用户名: 密码: 验证码:
亚洲玉米螟不同地理种群杂交后代滞育特性与mtDNACOⅠ序列特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚洲玉米螟Ostrinia furnacalis (Guenée),属鳞翅目(Lepidoptera)草螟科(Crambidae),是一种重要的农业害虫。在我国从南至北均有分布,不同地理纬度的亚洲玉米螟由于所处栖息地环境条件的差异,其化性、临界日长、滞育后成虫的羽化及抗寒性等均显示了明显不同。本研究以从南至北不同地理种群的亚洲玉米螟为材料,通过对不同地理种群的亚洲玉米螟进行杂交,研究其杂交后代的滞育特性与mtDNACOⅠ序列特性,对其滞育遗传特性与mtDNACOⅠ遗传特性进行剖析,结果如下:
     1、亚洲玉米螟哈尔滨种群与南昌种群杂交后代光周期控制的滞育遗传性的研究
     亚洲玉米螟是一种典型的长日照昆虫,即在长日照条件下生长发育和繁殖,而在短日照条件下则被诱导进入滞育状态。不同地理种群的亚洲玉米螟在不同日长下进入滞育。由于光周期反应的地理变异,南昌种群(28.8°N,115.9°E)在长光照LD14:10h与LD15:9h条件表现为长光照反应,而哈尔滨种群(44.9°N,127.2°E)在同样条件下表现为短光照反应。本研究通过比较哈尔滨种群与南昌种群及其杂交后代在22,25与28°C的光周期反应,对其滞育的遗传特性进行分析。结果表明:在22,25与28°C条件下, HB种群的临界光周期(22°C为15.91h,25°C为15.79,28°C为15.08h)明显长于南昌种群的临界光周期(22°C为14.14h,25°C为13.79h,28°C为13.68h),杂交F1代的临界光周期界于两者之间,结果表明其临界光周期是由多基因控制。然而,在所有的杂交后代中,父本或祖父本为HB种群的杂交后代的临界光周期明显长于父本或祖父本为NC种群的杂交后代,表明父本对子代临界光周期的影响比母本大。25°C、不同光周期杂交子代的滞育遗传结果表明该虫滞育的遗传不符合加性模型,是以一种不完全显性遗传方式遗传的。F1代在LD14:10h条件下滞育率明显高于LD15:9h条件下的滞育率,表明滞育诱导受F1代基因型与光周期的交互影响。
     2、亚洲玉米螟三亚种群与不同地理种群杂交后代光周期控制的滞育遗传性的研究
     系统研究了在22、25、28°C下,亚洲玉米螟三亚种群与不同地理种群杂交后滞育诱导的光周期反应。结果表明:亚洲玉米螟三亚种群与不同地理种群杂交后代光周期反应曲线均显示了典型的长日照型,SY×GZ、SY×NC、SY×TA、SY×LF、SY×HB杂交F1代种群的临界光周期随父本纬度的上升而逐浙增长。在杂交后代中,以SY种群为母本,分别与GZ、NC、TA、LF、HB种群为父本的杂交,F1代临界光周期显著高于以SY种群为父本,分别与GZ、NC、TA、LF、HB种群为母本杂交的临界光周期,表明了父本相对母本对滞育遗传具有更加明显的影响。
     3、亚洲玉米螟不同地理种群基于mtDNACOⅠ序列的分析
     对我国亚洲玉米螟6个地理种群的mtDNA COⅠ基因进行测序,运用分子进化遗传分析软件MEGA5对序列进行对比和同源性分析,并建立系统发育关系。结果表明,COⅠ基因在6个地理种群中进化具有一定的差异,平均遗传距离为0.013;进化树显示,亚洲玉米螟的三亚种群、广州种群、与南昌种群聚为一支,然后与泰安种群聚为一支、再与哈尔滨种群聚为一支;而廊坊种群格外聚成一支。遗传分歧度与系统发育进化关系均表明不同地理种群的遗传分化与地理距离之间具有一定的相关性。
     4、亚洲玉米螟哈尔滨种群、南昌种群及杂交后代基于mtDNACOⅠ序列的分析
     对亚洲玉米螟哈尔滨种群、南昌种群及杂交后代的mtDNACOⅠ基因进行测序,运用分子进化遗传分析软件MEGA5对序列进行对比和同源性分析,并建立系统发育关系。在8个样本中,共检测到11个核苷酸可变位点;遗传距离比较结果显示,杂交子代与父母本的核苷酸遗传距离均为0.003-0.006之间,结果表明两种杂交子代在mtDNACOⅠ基因上不遵循母性遗传规律。
     5、亚洲玉米螟三亚种群与不同地理种群杂交后代基于mtDNACOⅠ序列的分析
     对亚洲玉米螟三亚种群与不同地理种群杂交后代的mtDNACOⅠ基因进行测序,运用分子进化遗传分析软件MEGA5对序列进行对比和同源性分析,并建立系统发育关系。结果表明,在26个样本中,共检测到16个核苷酸可变位点;遗传距离比较结果显示,杂交子代与父母本的核苷酸遗传距离均为0.001-0.007之间,结果表明两种杂交子代在mtDNACOⅠ基因上不遵循母性遗传规律。
The Asian corn borer, Ostrinia furnacalis (Guenée)(Lepidoptera: Crambidae)is aserious pest of agriculture and widely distributed from south to north in China. Thiswidely-distributed species encounters a great diversity of environmental conditions indifferent localities, and exhibits considerable diversity in life history between separategeographical populations. Populations show clear differences in voltinism, criticalday-lengths, postdiapause emergence time and cold hardiness. In this study, differentgeographic populations were crossed, and the responses to photoperiod and geneticcharacteristic of mtDNACOⅠwere observed. The results are as follows:
     1、Geographic variation and inheritance of photoperiodic response controlling larvaldiapause in two distinct voltine ecotypes of Ostrinia furnacalis
     The Asian corn borer Ostrinia furnacalis enters facultative diapause as fully-grownlarvae in response to short day lengths during autumn. As a result of geographicalvariations in photoperiodic response, the moths from Nanchang (28.8°N,115.9°E; NCstrain) judge both LD14:10h and LD15:9h photocycles as long days and developdirectly, whereas moths from Haerbin (44.9°N,127.2°E; HB strain) judge the samephotocycles as short days and enter diapause. Crosses between the two strains are used toevaluate the inheritance of diapause. The critical day lengths for diapause induction in theHB strain are significantly longer than those in the NC strain at22,25and28°C. Thecritical day length of F1progeny is intermediate between the two strains. However, thecritical day length in all crosses is significantly longer with HB strain fathers orgrandfathers than with NC strain fathers or grandfathers, indicating that the male parenthas significantly more influence on the critical day length of subsequent progeny than thefemale. The results from all crosses under LD14:10h or LD15:9h photocycles at25°Cshow that the inheritance of diapause in O. furnacalis does not fit a purely additivehypothesis and that the capacity for diapause is transmitted genetically in the manner ofincomplete dominance. The incidence of diapause for F1progeny under an LD14:10hphotocycle is significantly higher than that under an LD15:9h photocycle, suggestingthat the induction of diapause can be influenced by interactions between the F1genotypeand photoperiod.
