用户名: 密码: 验证码:
青海祁漫塔格地区铁多金属矿成矿规律及成矿潜力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
祁漫塔格地区位于青海省东昆仑成矿带西段,近年来在该成矿带以铁-多金属为主的找矿工作有较大突破,是青海省著名的铁-多金属矿集区。本文以成矿系列和成矿动力学等理论为指导,在分析区域成矿地质背景、典型矿床研究、成矿规律研究及成矿潜力评价的基础上,划分找矿靶区,取得以下创新成果与认识:
     (1)祁漫塔格地区出露的地层包括上太古界~下元古界、中元古界、上元古界、上古生界、中生界及新生界。侵入岩分布广泛,形成时代主要为华力西期--早印支期和晚印支期--喜山期中酸性侵入岩。处于航磁梯度带,为有利的找矿构造环境。地球化学异常显著。
     (2)通过区域磁法的勘查、解译和实地勘探,首次提出该区厚50-200米的戈壁荒漠覆盖层下的构造岩浆成矿新格架,它们是北西西向构造岩相带为基础,北北东向断裂配合岩浆热液带的叠加复合为动力的构造岩浆成矿体制。
     (3)改变了长期沿用的区域成矿模式,前人认为是接触交代夕卡岩矿床。论文根据实际资料,建立寒武-奥陶热水喷流层控基础上,华力西岩浆热液渗滤交代顺层发育夕卡岩成矿模式。依次,重新划分了南部、中部和南部三个成矿亚带,为实现进一步的深入地质勘查,实现找矿突破奠定了基础。
     (4)根据上述理论认识进展,在尕林格矿区及外围取得显著的找矿预测效果。在矿区地下已知矿体深部500-1000米范围,提出靶区,经过钻探获得厚5-50米左右的多层矿体;此外,根据控矿单斜构造改变为复式向斜的新认识,结合地球物理场特征分析,提出靶区,在向斜北部打到铁-铅锌矿体,使矿区储量成倍增加。
     (5)基于地球化学块体理论对祁漫塔格地区成矿潜力进行了评价,划分出3个地球化学一级块体,5个二级地球化学块体和3个3级地球化学块体。在结合成矿地质背景和地球物理潜力评价的基础上,划分出景仁东-迎庆沟、肯德可克矿区及外围、野马泉-牛苦头沟、尕林格矿区及外围、黑山等5个找矿靶区。
Qimantage area is situated in the west of part of the East Kunlun metallogenic belt. Inrecently years, a lot of Iron polymetallic deposits were found in this area, which makes it tobe a famous Iron polymetallogenic province in Qinghai. This disssertation will analyze theregional mineralization background and the classic deposits, study the metallogenic regularity,and evaluate metallogenic potentials detailedly in the following.
     (1) There exposed a wide range of strata from Upper Archean to Cenozoic in Qimantagearea. Intrusive rocks are also very common which could be classified into Variscan period,Indosinian period, and Himalayan period. This area is locatd in an aeromagnetic gradient beltand exhibits a series of obvious geochemical anomalies, which suggesting a favorablemetallogenic environment.
     (2) Based on geological analyzations and geochemistry studies on the four mineraldeposits like Galinge, Yemaquan, Kendekeke and Hutouya in Qimantage area, it is concludedthat the Iron polymetallic mineralization is related to the hydrothermal spout sedimentationand later polyphases of hydrothermal reformation that are probable skarnization.
     (3) After detailed researches on regional ore-controlling tectoncis, mineralization-relatdstrata and structures on1:10000scale, distribution regularity and genetic types of theseabove deposits, a primary evolution model was contributed for the metallogenic system likethis: Variscan and Indosinian granit provies hydrothermal source and mineral resources andlater metamorphism and deformation events make the minerals migrate and enrich.
     (4) On the basis of analyzes on the magnetic data, the fault system, structural frameworkand distribution of the relic magnetic field of orefields was figured out. Geophysical magneticsurvey evaluations are proved to be a direct and efficient way to predict Iron polymetallicdeposits in this area in terms of enclosing the favorable exploration prospect areas, the nextfavorable tectonic belts and etc.
     (5) According to Geochemical block theory, the mineralization potential of theQimantage area was evaluated and classified into three primary geochemical bodies, fivesecondary geochemical bodies and three level3geochemical bodies. After overallconsideration with the geological setting and the Geophysical potential evaluation, this area was specifically divided into five prospecting targets such as West Jingreng-Yingqinggou,Kendekeke mining field and its surrounding, Yemaquan-Niukutougou, Galinge mining fieldand its surrounding and Heishan.
