药学学报,2004,6 (4):73-77.
    [139]褚明杰.岳永德.苯噻草胺在不同水质中的光化学降解研究[J].环境科学学报,2005,25(12):1647-1652.
    [140]官宜文.刘建新.郑瑶青,等.乐果农药厂有机磷化合物对周围地下水污染的研究[J].环境科学,1979,2:
    [141]朱天良.有机磷农药水解反应与废水处理[J].农药,1983,5:27-31.
    [142]万海滨.杀螟松、马拉松、杀扑磷和杀灭磷在不同pH和温度下的水解速率[J].环境科学学报,1989,9(4):500-504.
    [143]周心如.唐铁军.用高效液相色谱法研究二硫代磷酸酯的水解反应[J].北京化工学院学报(自然科学版),1994,21(1):94-97.
    [144]华晓梅.江希流.金怡,等.甲基异柳磷等4种农药的水解特性研究[J].环境化学,1992,11(3):16-21.
    [145]肖乾芬.王晓栋.魏忠波,等.三唑磷农药水解动力学研究[J].农药,2005,44(8):356-358.
    [146]赵华.徐浩.叶兴祥.甲胺磷等3种农药的水解研究[J].农药科学与管理,2004,25(10):6-10.
    [147]王敏欣.朱书全.水环境中农药的水解研究分析[J].黑龙江科技学院学报,2004,14(2):74-77.
    [148]宣日成.王琪全.郑巍,等.吡虫啉在土壤中的吸附及作用机理研究[J].环境科学学报,2000,20(2):198-201.
    [149]杨炜春.王琪全.刘维屏.莠去津在土壤—水环境中的吸附及其机理[J].环境科学学报,2000,21(4):94-97.
    [150]欧晓明,步海燕.磺酰脲类除草剂水化学降解机理研究进展[J].农业环境科学学报,2007,26(5):1607-1614.
    [151]彭娟莹,杨仁斌.联吡啶类除草剂的作用机制及环境行为[J].农业环境科学学报,2006,25(增刊):435-437.
    [152]梁舒萍,关少玲.对硫磷的紫外光解研究[J].环境化学,1999,18(4):344-348.
    [153]王敏欣,李发生,韩梅.异丙草胺在水溶液中的光解动力学[J].环境科学,2003,24(5):125-130.
    [154]闵久康,刘寄陵.土壤酶的研究及其意义[J].土壤肥料,1978,5:16-19.
    [155]关松荫.土壤酶与土壤肥力的关系[J].土壤肥料,1980,2:19-21.
    [156]周礼恺,张志明.土壤酶活性的测定方法[J].土壤通报,1980,5:37-38.
    [157]李辉信,吴珊眉.3种除草剂对免耕土壤生态系统部分功能的影响[J].南京农业大学学报,1990,13(4):70-75.
    [158]朱南文,胡茂林.乐果对土壤中酶活性和微生物数量的影响[J].上海环境科学,1997,16(4):43-75.
    [159]杨惠芳,王保军,林力,等.单甲脒农药对土壤微生物种群和土壤酶活性的影响[J].应用与环境生物学报,1996,2(1):58-65.
    [160]和文祥,蒋新,朱茂旭.杀虫双对土壤磷酸酶的毒性效应[J].应用与环境生物学报,2002,8 (6):658-661.
    [161]和文祥,蒋新,卞永荣,等.杀虫双对土壤酶活性影响的研究[J].西北农林科技大学学报(自然科学版),2002,30(1):13-17.
    [162]胡著邦,汪海珍,吴建军.镉与苄嘧磺隆除草剂单一污染和复合污染土壤的微生物生态效应[J].浙江大学学报(农业与生命科学版),2005,31(2):151-156.
    [163]王鑫宏,许艳秋,邓铁柱.氯嘧磺隆对三种土壤酶活性的影响[J].农业环境科学学报,2005,24(增刊):70-72.
    [164]刘惠君,詹秀明,刘维屏.四种酰胺类除草剂对土壤酶活性的影响[J].中国环境科学,2005,25(5):611-614.
    [165]王正贵,封超年,郭文善,等.除草剂苯磺隆对麦田土壤酶活性的影响[J].麦类作物学报,2010,30(2):391-394.