     2、Studies on diapause of the hybrids between Sanya population and different geographicpopulation of Ostrinia furnacalis
     The photoperiodic responses for diapause induction in crosses between Sanya anddifferent geographic populations are investigated at22,25and28°C. The photoperiodicresponse curves show a typical long day response in crosses. The critical daylength in F1progeny of SY×GZ、SY×NC、SY×TA、SY×LF、SY×HB increased with latitude of strain fathers, suggesting a positive relationship between the critical daylength and latitude. Thecritical daylengths in F1progeny with GZ、NC、TA、LF、HB strain father are significantlylonger than those in F1progeny with SY strain fathers, indicating that the male parent hassignificantly more influence on the critical daylength of subsequent progeny than thefemale.
     3、Variation of mtDNA COⅠsequences in different geographic populations of the Asiancorn borer, Ostrinia furnacalis
     The mitochondrial DNA (mtDNA) cytochrome oxidase subunitⅠ(COⅠ) of6geographical populations of O. furnacalis are sequenced. The identity and variation of theresultant sequences and their phylogenic relationships are established by Mega5. Theresults show that there are some differences in COⅠ sequences among differentgeographical populations of O. furnacalis and that the average evolutionary divergencebetween populations is0.012. Molecular phylogeny shows that the Sanyan, Guangzhouand Nanchang populations form one branch, and the Taian, Haerbin and Langfangpopulations form separate branches. The results of evolutionary divergence and molecularphylogeny suggest that the separation of different geographical populations of O.furnacalis is, at least to some extent, relative to geographic distance.
     4、Genetic variation of mtDNA COⅠsequences between NC population, HB populationand therir hybrid strains of the Asian corn borer, Ostrinia furnacalis
     mtDNA COⅠsequences between NC and HB populations and therir hybrid strains ofOstrinia furnacalis are sequenced. The identity and variation of the resultant sequencesand their phylogenic relationships are established by Mega5. The results show that thereare11Nucleotide mutation sites in COⅠ sequences among four strains of O. furnacalis.There are no significant genetic differentiation in the evolutionary divergence betweenstrains that the genetic distance changes in0.003-0.006. The results indicate that the twohybrids don’t follow the maternal inheritance in mitochondrial COⅠ genes.
     5、 Genetic variation of mtDNA COⅠsequences between SY population, differentgeographic population and therir hybrid strains of the Asian corn borer, Ostrinia furnacalis
     mtDNA COⅠsequences between NC and HB populations and therir hybrid strains ofOstrinia furnacalis are sequenced. The identity and variation of the resultant sequencesand their phylogenic relationships are established by Mega5. The results show that thereare16Nucleotide mutation sites in COⅠ sequences among13strains of O. furnacalis.There are no significant genetic differentiation in the evolutionary divergence betweenstrains that the genetic distance changes in0.001-0.007. The results indicate that the twohybrids don’t follow the maternal inheritance in mitochondrial COⅠ genes.
引文
[1] Konopka R J, Benzer S. Clock mutants of Drosophila rnelanogaster[J]. Proceedings of the NationalAcudemy of Science.1971,68:2112~2116.
    [2] Dunlap J C. Molecular Bases for Circadian Clocks[J]. Cell.1999,96:271~290.
    [3] Merlin C, Gegear R J, Reppert S M. Antennal circadianclocks coordinate sun compass orientation inmigratory monarch butterflies[J].Science.2009,325(5948):1700~1704.
    [4] Gegear R J, Casselman A, Waddell S, Reppert S M. Cryptochrome mediates light-dependentmagnetosensitivityin Drosophila[J].Nature.2008,454(7207):1014~1019.
    [5] Wheeler D A, Kyriacou C P, Greenacre M L, Yu Q, Rutila J E, Rosbash M, Hall J C. Moleculartransfer of a speciesspecific behavior from Drosophila simulans to Drosophila melanogaster[J].Science.1991,251(4997):1082~1085.
    [6] Baker B S, Taylor B J, Hall J C. Are complex behaviors specified by dedicated regulatory genes?Reasoning from Drosophila[J]. Cell.2001,105(1):13~24.
    [7] Bray S, Amrein H. A putative Drosophila pheromone receptor expressed in male-specific tasteneurons is required for efficient courtship[J]. Neuron.2003,39(6):1019~1029.
    [8] Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, NishiokaT. Identification and functional characterization of a sex pheromone receptor in the silkmothBombyx mori[J].Proceedings of the National Acudemy of Science.2004,101(47):16653~16658.
    [9] Wang L, Dankert H, Perona P, Anderson D J. A common genetic target for environmental andheritable influences on aggressiveness in Drosophila[J]. Proceedings of the National Acudemy ofScience.2008,105(15):5657~5663.
    [10] Osbomek K A, Robichon A, Burgess E, Butland S, Shaw R A, Coulthard A, Pereira H S, GreenspanR J, Sokolowski M B. Natural behavior polymorphism due to a cGMP dependent protein kinase ofDrosophila[J]. Science.1997,277(5327):834~836.
    [11] Ben-Shahar Y, Robichon A, Sokolowski M B, Robinson G E. Influence of gene action acrossdifferent time scales on behavior[J]. Science.2002,296(5568):741~744.
