用户名: 密码: 验证码:
大型地下洞室开挖围岩卸荷变形机理及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正在施工的三峡工程右岸地下电站区地质条件复杂,开挖规模大,主厂房长311.3m×宽32.6m×高87.3m,大量地下岩体开挖必将引起围岩应力场的变化,致使围岩应力在开挖方向卸荷松驰,卸荷差异变形明显。而这种大型岩体开挖工程稳定性问题,在过去一般是运用加载岩体力学的方法来研究,但卸荷条件下,岩体的力学特征、本构方程、裂隙扩展方式与加载时是不同的,因此用加载岩体力学的方法来评价围岩的稳定性是不完善的。本文以三峡地下电站主厂房施工开挖为工程背景,以大量岩石(体)卸荷试验和主厂房施工监测成果为基础,以数理统计、弹塑性岩体力学、断裂力学、工程地质分析及数值分析为研究手段,对卸荷条件下岩体的力学特性、本构模型、变形破坏机理及围岩稳定性等方面从理论到工程应用进行了较为系统的研究,取得以下主要研究成果:
     (1)基于岩石卸荷试验,揭示了岩石卸荷变形、卸荷过程中岩石参数的弱化及峰后应力脆性跌落特征。卸荷引起的强烈扩容是岩石变形破坏的根本原因,具有较强的峰后应力脆性跌落特征,应力脆性跌落系数与初始围压具有较好的相关性。卸荷过程中岩体的变形模量E逐渐减小而泊松比μ逐渐增大,E减小约5%~25%,μ增大约50%~300%,这种变化幅度随初始围压的增大和卸荷程度的增强而变大,其变化与体积应变有较好的相关性。相对常规压缩试验,卸荷岩体的摩擦角φ有所增大而粘聚力c却大大减小:卸载围压且同时升轴压试验的峰值c减小约33.2%,残余c减小约65.3%,峰值φ增大约14.7%,残余φ增大约33.2%;同时卸载围压和轴压试验的峰值c减小约47.8%,残余c减小约77.6%,峰值φ增大约9.4%,残余φ增大约5.9%。
     (2)卸荷岩体在屈服点附近符合Griffith屈服准则,而到达峰值后符合Mohr-Coulomb屈服准则,假设卸荷岩体屈服是随体积应变从Griffith屈服至Mohr-Coulomb屈服线性过渡,可构造出卸荷岩体的屈服准则,进而求出其相应的本构方程。将岩体卸荷应力~应变曲线分为弹性、卸荷屈服、峰后脆性及残余理想塑性四个阶段,求出其相应段的本构方程,得出卸荷岩体全过程的本构模型。
     (3)基于裂隙岩体相似模型试验,揭示了卸荷条件下裂隙岩体的强度、变形特征、破坏形态及裂隙扩展演化过程。在单裂隙岩体中,岩体的卸荷破坏强度随裂隙与卸荷方向夹角的增大而减小的,而在双裂隙模型中,陡~缓倾角组合岩桥强度最低,陡倾角组合岩桥的强度相对较高;裂隙卸荷扩展具有阶段性和突发性,变形会出现多级突跳现象,当发展到裂隙贯通时,位移会出现大幅度的阶跃,位移突跳的次数与新生裂纹的数量正相关。卸荷扩展裂隙一般带有一定程度的张性特征,其卸荷扩展方式有剪切扩展、张拉扩展、拉剪复合扩展及冀裂纹扩展四种类型,岩桥卸荷破坏可归纳为剪切破坏、张剪复合破坏和张拉破坏,以张剪复合破坏为主。
     (4)地下洞室开挖卸荷过程中,裂隙面的应力状态经历了从压剪应力状态逐渐向拉剪应力状态的变化过程,基于断裂力学理论,对压剪及拉剪切应力状态下裂隙扩展时的应力强度因子进行对比分析,说明卸荷条件下裂隙更容易扩展。同时也探究了裂隙扩展过程中分支裂隙尖端的应力强度因子,进而确定裂隙扩展的长度,首次推导了拉剪应力状态下裂隙扩展过程中分支裂隙尖端的应力强度因子。
     (5)基于主厂房施工监测,结合工程地质条件分析围岩的开挖卸荷变形机理及其稳定性。对含断层围岩的开挖卸荷稳定性进行较系统的数值模拟,提出了以最大应力集中系数、应力松驰区面积、最大变形量、特征部位变形大小和塑性区面积等量化指标评价断层分布部位、初始地应力场和断层抗剪强度参数对围岩稳定性影响的方法,阐述了含断层围岩开挖卸荷变形机理及其稳定特征。
     (6)根据块体理论及工程地质分析,总结了主厂房开挖块体的失稳模式。对不同部位典型块体数值模拟分析表明不同部位的块体二次应力场、变形及塑性区分布特点不同,提出了块体变形失稳演化机理和局部稳定性评价的量化指标,同时将强度折减法应用到主厂房块体整体稳定性评价中并与极限平衡稳定性计算结果进行比较,阐述了地应力场对块体稳定性的影响和极限平衡计算中存在的缺陷。
     (7)一般弹塑性数值分析并没有考虑开挖岩体的卸荷效应,利用FLAC软件内置fish语言,编写了考虑卸荷过程中岩体参数弱化的数值计算程序,并对主厂房开挖稳定性进行了模拟计算,计算结果与监测相符,较一般弹塑性计算结果更符合工程开挖实际。
The geological condition of constructing underground powerhouse site in right band of three gorge project is complex and the excavating scale is great, the length of powerhouse is 311.3m, the width 32.6m and height 87.3m. Excavating a lot of underground rock masses must bring surrounding rock mass stress to change, lead it up to unloading and loosening in the excavated direction, and unloading difference deformation is evident. However, the study method to stability problem of the large project with rock mass excavated usually pertain to the of category loading rock mass mechanics, but on the condition of unloading, mechanical character, constitutive model and mode of cracks extending differ from loading case, so, evaluation to