    [166]纪春涛,姜兴印,房锋,等.噻唑膦对冬暖式大棚土壤酶活性的影响[J].农药学学报,2009,11(1):137-140.
    [167]周世萍,段昌群,韩青辉,等.毒死蜱对土壤蔗糖酶活性的影响[J].生态环境,2005,14(5):672-674.
    [168]李永红,高玉葆.单嘧磺隆对土壤呼吸脱氢酶和转化酶活性的影响[J].农业环境科学学报,2005,24(6):1176-1181.
    [169]刘惠君,刘维屏,杨炜春,等.均三氮苯类除草剂对土壤酶活性的影响[J].土壤学报,40(2):286-292.
    [170]安琼,张水铭.美国农药环境行为研究概况[J].土壤,1987,4:221-223.
    [171]韩熹莱,钱传范,陈馥衡,等.中国农业百科全书—农药卷[M].北京:农业出版社,1993,10、251-254.
    [172]许永峰译.农药污染[M].北京:农业出版社,1983,2、11.技术
    [173]李巍民,姚家玮,龚著勤.农药与环境[M].北京:化学工业出版社,1985,10、37.
    [174] Edwards C.A.. Environmental pollution by pesticides[M].London:Plenum press,1973,542.
    [175] Tahori A.S.. Fate of pesticides in environment[M].London:Gordon and breach,Science publishers Led,1972.
    [176] Haque R, Freed V.H. Behaviour of pesticides in the environment:environmental chemodynamics[M]. Residue Rev.,1974,52, 89-116.
    [177] Haque R, William R. Adsorption of isocil and bromacil from aqueous solution onto some mineral surfaces[J]. Environmental science technology. 1971, 5:139-141.
    [178] Bowman B.T., Sans W.W.. Adsorption of Parathion, Fenitrothion, Methyl Parathion, Aminoparathion and Paraoxon by Na+, Ca2+, and Fe 3+ Montmorillonite Suspensions[J]. Soil Science Society of America Journal,1977,41(3):514-519.
    [179] Hamaker J. W., Tompson J. M.. Organic Chemicals in the soil environment[M].New York:Marcel Dekker,Inc,1972.
    [180] Walker A, Crawford D. V.. Isotopes and radiation in soil organic matter tudies[M].FAO/LAFA(Eds),Proc.2nd.Vienna:Int.Atomic Energy Agency,1968.
    [181]刘维屏.粘土矿物、腐殖质对异丙甲草胺的吸附[J].上海环境科学,1995,14(12):42-44.
    [182] Pusino A., Liu W. P., Gessa C.. Dimepiperate adsorption and hydrolysis on Al3+, Fe3+, Ca2+ and Na+ montmorillonite[J]. Clays and Clay Minerals.1993,41(3):335-340.
    [183] Pusino A., Liu W. P., Petretto S.. et al. Adsorption and desorption of dimepiperate by soils[J]. Water,Air and Soil Pollution,1994,73:325-331.
    [184] Gu B., Schmitt J., Chen Z., Liang L., et al.Adsorption and desorption of natural organic matter on iron oxide:Mechanisms and models[J].Environmental Science Technology,1994,28: 38-46.
    [185] Mallawatantri A. P., McConkey B. G., Mulla D. J.. Characterization of Pesticide Sorption and Degradation in Macropore Linings and Soil Horizons of Thatuna Silt Loam[J].journal of Environmental quality,1996,25(2):227-235.
    [186] Wang Q., Liu W. P.. Correlation of Imazapyr Adsorption and Desorption With Soil Properties[J].Soil Science,1999,164(6):411-416.
    [187] U.S.Environmental Protection Agency. Fed Regist,1975,40(123):26881.
    [188] Tsai W.T., Lai C.W., Hsien K.J.. Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution[J].Journal of Colloid and Interface Science,2003,263: 29–34.
    [189] Draoui K., Denoyel R., Chgoura M., et al.Adsorption of Paraquat on minerals:A thermodynamic study[J].Journal of Thermal Analysis and Calorimetry,1999,58(3):597-606.
    [190] Wen T. T., Chi W. L.. Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth.Journal of Hazardous Materials[J].2006,B134:144–148.