    [12] Lucas C B, Sokolowskia M B. Molecular basis for changes in behavioral state in ant socialbehaviors[J]. Proceedings of the National Acudemy of Science.2009,106(15):6351~6356.
    [13] Wu Q, Wen T, Lee G, Park J H, Cai H N, Shen P. Developmental control of foraging and socialbehavior by the Drosophila neuropeptide Y-like system[J]. Neuron.2003,39(1):147~161.
    [14] Wang Y, Mutti N S, Ihle K E, SiegelA, Dolezal A G, Kaftanoglu O, Amdam G V. Down-regulationof honey bee IRS gene biases behavior toward food rich in protein[J]. PloS Genetics.2010,6(4):e1000896.
    [15] Zhou X, Oi F M, Scharf M E. Social exploitation of hexamerin: RNAi reveals a majorcaste-regulatory factor in termites[J]. Proceedings of the National Acudemy of Science.2006,103(12):4499~4504.
    [16] Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation[J]. Science.2008,319(5871):1827~1830.
    [17] Osborne K A, Robichon A, Burgess E, Butland S, Shaw R A, Coulthard A, Pereira H S, GreenspanR J, Sokolowski M B. Natural behavior polymorphism due to a cGMP-dependent protein kinase ofDrosophila[J]. Science.1997,277:834~836.
    [18] de Bono M, Bargmann C I. Natural variation in a neuropeptide Y receptor homolog modifies socialbehavior and food response in C.elegans[J]. Cell.1998,94(5):679~689.
    [19] Sokolowski M B. Foraging strategies of Drosophila melanogaster: a chromosomal analysis[J].Behavior Genetics.1980,10:291~302.
    [20] Osborne K A, Robichon A, Burgess E, Butland S, Shaw R A, Coulthard A, Pereira H S, GreenspanR J, Sokolowski M B. Natural behavior polymorphism due to a cGMP-dependent protein kinase ofDrosophila[J]. Science.1997,277:834~836.
    [21] Thoday J M. Polygene mapping: uses and limitations. In "Quantitative Genetic Variation"[M].New York:Academic Press,1979.219~233.
    [22] Melo J A, Shendure J, Pociask K, and Silver LM. Identification of a sexspecific quantitative traitloci controlling alcohol preferance in C57BL/6mice[J]. Nature Genetics.1996,13:147~153.
    [23] Lynch M, Walsh B."Genetics and analysis of quantitative traits."[M]. Sunderland, MA: SinauerAssociates, Inc.,1998.
    [24] Nuzhdin S V, Pasyukova E G, Dilda C L, Zeng Z B, and Mackay T F C. Sex-specific quantitativetrait loci affecting longevity in Drosophila melanogaster[J]. Proceedings of the National Acudemyof Science.1997,94(18):9734~9739.
    [25] Ashton K, Wagoner AP, Camllo R and Gibson G. Quantitative trait loci for the monoamine-relatedtraits heart rate and headless behavior in Drosophila melanogaster [J]. Genetics.2001,157:283~294.
    [26] Wahlsten D. A critique of the concepts of heritability and heredity in behavioral genetics[C]. InRoyce J R, Mos L, Eds. Theoretical Advances in Behavioral Genetics,1979:426~481.
    [27] Bauer S J, Sokolowski M B. Autosomal and materna1effects on pupation behavior in Drosophilamelanogaster[J]. Behavior Genetics.1988,8:1~97.
    [28] de Belle J S, Heisenberg M. Expression of Drosophila mushroom body mutations in alternativegenetic backgrounds: a case study of the mushroom body miniature gene (mbm)[J]. Proceedings ofthe National Acudemy of Science.1996,93:9875~9880
    [29] Sokolowski M B, Bauer S J. Genetic analyses of pupation distance in Drosophila rnelanogaster[J].Heredity[J].1989,62:177~183.
    [30] Williams K D, Sokolowski M B. Diapause in Drosophila melanogaster females: a genetic analysis.Heredity[J].1993,71:312~317.
    [31] Tauber M J, Tauber C A, Masaki S."Seasonal Adaptations of Insects."[M]. New York: OxfordUniversity Press,1986.
    [32] Danks H V. Insect Dormancy: An Ecological Perspective[D]. Biological Survey of Canada, Ottawa,1987.
    [33] Xue F S, Kallenborn H G. Dispersive breeding in agricultural pest insects and its adaptivesignificance[J]. Journal of Applied Entomology.1993,116:170~177.
    [34] Saunders D C. Insect clocks(2nd)[M]. Oxford: Pergmon Press,1982.
    [35]肖海军,魏晓棠,黄丽莉,薛芳森.昆虫滞育诱导的光周期反应类型[J].江西农业大学学报.2004,26(6):867~875.
    [35] Masaki S. Ecological significance of diapause in the seasonal cycle of Abraxas Miranda Butler[J].Bull.1957,15:15~24.
    [36] Kogure M. The influence of light and temperature on certain characters of the silk worm, Bombyxmori[J]. Journal of the Department of Agriculture, Kyushu Imperial University.1933,4(1):1~93.
    [37] Cullen J M, Browning T O. The influence of photoperiod and temperature on the induction ofdiapause in pupae of Heliothis punctiger[J]. Journal of Insect physiology.1978,25:647~652.
    [38] Numata H, Hidaka T. Photoperiodic control of adult diapause in the bean bug, Riptortus clavatusThunberg (Heteroptera: Coreidae). I. Reveersible induction and termination of diapause[J]. AppliedEntomology and Zoology.1982,17(4):530~538.
    [39] Beach R F, Craig G B. Night length measurements by the circadian clock controlling diapauseinduction in the mosquito Aedes atropalpus[J]. Journal of Insect Physiology.1977,23(7):865~870.
    [40] Kikukawa S, Chippendale G M. Seasonal adaptations of populations of the southwestern corn borer,Diatraea grandiosella, from tropical and temperature regions[J]. Journal of Insect Physiology.1983.29:561~567.