引文
[1] Sillitoe R H. Iron oxide-copper-gold deposits: an Andean view [J]. MineraliumDeposita,2003,38(7):787~812
    [2] Hitzman M W, Oreskes N, and Einaudi M T. Geological characteristics andtectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits [J].Precambrian Research,1992,58:241~287
    [3] Carranza E G M,Hale M. Where are Porphyry Copper Deposits SpatiallyLocalized? A Case Study in Benguet Province, Philippines. Natural ResourcesResearch,2002,11(1):45~59
    [4] Groves D, Goldfarb R J, Gebre-Mariam et al. Orogenic gold deposits: aproposed classfication in the context of their crustal distribution and relationshipto other gold deposit types. Ore Geology Reviews,1998,13:7~27
    [5] Zhangshaohua.The regional metamorphic minerogenetic series of nonmetallicdeposits in schist leptynite magnesion carbonate formation in China.Papers to29th IGC. Published by Geological Press Houes,China,1992
    [6] Harris D P, Zurcher L, Stanley M et al. A Comparative Analysis of FavorabilityMappings by Weights of Evidence, Probabilistic Neural Networks, DiscriminantAnalysis, and Logistic Regression. Natural Resources Research,2003,12(4):241~255
    [7] Brown A C. World-class sediment-hosted stratiform copper deposits:characteristics, genetic concepts and metallotects. Australian Journal of EarthSciences,1997,44:317~328
    [8] Potter R W II, Clynne M A, Brown D L. Freezing point depression of aqueoussodium chloride solutions. Econ. Geol.1978,73:284~285
    [9] Yang J-S, Robinson P T et al. Ophiolites of the Kunlun Mountains, China andtheir tectonic implications. Tectonophysics,1996,258:215~231
    [10]Boleneus D E, Raines G L, Causey J D et al. Assessment method for epithermalgold deposits in northeast Washington State using weights-of-evidence GISmodeling. Open-File Report01~501, USGS,2001
    [11]汤中立,闫海卿等.中国岩浆硫化物矿床新分类与小岩体成矿作用.矿床地质,2006,25(1):1~9
    [12]朱上庆.层控矿床地质学.武汉地质学院出版,1983
    [13]方维萱,柳玉龙,张守林等.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式.西北大学学报,2009,39(3):404~412
    [14]陈国达.多因复成矿床并从地壳演化规律看其形成机理.大地构造与成矿学.1982.6(1):1~55
    [15]陈国达.关于多因复成矿床的一些问题.大地构造与成矿学.2000.24(3):199~201
    [16]彭省临.陈子龙.多因复成矿床及其研究方法.长沙:中南工业大学出版社.1992:1~7
    [17]程裕淇、陈毓川、赵一鸣.再论矿床的成矿系列.中国地质科学院院报(第六号).北京:地质出版社.1983:1~64
    [18]陈毓川、裴荣富、宋天锐.等.中国矿床成矿系列初论[M].北京:地质出版社.1998:1~104
    [19]王世称,陈永清.成矿系列预测的基本原则及特点.地质找矿论丛,1994,9(4):79~85
    [20]李人澍.成矿系列建构若干理论问题的探索.西北有色地质研究所所刊,1991
    [21]翟裕生.成矿系统的结构框架和基本类型.见:中国科学院地球化学研究所等编.资源环境与可持续发展.北京:科学出版社,1999.77~82
    [22]朱创业.成矿系统研究现状及发展趋势.成都理工学院学报.2000.27(1):50~53
    [23]赵鹏大.“三联式”资源定量预测与评价-数字找矿理论与实践探讨[J].地球科学,2002,27(5):482~489
    [24]池三川.隐伏矿床(体)的寻找.武汉:中国地质大学出版社.1988
    [25]徐兴旺.蔡新平.隐伏矿床预测理论与方法的研究进展.地球科学进展.2000.15(1):76~83