stability of surrounding rock mass with the method of loading rock mass mechanics is faulty. Based on investigation to underground powerhouse excavated of three gorge and a lot of rock unloading test, the paper researches mechanical character, constitutive model, deformation failure mechanism and stability of surrounding rock mass when rock mass unloading by way of statistics, elasto-plastic rock mass mechanics, fracture mechanics, analysis of engineering geology and simulation. The major research findings are described as follows:
     (1) Based on unloading test of rock, the character of rock deformation on the condition unloading, parameters of unloading rock mass becoming to poor in course of unloading and stress brittle falling off after peak value are revealed. Strong dilatation becourse of unloading makes rock deformation and failure, the character of brittle failure after peak value is evident, and the coefficient of the stress brittle falling takes on fine correlativity with initial confining pressure. Deformation modulus 'E' gradually decreases but Poisson's ratio 'μ' increases in course of unloading, the range of E decreasing is about 5% to 25%,μincreasing about 50% to 300%, the changing extent is enhanced along with initial confining pressure and unloading strength increasing, the change better correlates with volumetric strain. The friction angle of Unloading rock mass (φ) a few increases but the cohesion (c) consumedly decreases relative to general compression tests: a) when unloading confining pressure and loading axial compression on the same time, the peak value of c decreases about 33.2% and the remnants value about 65.3%, the peak value ofφincreases about 14.7% and the remnants value about 33.2%; b) when unloading confining pressure and axial compression on the same time, the peak value of c decreases about 47.8% and the remnants value about 77.6%, the peak value ofφincreases about 9.4% and the remnants value about 5.9%.
     (2) The rock mass failure on the condition of unloading accords with Griffith yield criteria about yield dot, but accord with Mohr-Coulomb yield criteria after arriving peak value. On the assumption that the rock mass yield accords linear transition from Griffith to Mohr-Coulomb criteria along with volumetric strain on the condition of unloading, the yield criteria and corresponding constitutive equations of unloading rock mass can be established. The stress-strain curve can be divided into four phase: elasticity, unloading yield, brittle after peak value and ideal plastic in remains phase, complete constitutive model can be established by four phase constitutive equations are solved.