    [41] Xue FS, Kallenborn HG. Summer and winter diapause in pupae of the cabbage butterfly, Pierismelete Mntris[J]. Journal of Insect Physiology.1997,43:701~707
    [42]杨慧中,肖亮,薛芳森.昆虫滞育反应的种内差异[J].生物灾害科学.2012,35(2):117~125.
    [43] Paarmann W. Jahreszeitliche AktivitYt und Fortpflanzungsr hythmik von LaufkYfe n(Col, Carab)im Kivug ebiet (Ost Za re, Zentralafrika)[J]. Zool Jb, Abt Systê kol. Geog r Tiere.1976,103(3):311~354.
    [44] Wightman J A. The control of voltinism in Costelytra zealandica(Coleoptera: Scarabaeidae)[J].The New Zealand Entomologist.1978,6(4):364.
    [45] Beck S D. Photoperiodic induct ion of diapause in insect[J]. The Biological Bulletin.1962,122:1~12.
    [46] Goryshin N I. Effect of daily rhythms of light and temperature on diapause in Lepidoptera[J].Annual Reriew of Entomology.1964,43(1):86~93.
    [47] Kogure M. The influence of light and temperature on certain characters of the silkworm, Bombysmori[J]. Journal of the Department of Agriculture, Kyushu Imperial University.1933,4(1):1~93.
    [48] Kamm A. Seasonal reproduction and parasitism of a leaf miner, Phytomyza nigra[J]. EnvironmentalEntomology.1977,6(4):592~594.
    [49] Saunders DS. Under-sized larvae from short-day adults of the blow f ly Calliphora vicina side stepthe diapause programme[J]. Physiology Entomology.1997,22:249~255.
    [50] Tauber M J, Tauber C A. Quantitative response to daylength during diapause in insect[J]. Nature.1973,244:296~297.
    [51] Hagstrum D W, Silhacek D L. Diapause induction in Ephestia cautella: an interaction betweengenotype and crowding[J]. Entomologia Experimentalis et Applicata.1980,28(1):29~37.
    [52] Lees A D. The physiology of diapause in arthropods[M]. London: Cambridge University Press,1955.
    [53] Hasagawa K. Diapause hormone of the sikworm Bombyx mori[J]. Nature.1957,179:1300~1301.
    [54] Kawano T H K, Nagasawa H., Isogai A, Suzuki A. cDNA cloning and sequence determination ofthe pheromone biosynthesis activating neuropeptide of the silkworm Bombyx mori[J]. Biochemicaland Biophysical Research Communications.1992,189:221~226.
    [55] Sato Y, Ikeda M, Yamashita O. Neurosecretory cells expressing the gene for common precursor fordiapause hormone and pheromone biosynthesisactivating neuropeptide in the suboesophagealganglion of the silkworm Bombyx mori[J]. General and Comparative Endocrinoiogy.1994,96:27~36.
    [56] Sato Y, Oguchi M, Menjo N, Imai K, Saito H, Ikeda M, Isobe M, Yarnashita O. Precursorpolyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkwormBombyx mori: Characterization of the cDNA encoding the diapause hormone precursor andidentification of additionaI peptides[J]. Proceedings of the National Academy cf Science.1993,90:3251~3255.
    [57] McLeod D G R. Genetics of diapause induction and termination in the European corn borer.Ostrinia nubilalis (Lepidoptera Pyralidae) in southwestern Ontario[J]. Canadian Entomologist.1978,110(12):1351~1353.
    [58] McLeod D G R, Beck S D. Photoperiodic termination of diapause in an insect[J]. The BiologicalBulletin.1963,124:84~96.
    [59] Peypelut L. Physiologie dela diapause chezla pyrale du ma s. Implications dansla dynamique despopulations naturelles. L'Université Bordeaux1, Bordeaux.1988.
    [60] Williams C. Physiology of insect diapause1. the role of the brain in the production and terminationof pupal dormancy in the giant silkworm Platysamia cecropia[J]. The Biological Bulletin.1946,90:234~343.
    [61] Denlinger D L. Hormonal control of diapause. In: Kerkut G A and Gilbert L, Eds. ComprehensiveInsect Physiology, Biochemistry and Pharmacology[M]. Oxford: Pergamon Press,1985,8:353~412.
    [62] Flannagan R D, Tammariello S P, Joplin K H, Cirka-Ireland R A, Yocurn G D, Denlinger D L.Diapause-specific gene expression in pupae of the flesh fly Sarcophaga crassipalpis[J].Proceedings of the National Academy of Sciences.1998,95:5616~5620.
    [63] Fraenkel G, Hsaio C. Morhological and endocrinological aspects of pupal diapause in a fleshfly,Sarcophaga argyrostoma[J]. Journal of Insect Physiology.1968,14:707~718.
    [64] Denlinger D L. Pupal diapause in tropical flesh flies: environmental and endocrine regulation,metabolic rate and genetic selection[J]. The Biological Bulletin.1979,156:31~46.
    [65] de Wilde J. Endocrine aspects of diapause in the adult stage. In: Downer R G.H, Laufer H, Eds.,Endocrinologyof Insects[M]. New York:Alan R.Liss hc,1983,1:357~367.
    [66] Denlinger D L, Tanaka S. Encyclopedia of Reproduction[M]. Califorlia: Academic Press,1999,1:863~872.
    [67] de Wilde J, de Boer J A. Physiology of diapause in the adult Colorado beetle. II Diapause as a caseof pseudoallatectomy[J]. Journal of lnsect Physiology.1961,6:152~161.
    [68] Vermunt A M W, Koopmanschap A B, Vlak J M, de Kort C A D. Cloning and sequence analysis ofcDNA encoding a putative juvenile hormoneesterase from the Colorado potato beetle[J]. InsectBiochemitry and Molecular Biology.1997,27:919~928.
    [69] Vemunt A M W, Vermeesch A M G, de Kort C A D. Purification and characterization of juvenilehormone esterase from hemolymph of the Colorado Potato Beetle[J]. Archives of InsectBiochemistry and Physiology.1997,35:261~277.
    [70] Hoy M A. Variability in diapause amibutes of insects and mites: some evolutionary and practicalimplications[C]. In: Dingle H, Eds., Evolution of Insect Migration and Diapause. NewYork:Springer-Verlag,1978.101~126.