    [191] Betran J., Hernandez F., Lopez F. J., et a1.Study of sorption processes of selected pesticides on soils and ceramic porous cups used for soil solulion sampling[J].Journal Environment And Chemical,1995,58:287-303.
    [192] Mitra S., Bhowmik P. C., Xing B.. Sorption of isoxaflutole by five different soils varying in physical and chemical properties[J].Pesticide Science,1999,55:935-942.
    [193] Mallawatantri A. P., Mulla D. J.. Herbicide adsorption and organic carbon contents on adjacent low-input versus conventional farms[J].J Environment Qual.1992,2l:546-551.
    [194] Cox L., Koskinen W. C., Celis R., et a1.Sorption of primidacloprid on soil clay mineral and organic components[J].Soil Science Society of America Jounal[J].1998,62:9ll-9l5.
    [195] Ruzicka J. H.The gas chromatographic determination of organophorus pesticides:Part V.Studies under field conditions[J].Journal of chromatography A,1968,33:430-434.
    [196] Gomaa N. M., Faust S. D.. Chemical hydrolysis and oxidation of parathion and paraoxon in aquatic environments. In:Fate of Organic Pesticides in the Aquatic Environmenti ACS Advances in Chemistry series 111,Chapter 10,1972.
    [197] Wolfe N. L., Zepp R. G.. Kinetic investigation of malathion degradation in water[J].Bull Environment Toxicol,1975,13(6):707.
    [198] Daniela L., Anna A.. Hydrolytic degradation of azimsulfuron, a sulfonylurea herbicide[J]. Chemosphere,2007,68:1312–1317.
    [199] Harrisona S. K., Venkatesha R.. Light regime, riboflavin, and pH effects on 2,4-D photodegradation in water[J].Journal of Environmental Science and Health,Part B:Pesticides,Food Contaminants,and Agricultural Wastes,1999,34(3):469-489.
    [200] Rogers H. T., Pearson R. W., Pierre W. H.. The source and phosphatase activity of exo-enzyme systems of corn and tomato roots[J].Soil Science, 1942, 54:353-365.
    [201] Carson E. W.. The Plant Root and Its Environment by[M]. University of Virginia Press, 1974.
    [202] Mahapatra B., Patnaik M. B., Mishra D.. The Exocellular Urease in Rice Roots[J]. Current science, 1977, 46(19):680-681.
    [203] Voets P., Meerschman P., Verstraete W.. Soil Microbiological and Biochemical Effects of long-term Atrazine Applications[J]. Soil Biology and Biochemisity. 1974, 6: 149-152.
    [204] Kiss S., Dragan-Bularda M., Radulescu D.. Biological significance of enzymes in soil[M]. Adv. Agron., Madison, 1975, 27:25-87.
    [205] Cervelli S., Nannipieri P., Giovannini, et al. Effect of soil on urease inhibition by substituted urea herbicides[J]. Soil Biology and Biochemistry, 1977, 9(6):393-396.
    [206] Lethbridge G., Burns R.G.. Inhibition of soil urease by organophosphorus insecticides Original Research Article[J].Soil Biology and Biochemistry, 1976, 8(2): 99-102.
    [207] Gordon L., Alan T. B., Richard G. B.. Effects of pesticides on 1,3-β-glucanase and urease activities in soil in the presence and absence of fertilisers, lime and organic materials[J].Pesticide Science, 1981, 12(2):147–155.
    [208] Nakamura T., Mochida K., Ozoe Y., et al. Enzymological properties of three soil hydrolases and effects of several pesticides on their activities[J].Journal of Pesticide Science, 1990, 15(4): 593-598.
    [209] Ismaila B. S., Ingona D., Omara O.. Effects of metolachlor on activities of enzymes in a malaysian soil[J].Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 1996, 31(6): 1267-1278.
    [210] Mahía J., Martín A., Carballas T., et al.Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems[J]. Science of the Total Environment, 2007, 378:187-194.
    [211] Ladd J.N., Vaughan D., Malcom R.E.. Soil Organic Matter and Biological Activity[M]. Dordrect(Netherlands): Martinus Nijhoff Publishers, 1985, 175–221.
    [212] Sch?ffer A.. Pesticide effects on enzyme activities in the soil ecosystem. In: Soil Biochemistry. (Ed. J.M. Bollag, G. Stotzky). New York: Marcel Dekker Inc., Basel,Hong Kong, 1993, 8, 273-340.