    [26]古凤宝,姜常义.东昆仑花岗岩岩石组合及其构造环境[J].青海地质,1996,(2)13~24
    [27]李光明,沈远超,刘铁兵.东昆仑祁漫塔格地区华力西期花岗岩地质地球化学特征.地质与勘探,2001,37(1):73~78
    [28]丁清峰.东昆仑造山带区域成矿作用与矿产资源评价.博士学位论文,2004
    [29]青海省地质调查院.青海省昆仑山口成矿区矿产资源潜力评价总体设计书.2002b(内部资料)
    [30]青海省地质调查研究院.2004.布喀大板峰幅1∶25万区域地质调查报告.内部资料
    [31]姜春发,王宗起,李锦轶,等.中央造山带开合构造.北京:地质出版社,2000
    [32]李宏茂,时友东,刘忠等.东昆仑西段-祁漫塔格成矿带钨锡成矿地质条件及找矿方向.地质与勘探,2007,16(2):86~90
    [33]何书跃,祁连英,舒树兰等.青海祁漫塔格地区斑岩铜矿的成矿条件和远景.地质与勘探,2008,44(2):14~22
    [34]青海省第三轮成矿远景区划研究及找矿靶区预测汇总报告.青海省国土资源厅,2004
    [35]罗照华,邓晋福,曹永清,等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质,1999,13(1):51~56
    [36]沈远超,杨金中,刘铁兵,等.新疆东昆仑祁漫塔地区三叠统火山岩的年代及构造环境研究.地质与勘探,2000,36(3):32~35
    [37]青海省地质局第一地质队.青海省格尔木市肯德可克铁矿区铁矿详细普查地质报告,1982
    [38]潘彤,孙丰月.青海东昆仑肯德可克钴铋金矿床成矿特征及找矿方向.地质与勘探,2003,39(1):18~22
    [39]李宏录,刘养杰,卫岗等.青海肯德可克铁、金多金属矿床地球化学特征及成因.矿物岩石地球化学通报,2008,27(4):378~383
    [40]伊有昌,焦革军,张芬英.青海东昆仑肯德可克铁钴多金属矿床特征.地质与勘探,2006,42(3):30~35
    [41]王力,孙丰月,陈国华等.青海东昆仑肯德可克金—有色金属矿床矿物特征研究.世界地质,2003,22(1):50~56
    [42]王松,丰成友,李世金等.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U—Pb测年及其地质意义.中国地质,2009,36(1):74~84
    [43]孙丰月.新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究成果报告.吉林大学,2003
    [44]孙丰月,李碧乐,丁清峰.东昆仑成矿带重大找矿疑难问题研究.,吉林大学2009
    [45]刘云华,莫宣学,张雪亭等.东昆仑野马泉地区矽卡岩矿床地球化学特征及其成因意义[J].华南地质与矿产2006,3:31~36
    [46]李宏录,刘养杰,卫岗等.青海肯德可克铁、金多金属矿床地球化学特征及成因.矿物岩石地球化学通报[J].2008.27(4):378~383
    [47]李世金,孙丰月,王力等.青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究.矿床地质,2008,27(3):399~406
    [48]吴小霞等.青海省尕林格富铁矿床地质及成因探讨.黄金科学技术,2007V15N436~40
    [49]高章鉴等.青海省肯德可克金矿热水沉积层矽卡岩特征及成矿意义.西北地质,2001V34N250~53
    [50]李岩禄等.青海肯德可克铁金多金属矿床地球化学特征及成因.矿产与地质2008
    [51]潘彤等.东昆仑肯德可克及外围钴金金属矿找矿突破的启示.中国地质,2001V28N217~25
    [52]潘彤等.青海祁漫塔格地区铁多金属成矿特征及找矿潜力.矿产与地质,2008V22N3232~238
    [53]伊有昌等.青海东昆仑肯德可克铁钴多金属矿床.地质与勘探,2006V44N330~35
    [54]刘云华等东昆仑野马泉地区矽卡岩矿床地质特征及控矿条件.华南地质与矿产,2005N318~29
    [55]李宏茂等.东昆仑西段祁漫塔格成矿带钨锡成矿地质条件及找矿方向.地质与资源,2007V16N286~90
    [56]青海省祁漫塔格地区成矿规律与矿产预测示范成果报告.2009.2.
    [57]沈小荣等.青海省东昆仑成矿带矿产资源综合调查报告.2006.11.
    [58]李宏录等.青海省野马泉地区铁多金属矿成矿规律及找矿潜力研究报告.2008.5.
    [59]保广英等.青海省格尔木市尕林格矿区富铁矿资源估算报告.2006.1.
    [60]孙丰月等,东昆仑成矿带重大找矿疑难问题研究.2009.2.
    [61]陈世顺吴汉宁等,青海省野马泉地区铁多金属矿成矿规律及找矿潜力研究报告,2008.11
    [62]刘云华、莫宣学等,东昆仑野马泉地区矽卡岩矿床地球化学特征及其成因意义.2002.6
    [63]寇玉才等,尕林格矽卡岩型铁多金属矿地质-地球物理模型.2010.3
    [64]赵俊伟等,青海省祁满塔格地区矽卡岩型铁多金属矿典型示范成矿规律与预测报告.2009
    [65]张恒磊,刘天佑等,高精度磁测找矿效果—以青海尕林格矿区为例.2011.2
    [66]胡杏花,朱谷昌等,祁满塔格矿带虎头崖多金属矿矿床特征和成矿作用分析.2011.3
    [67]潘彤,青海省东昆仑肯德可克鈷金矿硅质岩特征及成因.2008.3
    [68]张爱奎,莫宣学等,野马泉矿床及找矿潜力分析.2010.4
    [69]吴庭祥,李宏录等,青海省尕林格地区铁多金属矿床的地质特征与地球化学特征.2009
    [70]陈翠华等东昆仑野马泉地区多金属矿产资源潜力评价.2011.2
    [71]刘云华,莫宣学等,东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义。2006.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700