    [71] Hoy M A. Molecular Genetics of Insect Behavior[C]. In: Insect Molecular Genetics. SanDiego:Academic Press Inc,1994.301~336.
    [72] Beck S D. Insect Photoperiodism[M]. New York: Academic Press,1980.
    [73] Arbuthnot K D. Strains of the European corn borer in the United States[M]. United statesdepartment of agriculture,1944,869:1~20.
    [74] Ring R A. Variations in the photoperiodic reaction controlling diapause induction in Lucizia caesarL.(Diptera: Calliphoridae)[J]. Canadian Journal of Zoology.1971,49:137~142.
    [75] Oikarinen A and Lumrne J. Selection against photoperiodic reproductive diapause in Drosophihlittoralis[J]. Hereditas.1979,90:119~125.
    [76] Hodek A. Selection for non-diapause in Aelia acuminata and A. rostrata (Heteroptera,Pentatomidae) under various selective pressures[J]. Acta Entomologica Bohemslovaca.1972,69(2):73~77.
    [77] Steven R S. Inheritance of diapause induction and intensity in Papilio zelicaon[J]. Heredity.1983,51:495~500
    [78] Yang D, Lai X T, Sun L, Xue F S. Parental effects: physiological age, mating pattern, and diapauseduration on diapause incidence of progeny in the cabbage beetle, Colaphellus bowringi Baly(Coleoptera: Chrysomelidae)[J]. Journal of Insect Physiol.2007,53(9):900~908.
    [79] Geyspirs K F and Simonenko N P. An experimental analysis of seasonal changes in thephotopenodic reaction of Drosophila phalerata Meig.(Diptera,Drosophilidae)[J]. Annual Reviewof Entomology.1970,49:46~54.
    [80] Kimura M T. Geographic variation of reproductive diapause in the Drosophila auraria complex(Diptera:Drosophilidae)[J]. Physiological Entomology.1984,9:425~431.
    [81] Kimura M T, Ohtsu T, Yoshida T, Awasaki T, Lin F J. Climatic adaptations and distributions in theDrosophila takahashii species subgroup(Diptera: Drosophilidae)[J]. Journal of Natural History.1994,28(2):1409.
    [82] Bradshaw W E. Geography of photoperiodic response in diapausing mosquito[J]. Nature.1976,262:384~385.
    [83] McWatters H G and Saunders D S. The influence of each parent and geographic origin on larvaldiapause in the blow fly, Calliphora vicina[J]. Journal of Insect Physiology.1996,42:721~726.
    [84] Tauber C M, Tauber M J. Inheritance of seasonal cycles in Chrysoperla (Insecta: Neuroptera)[J].Genetical Research.1987,49(3):215~223.
    [85] Gomi T. Geographic variation in critical photoperiod for diapause induction and its temperaturedependence in Hypharztria cunea Drury (Lepidoptera: Arctiidae)[J]. Oecologia.1997,111:160~165.
    [86] Lumme J, Lakovaara S, Oikarinen A, Lokki J. Genetics of the photoperiodic diapause inDrosophila littoralis[J]. Hereditas.1975,79(1):143~148.
    [87] Lumme J, Oikarinen A. The genetic bais of the geographically variable photoperiodic diapausein Drosophila littoralis[J]. Hereditas.1977,86(1):129~142.
    [88] Lumme J. Phenology and photoperiodic diapause in northem populations of Drosophila. In:DingleH, Eds., Evolution of Insect Migration and Diapause[C]. New York:Springer-Verlag,1978:145~170.
    [89]Williams K D, Sokolowski M B. Diapause in Drosophila melanogaster females: a genetic analysis.Heredity[J].1993,71:312~317.
    [90]Bradley H, Saunders D S. The selection for early and late pupariation in the flesh-fly, Surcophaguargyrostoma, and its effect on the incidence of pupal diapause[J]. Physiological entomology.1986,1:371~382.
    [91]Saunders D S, Bradley H K. Long-night sumrnation and prograrnming of pupal diapause in theflesh-fly, Sarcophaga aqprostoma. In: Photoperiodic Regulation of Insect and MolluscanHormones. London[C]:Pitman,1984,104:65~89.
    [92]Heinrich V C, Denlinger D L. Selection for late pupariation affects diapause incidence and durationin the flesh-fly Sarcophaga bullata[J]. Physiological Entomology.1982,7:407~411.
    [93]Plomin R, Owen M J, McGuffin P. The genetic basis of complex human behaviors[J]. Science.1994,264:1733~1739.
    [94]Joplin K H, Yocurn G D, Denlinger D L. Diapause specific proteins expressed by the brain duringthe pupal diapause of the flesh fly, Sarcophaga crassipalpis[J]. Journal of Insect Physiology.1990,36:775~783.
    [95]Flannagan R D, Tammariello S P, Joplin K H, Cirka-Ireland R A, Yocurn G D, Denlinger D L.Diapause-specific gene expression in pupae of the flesh fly Sarcophaga crassipalpis[J].Proceedings of the National Academy of Sciences.1998,95:5616~5620.
    [96]Yocum G D, Joplin K H, Denlinger D L. Upregulation of a23kDa small heat shock proteintranscript during pupal diapause in the flesh fly, Sarcophuga crassipalpis[J]. Insect Biochemistryand Molecular Biology.1998,28:677~682.
    [97]Berger E M, Woodward M P. Small heat shock proteins in Drosophila confer thermal tolerance[J].Experimental Cell Research.1983,147:437~442.
    [98]Ireiand R C, Berger EM. Synthesis of low molecular weight heat shock peptides stimulated byecdysterone in a cultured Drosophila cell line[J]. Proceedings of the National Academy ofSciences.1982,9:855~859.
    [99]Tammanello S P, Denlinger D L. GO/GI cell cycle arrest in the brain of Sarcophaga crarsipalpisduring pupal diapause and the expression pattern of the cell cycle regulator, Proliferating CellNuclear Antigen[J]. Insect Biochemistry and Molecular Biology.1998,28:83~89.
    [100] Anderson S, Bankier A T, Barrell B G, de Bruijn M H L, Coulson A R, Drouin J, Eperon I C.Sequence and organization of the human mitochondrial genome[J]. Nature.1981,290:457~465.