    [213] Dick R. P.. Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (Eds.). Biological Indicators of Soil Health, CAB International, Wellingford, 1997:121-156.
    [214] Nannipieri P., Smalla K.. Nucleic acids and proteins in soil[M]. Springer Verlag Berlin heidelberg, 2006:8.
    [215]张一宾,张怿.世界农药新进展[M].北京:化学工业出版社,2007.
    [216]司友斌,周静,王兴祥,等.除草剂苄嘧磺隆在土壤中的吸附[J].环境科学,2003,24(3):122-125.
    [217] Pusino A.,Fiori M. G.,Braschi I., et al.Adsorption and desorption of triasulfuron by soil [J]. Journal Agricultural Food Chemical,2003,51:5350-5354.
    [218]罗玲,欧晓明,廖晓兰.农药在土壤中的吸附机理及其影响因子研究概况[J].化工技术与开发,2004,33 (1):12-16.
    [219] McCall P. J.. Test protocol for environmental fate and movement of toxicants[C]// Proceedings of AOAC.Washington DC:Association of Official Analytical hemists,1980:89-109.
    [220] Resnahan G.,Dexter A.,Koskinen W., et al.Influence of soilpH sorption interactions on the carry over of fresh and aged soil residues of imazamox[J].Weed Research,2002,42:45-51.
    [221] Singh N.. Sorption behavior of triazole fungicides in Indian soils and itscorrelation with soil properties[J].Journal Agricultural Food Chemical,2002,50:6434-6439.
    [222] Stougaard R. N.,Shea P. J.,Martin A. R.. Effect of soil type and pH on adsorption,mobility and efficacy of imazaquin and imazethapyr[J].Weed Science,1990,38:67-73.
    [223]李界秋,黎晓峰,沈方科,等.毒死蜱在土壤中的环境行为研究[J].农业资源与环境科学,2007,23(1):168-171.
    [224]石利利,单正军,蔡道基.三唑磷农药在土壤中的降解与吸附特性研究[J].农业环境科学学报,2006,25(3):733-736.
    [225]赵华,徐浩,叶兴祥.甲胺磷和三唑磷在稻田中的降解迁移及吸附研究[J].农业环境科学学报,2005,24(2):284-288.
    [226]渠锋,莫汉宏,安凤春,等.2甲4氯在土壤中吸附常数的测定[J].环境科学,1999,20(3):69-71.
    [227]曹罡,莫汉宏,安凤春.除草剂2,4-D在土壤中吸附常数的测定[J].环境化学,2001,20(4):362-366.
    [228]吴星卫,单正军,孔德洋,等.2,4-二氯苯氧基乙酸在土壤中的吸附淋溶特性[J].农业环境科学学报,2009,28(4):691-695.
    [229] Dubus I.G., Barriuso E., Calvet R.. Sorption of weak organic acids in soils: Clofencet 2,4-D and salicylic acid[J].Chemosphere,2001,45:767-774.
    [230] Durga Devi K.M., Beena S., Abraham C.T.. Effect of 2,4-D residues on soil microflora[J]. Journal of Tropical Agriculture 2008, 46 (1-2):76–78.
    [231] Miller J.J., Hill B.D., Chang C., et al.Residue detections in soil and shallow groundwater after long-term herbicide applications in southern Alberta[J].Canadian Journal of soil science,1995,75:349-356.
    [232]Ohkawa H.. Agricultural Biology Chemical,1974,38(11):2247-2255.
    [233]陈茹玉,刘伦祖.有机磷农药化学[M].上海:上海科学技术出版社,1995.
    [234]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002:648.
    [235]汤峰,岳永德,花日茂,等.增效磷在液相中的光化学降解研究[J].农药学学报,2000,2(2):71-76.
    [236]陈其勇,朱国念,吴慧明,等.新型杀螨剂F1050的光化学降解研究[J].农业环境科学学报,2007,26 (增刊):207-210.
    [237]杨曦,孟庆昱,孔令仁,等.甲磺隆在有机溶剂中的光解[J].环境科学,1999,20(5):66-68.
    [238]欧晓明,任竞,雷满香,等.新农药硫肟醚在有机溶剂中的光解[J].环境科学学报,2005,25(10):378-384.