    [101]闫华超,高岚. mtDNA遗传特性的研究新进展[J].生物技术.2003,13(6):63~65.
    [102] Lunt D H, Zhang D X, Szymura J M, Hewitt G M. The insect cytochrome oxidase I gene:evolutionary patterns and conserved primers for phylogenetic studies[J]. Insect MolecularBiology.1996,5:153~165.
    [103]熊庆,刘作易,喻子牛. mtDNA的研究与应用[J].西南农业学报.2002,15(3):111~115.
    [104] Clary D O, Wblstenholme D R. The mitochondrial DNA molecule of Drosophila yakuba:nucleotide sequenee,gene organization and genetic code[J]. Journal of Molecular Evolution.1985,22:252~271.
    [105] Lewis D L,Farr C L,Kaguni L S. Drosophila melanogaster mitochondrial DNA:Completion ofthe nucleotide sequence and evolutionary comparisons[J]. Insect Molecular Biology.1995,4:263~278.
    [106] Beard C B,Mills H D,Collins F H.The mitochondrial genome of the Mosquito Anophelesgambiae:DNA sequenee,genome orgnization,and comparison with the mitochondrial sequence ofother insects[J]. Insect Molecular Biology.1993,2:100~124.
    [107] Flook R K,Rowell C H F,Gellissen G. The sequence,organization,and evolution of the Locustamigratoria mitochondrial genome[J]. Journal of Molecular Evolution.1995,41:928~941.
    [108]张亚州,张亚平,栾云霞,陈永久,尹文英.12sRNA基因序列变异与六足总纲高级单元系统分类[J].科学通报.2000,45(22):2434~2438.
    [109] Simon C, Frati F, Beckenbach A, Crespi B, Liu H Flook P. Evolution, weighting, and phylogeneticutility of mitochondrial gene sequences and a compilation of conserved polymerase chain reactionprimers[J]. Annals of the Entomological Society of America.1994,87(6):651~701.
    [110]王备新,杨莲芳. mtDNA序列特点与昆虫系统学研究[J].应用昆虫学报.2002,39(2):88~92.
    [111] Brown J M, Pellmyr O, Thompson J N, Harrison R G. Phylogeny of Greya (Lepidoptera:Prodoxidae), based on nucleotide sequence variation in mitochondrial cytochrome oxidase I and II:congruence with morphological[J]. Molecular Biology and Evolution.1994,11(1):128~141.
    [112]姚银花,杜予州,郑福山,王莉萍.大螟不同地理种群COII基因序列分析[J].环境昆虫学报.2008,30(1):39~43.
    [113] Hoshizaki S, Washimori R., Kubota S, Ohno S, Huang Y P, Tatsuki S and Ishikawa Y. Twomitochondrial lineages occur in the Asian corn borer Ostrinia furnacalis (Lepidoptera:Crambidae),in Japan[J]. Bulletin of Entomological Research.2008,98:519~526.
    [114]孙庆华,陈迎春,王海波,Downie D A,翟衡.我国根瘤蚜mtDNACOI遗传多样性与系统发育[J].昆虫学报.2009,52(8):885~894.
    [115]杨瑞生,王振营,何康来,白树雄,姜义仁.中国秆野螟属昆虫线粒体COⅠ基因遗传多样性及其分子系统学研究(鳞翅目:草螟科)[J].南京农业大学学报.2011,34(5):73~80.
    [116] Hebert P D N, Cywinska A, Ball S L, deWaard J R. Biological identifications through DNAbarcodes[J]. Proceedings of the Royal Society Biological Sciences.2003,270(1512):313~321.
    [117]杨倩倩,李志红,伍祎,柳丽君.线粒体COⅠ基因在昆虫DNA条形码中的研究与应用[J].应用昆虫学报.2012,49(6):1687~1695.
    [118]姜帆,刘佳琪,李志红,吴佳教,赵朔.基于DNA条形码的广西苦瓜中实蝇幼虫分子鉴定研究[J].植物保护.2011,37(4):150~153.
    [119]王剑锋,乔格侠, DNA条形编码在蚜虫类昆虫中的应用.动物分类学报[J].2007,32(1):153~159.
    [120]周翰林,杨森,高川,张磊,张海发,李水生,张勇,蒙子宁,刘晓春,林浩然。两种杂交石斑鱼子一代及其亲本的线粒体COⅠ基因遗传变异分析[J].热带生物学报.2012,3(1):1~10.
    [121]李兵,浜野国胜,蜷木理,原和二郎,沈卫德.中日野桑蚕杂交后代线粒体的遗传初探[J].蚕业科学.2006,32(2):166~168.
    [122]魏跃,赵桂华,杨鹤同,陈劲枫.甜瓜属种间杂交mtDNA的遗传分析[J].植物遗传资源学报.2011,12(4):612~618.
    [123]陈哲,邓坤正,张加勇.花龟、草龟物种杂交后代的线粒体基因组研究[C].《第七届全国野生动物生态与资源保护学术研讨会论文摘要集》.2011:156.
    [124]朱美霞,孟庆福,王建书.99B×海岛棉杂种2代的mtDNA RAPD分析[J].安徽农业科学.2008,36(18):7577~7578.
    [125]田自华,张子义,张剑峰,史树德,白薇,邵金旺.甜菜细胞质雄性不育系与其保持系mtDNA的RAPD分析[J].分子植物育种.2004,2(6):817~822.
    [126] Forster H, Oudemans P, Coffy MD. Mitochondrial and nuclear DNA diverist y with in six speciesof Phytophthora[J]. Experimental Mycology.1990,14:18~31.
    [127] Sannenberg A S M. The occurrence of mit ochondrial genotype and inheritance of mitochondrialin the cultivated mushroom agarcusbisprous[J]. Mushroom Science.1991:85~92.
    [128] Croft J H, Kevei F, Hamari Z, Varga J, Kozakiewicz Z. Molecular and phenotypic characterization of Aspergil lus japonicus and Aspergillus aculeatus strains with special regard to theirmitochondrial DNA polymorphisms[J]. Antonie van Leeuwenhoek.1997,72(4):337~347.
    [129] Taylor J W, Smolich B D, May G. Evolution and Mitochondrial DNA in Neurospor a Crassa[J].Evolution.1986,40(4):716~739.
    [130]马婷婷,陈光.基于线粒体基因对直翅目昆虫系统发育学的研究[J].吉林农业大学学报.2011,33(5):494~499.
    [131]袁佳,王振营,何康来,白树雄,李菁.玉米螟赤眼蜂不同地理种群mtDNA基因序列分析及遗传分化研究[J].中国生物防治学报.2011,27(1):16~21.
    [132]涂小云,夏勤雯,陈超,陈元生,匡先钜,薛芳森.亚洲玉米螟体重和体型的地理变异[J].昆虫学报.2011,54(2):143~148.
    [133]马瑞,钱海涛,董辉,夏新,丛斌.不同地理种群亚洲玉米螟越冬幼虫复苏后的发育历期研究[J].湖北农业科学.2008,47(5):541~543.
    [134]夏新,丛斌,宋立秋,刘洪敏.不同地理种群和不同化性亚洲玉米螟的有效积温和存活率的研究[J].安徽农业科学.2007,35(19):5795~5797.
    [135]刘宁,文丽萍,何康来,王振营,赵廷昌.不同地理种群亚洲玉米螟抗寒力研究[J].植物保护学报.2005,32(2):163~168.
    [136]李菁,张颖,王振营,何康来,王强.基于mtDNACOⅡ基因的亚洲玉米螟中国不同地理种群遗传分化及基因流研究[J].昆虫学报.2010,10:1135~1143.
    [137] Denlinger D L. Regulation of diapause[J]. Annual Review of Entomology.2002,47:93~122.
    [138] Leather S R, Walters K F A, Bale J S. The ecology of insect overwintering[M]. Cambridge:Cambridge University Press,1993.
    [139] Saunders D S. Insect Clocks[M]. Amsterdam: Elsevier,2002.
    [140] Taylor F. Optimal switching to diapause in relation to the onset of winter[J]. TheoreticalPopulation Biology.1980,18:125~133.
    [141] Dolezel D, Vanecková H, Sauman I, Hodkova M. Is period gene causally involved in thephotoperiodic regulation of reproductive diapause in the linden bug, Pyrrhocoris apterus?[J].Journal of Insect Physiology.2005,51:655~659.
    [142] Suwa A, Gotoh T. Geographic variation in diapause induction and mode of diapause inheritancein Tetranychus pueraricola[J]. Journal of Applied Entomology.2006,130:329~335.
    [143] Han B, Denlinger D L. Mendelian inheritance of pupal diapause in the flesh fly, Sarcophagabullata[J]. Journal of Heredity.2009,100:251~255.
    [144] Ikten C, Skode S, Hunt T, Molina-Ochoa J. Genetic variation and inheritance of diapauseinduction in two distinct voltine ecotypes of the European corn borer, Ostrinia nubilalis (Hubner)(Lepidoptera: Crambidae)[J]. Annals of the Entomological Society of America.2011,104:567~575.
    [145] King A. Photoperiodic induction and inheritance of diapause in Pionea forficalis (Lepidoptera:Pyralidae)[J]. Entomologia Experimentalis et Applicata.1974,17:397~409.
    [146] Lumme J, Lakovaara S, Oikarinen A, Lokki J. Genetics of the photoperiodic diapause inDrosophila littoralis[J]. Hereditas.1975,79:143~148.
    [147] Kawakami Y, Numata H, Ito K, Goto S G. Dominant and recessive inheritance patterns ofdiapause in the two-spotted spider mite Tetranychus urticae[J]. Journal of Heredity.2010,101:20~25.
    [148]杜正文,蔡蔚琦.玉米螟在江苏光周期的反应初报[J].昆虫学报.1964,13(1):129~132.
    [149]弓惠芬,陈霈,王瑞,连梅力,夏志红,阎毅.光周期和温度对亚洲玉米螟滞育形成的影响[J].昆虫学报.1984,27(3):280~286.
    [150]沈荣武,薛芳森,朱杏芬.玉米螟化性及田间滞育发生时间的研究[J].江西植保.1988,1:18~19.
    [151]戴志一,秦启联,杨益众,黄东林.亚洲玉米螟滞育诱导外源性因子研究[J].生态学报.2000,20(4):620~623.
    [152]鲁新,李建平,王蕴生.亚洲玉米螟化性类型的初步研究[J].玉米科学.1995,3(1):75~78.
    [153]乔利,郑坚武,成卫宁,李怡萍.不同饲料配方对亚洲玉米螟生长发育和繁殖的影响[J].西北农林科技大学学报.2008,36(5):109~112.
    [154] Henrich V C, Denlinger D L. Genetic differences in pupal diapause incidence between twoselected strains of the flesh fly[J]. Journal of Heredity.1983,74:371~374.
    [155] Han R D, Xue F S, He Z, Ge F. Diapause induction and clock mechanism in the pine caterpillarDendrolimus tabulaeformis (Lep., Lasiocampidae)[J]. Journal of Applied Entomology.2005,129:105~109.
    [156] Huang L L, Xue F S,Wang G H, Han R D, Ge F. Photoperiodic response of diapause inductionin the pine caterpillar, Dendrolimus punctatus[J]. Entomologia Experimentalis et Applicata.2005,117:127~133.
    [157] Xiao H J, Mou F C,Zhu X F, Xue FS. Diapause induction, maintenance and termination in the ricestem borer Chilo suppressalis (Walker)[J]. Journal of Insect Physiology.2010,56:1558~1564.
    [158] Xia Q W, Chen C, Tu X Y, Yang H Z, Xue F S. Inheritance of photoperiodic induction ofa larvaldiapause in the Asian corn borer Ostrinia furnacalis[J]. Physiological entomology.2012,37(2):185~191.
    [159] S derlind L, Nylin S. Genetics of diapause in the comma butterfly Polygonia calbum[J].Physiological Entomology.2011,36:8~13.
    [160] Kim Y, Krafsur E S, Bailey T B, Zhao S L. Mode of inheritance of face fly diapause and itscorrelation with other developmental traits[J]. Ecological Entomology.1995,20:359~366.