    [239] Awadh J. A. M.. The photodegradation of chlorpyrifos[D].Hangzhou:Zhejiang University 2002,113-120.
    [240] Holmstead R. L., Casida J. E., Ruzo L. O., et al.Pyrethroid photodecomposition permethrin[J]. Journal Agricultural Food Chemical,1978,26(3):590-595.
    [241]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:清华大学出版社,1989,266-332.
    [242]李宏森,黄克建.有机农药及中间体质谱手册[M].北京:化学工业出版社,2009.
    [243]吴星卫.2,4-D农药环境行为特性研究[G].[硕士学位论文].南京:南京农业大学,2009.
    [244]刘乾开,朱国念.氰戊菊酯在水中的降解[J].浙江大学学报(农业与生命科学版),1993,19(3):293-297.
    [245]莫汉宏,安凤春,杨克武,等.单甲脒水解动力学研究[J].环境科学学报,1995,15(3): 310-315.
    [246]关松荫等.土壤酶及其研究法[M].北京:化学工业出版社,1986.
    [247]张咏梅,周国逸,吴宁.土壤酶学的研究进展[J].热带亚热带植物学报, 2004, 12(1): 83-90.
    [248] Louis V.. Verchot, Teresa B.. Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils[J]. Soil Biology & Biochemistry, 2005, (37): 625-633.
    [249] Huang S. H., Peng B., Yang Z. H., et al. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory[J]. Trans. Nonferrous Met. Soc. China, 2009, (19): 241-248.
    [250] Yang R. Y., Tang J. J., Chen X., et al. Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils[J]. Applied Soil Ecology, 2007, (37): 240-246.
    [251] Yang Z. X., Liu S. Q., Zheng D. W., et al. Effects of cadium, zinc and lead on soil enzyme activities[J]. Journal of Environmental Sciences, 2006, 18(6): 1135-1141.
    [252]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报, 2002, 8(5): 564-570.
    [253] Hinojosa M. B., Carreira J. A., Rodríguez-Maroto J. M., et al. Effects of pyrite sludge pollution on soil enzyme activities: Ecological dose–response model[J]. Sci Total Environ, 2008, 396: 89-99.
    [254] Kuperman R. G., Carreiro M. M.. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem[J]. Soil Biol Biochem, 1997, 29 (2): 179-190.
    [255] Baran S., Bielińska J. E., Oleszczuk P.. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons[J]. Geoderma, 2004, 118 (3-4): 221-232.
    [256] Alfredo P. M., Julio O. J., Cabrera F., et al. Changes in enzyme activities and microbial biomass after‘‘in situ’’remediation of a heavy metal-contaminated soil[J]. Applied Soil Ecology, 2005, (28): 125-137.
    [257] Steven D., Allison, Julie D. J.. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology & Biochemistry, 2006, (38): 3245-3256.
    [258]刘建新.不同农田土壤酶活性与土壤养分相关关系研究[J].土壤通报, 2004, 35(4): 523-525.
    [259]闫雷,李晓亮,秦智伟,等.农药对土壤酶活性影响的研究进展[J].农机化研究, 11: 223-226.
    [260]邱莉萍,刘军,王益权,等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报, 2004, 10(3): 277-280.
    [261]吕国红,周广胜,赵先丽,等.土壤碳氮与土壤酶相关性研究进展[J].辽宁气象, 2005, 2: 6-8.
    [262]孟娜,廖文华,贾可,等.磷肥、有机肥对土壤有机磷及磷酸酶活性的影响[J].河北农业大学学报, 2006, 29(4): 57-59.
    [263] Adília O., Maria E. P.. Effects of Long-Term Heavy Metal Contamination on Soil Microbial Characteristics[J]. Journal of bioscience and bioengineering, 2006, 102(3): 157-161.
    [264] Gianfreda L., Rao M. A., Piotrowska A., et al. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution[J]. Science of the Total Environment, 2005, (341): 265-279.
    [265]农业部农药检定所.农药登记残留田间试验标准操作规程[M].北京:中国标准出版社,2007.
    [266]中华人民共和国卫生部,科学技术部,国家统计局.中国居民营养与健康状况公告,2004.10.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700