    [161] Goto S G. Genetic analysis of diapause capability and association between larval and pupalphotoperiodic responses in the flesh fly Sarcophaga similis[J]. Physiological Entomology.2009,34:46~51.
    [162] Kuang X J, Xu J, Xia Q W, He H M, Xue F S. Inheritance of the photoperiodic responsecontrolling imaginal summer diapause in the cabbage beetle, Colaphellus bowringi[J]. Journal ofInsect physiology.2011,57:614~619.
    [163] Geyspirs K F, Simonenko N P. An expenmental analysis of seasonal changes in the photopenodicreaction of Drosophila phalerata Meig.(Diptera, Drosophilidae)[J]. Annual Review ofEntomology.1970,49:46~54.
    [164] Kimura M T. Geographic variation of reproductive diapause in the Drosophila auraria complex(Diptera:Drosophilidae)[J]. Physiological Entomology.1984,9:425~431.
    [165] Minami N, Kimura M T. Geographical variation of photoperiodic adult diapause in Drosophilaauraria[J]. Japanese Journal of Genetics.1980,55:319~324.
    [166]王承纶,张荣,桂承明.王蕴生.亚洲玉米螟生物学特性的研究[J].吉林农业科学.1980,3:53~58.
    [167]熊继文,蒙黔英.亚洲玉米螟贵阳种群的滞育及其解除的初步研究[J].贵州农学院学报.1984,7:36~44.
    [168]李建平,王蕴生,谢为民,杨桂华.中国北部亚洲玉米螟[Ostrinia furnacalis((Guenée))]生态型的初步研究[J].玉米科学.1992:69~72.
    [169]曹雁萍,朱诚培,黄佩忠,万寅,张永孝,1993.江苏省沿海亚洲玉米螟世代分化研究初报[J].江苏农业学报.9(4):31~35.
    [170] Kurahashi H, Ohtaki T. Crossing between non-diapausing and diapausing races of Sarcophagaperegrina[J]. Experientia.1977,33:186~187.
    [171] Reed G L, Guthrie W, Showers W B, Barry B D, Cox D F. Sex linked inheritance of diapause inthe European corn borer Ostrinia nubilalis, its significance to diapause physiology andenvironmental response of the insect[J]. Annals Entomological Society of America.1981,74:1~8.
    [172] Sims S R. Inheritance of diapause induction and intensity in Papilio zelicaon[J]. Heredity,1983,51:495~500.
    [173] McWatters H G, Saunders D S. Inheritance of the photoperiodic response controlling larvaldiapause in the blow fly, Calliphora vicina[J]. Journal of Insect Physiology.1997,43:709~717.
    [174] Miya M, Takeshima H, Endo H, Ishiguro N B, Inoue J G, Mukai T, Satoh T P,Yamaguchi M,Kawaguchi A, Mabuchi K, Shirai S M, Nishida M. Major patterns of higher teleostean phylogenies:A new perspectivebased on100complete mitochondrial DNA sequences[J]. MolecularPhylogenetics and Evolution.2003,26:121~138.
    [175] Hebert P D N, Ratnasingham S, deWaard J R. Barcoding animal life: cytochrome c oxidasesubunit1divergences among closely related species[J]. Proceedings of the Royal Society ofBiology Science.2003,270(Suppl1):S96~S99.
    [176]彭居俐,王绪桢,何舜平. DNA条形码技术的研究进展及其应用[J].水生生物学报.2008,32(6):916~919.
    [177]褚栋,张友军,丛斌,徐宝云,吴青君,朱国仁.烟粉虱不同地理种群的mtDNA COI基因序列分析及其系统发育[J].中国农业科学.2005,38(1):76~85.
    [178]王乃馨,封霞,蒋国芳,方宁,轩文娟.基于线粒体基因Cytb和COI的蝗科中五亚科分子系统发育关系分析(直翅目:蝗总科)[J].昆虫学报.2008,51(1):1187~1195.
    [179]梁秋英.基于COI基因序列的九种真蝽属昆虫的分子系统学研究[J].昆虫分类学报.2009,31(2):105~144.
    [180] Wang R J, Yan F M, Li S G, Li S W. Allozyme differentiation among nine populations of the cornborer(Ostrinia) in China[J]. Biochemical Genetics.1995,33(11/12):413~420.
    [181]孙姗,徐茂磊,王戎疆,李绍文. RAPD方法用于亚洲玉米螟地理种群分化的研究[J].昆虫学报.2004,3(1):103~106.
    [182] Coates B S, Sumerford D V, Hellmich RL, Lewis L C. Partial mitochondrial genome sequencesof Ostrinia nubilalis and Ostrinia furnicalis[J]. International Journal of Biological sciences.2005,1:13~18.
    [183] Blaxter M. Molecular systematics: counting angels with DNA[J]. Nature.2003,421:122~124.
    [184]李博,杨持,林鹏.生态学[M].北京:高等教育出版社,2011.
    [185]卜云,郑哲民. COⅡ基因在昆虫分子系统学研究中的作用和地位[J].应用昆虫学报.2005,42(1):18~22.
    [186] Kondo R, Matsuura E T, Chigusa I. Further observation of paternal transmission of Drosophilamitochondrial DNA by PCR selective amplification method[J]. Genetics Research.1992,59(2):81~84.
    [187] Lansman R A, Avise J C, Huettel M D. Critical experimental test of the possibility of “paternalleakage” of mitochondrial DNA[J]. PNAS.1983,80(7):1969~1971
    [188] Meusel MS, Moritz RF. Transfer of paternal mitochondrial DNA during fertilization of honeybee(Apis mellifera L.) eggs[J].Current Genetics.1993,24(6):539~543
    [189] Brown W M,Prager E M,Wang A, Wilson A C. Mitochondrial DNA sequences of primates:tempo and mode of evolution[J]. Journal of Molecular Evolution.1982,18(4):225~239.
    [190]袁长春,黎培新,王燕芳,施苏华.用核糖体ITS区序列验证自然杂交种Meconopsis×cookeiG Taylor[J].遗传学报.2004,31(9):901~907

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700