     (3) Based on crack rock mass similar model test, the strength, deformation, failure shape and the crack expanding evolutionary process of crack rock mass on the condition of unloading are revealed. Unloading failure strength of rock mass decrease along with included angle of crack and unloading direction in single crack model. Rock bridge strength of combined model high with low dip angle is minimum and high with high dip angle is relative higher. Crack expanding on the condition of unloading is phase and paroxysmal, the deformation must appear multilevel kick, a great extent phase step when cracks should prong, and the times of displacement kick positively correlate with amount of fresh cracks. Unloading expanding crack commonly bear definite degree tensile, their expanding modes of unloading expansion can be divided into four kinds: shear , tensile, tensile-shear and wing cracks expansion. The bridge failure can be classified into three modes: shear , tensile-shear and tensile failure, especially tensile-shear failure.
     (4) In course of underground excavation and unloading, the state of stress on cracks surface gradually changes from compressive-shear to tensile-shear, based on rupture mechanics theory, by Contrastive analysis of stress intensity factors when crack expanding under compressive-shear and tensile-shear stress state, we find that the cracks more easily expand on the condition of unloading. The stress intensity factors of embranchment cracks tip are researched in course of unloading, especially deduced under tensile-shear, and the length of crack expansion is made certain.
     (5) Based on construction monitoring and geological condition of powerhouse, unloading deformation mechanism and stability of excavating surrounding rock mass are analyzed. The systemic numerical simulation is carried out in order to studying on stability of surrounding rock mass including faults on the condition of excavation and unloading, and in order to evaluate the influence of distribution position of faults, initial field stress in site and shear strength of faults on the stability, some quantified index are present, such as the coefficient of maximum stress concentrating, the area of stress loosening, maximum deformation, the deformation of characteristic position and the area of plastic zone.
     (6) Based on the theory of blocks and analysis of engineering geology, the failure modes of block in powerhouse are summarized. 3-D numerical simulation of typical blocks shows that the secondary stress field, deformation and distribution of plastic zone are different in different position. The quantified index of part stability and evolutionary process of deformation failure of blocks are present. the method of strength reduction is applied in order to evaluate the whole stability of blocks in powerhouse,. The influence of stress on the stability of blocks and the limitation of limit equilibrium theory are explained.
     (7) the unloading effect when rock mass excavated isn't considered in common elasto-plastical numerical analysis, in the paper, the program of numerical calculation considering parameter becoming to poor in course of unloading compiled by using fish language in FLAC software, and a 3-D numerical simulation of excavation stability of powerhouse is carried out, the calculation results accord with monitoring datum and more agree with actual engineering excavation than common elasto-plastical analysis.
引文
[1] 潘家铮,何璟.中国大坝50年,中国水利水电出版社,2000
    [2] 郭子嵩.地下厂房在峡谷高坝水电站枢纽布置的优势,水力发电,2000(9):38-42
    [3] 王成菊,成旭东,黄建新.江娅电站地下厂房设计,水力发电,1999(7):35-37
    [4] 文俊杰,俞猛,张柏山.大朝山水电站地下洞室群开挖施工,水力发电,1998(9):55-57
    [4] 成卫忠.棉花滩水电站地下厂房设计,水力发电,2001(7):28-31
    [5] 齐震民,于立新.小浪底水利枢纽地下工程设计综述,水力发电,1996(7):15-18
    [6] 王民寿,杨明举,谢培忠等.小湾水电站地下厂房洞室群围岩稳定分析,云南水力发电,2000(1)P:87-93
    [7] 覃永恒.百色水利枢纽地下厂房洞室布置,广西水利水电,2000(3):22-25
    [8] 李杰,程志华等.二滩水电站地下厂房设计.水力发电,1997(8):31-34
    [9] 杨海霞.地下洞室全过程优化设计建模理论与分析方法,河海大学博士学位论文,2002
    [10] 巨能攀.大跨度高边墙地下洞室群围岩稳定性评价及支护方案的系统工程地质研究,成都理工大学博士学位论文,2005
    [11] 李攀峰.大型地下硐室群围岩稳定性工程地质研究,成都理工大学博士学位论文,2004
    [12] 张有天.中国水工地下结构建设50年(上),西北水电,1999(4):8-14
    [13] 张有天.中国水工地下结构建设50年(中),西北水电,2000(1):18-25
    [14] 张有天.中国水工地下结构建设50年(下),西北水电,2000(2):13-19
    [15] 肖树芳,杨淑碧.岩体力学,地质出版社,1987,P:97-109
    [16] 蔡美峰,何满潮,刘东燕.岩石力学与工程,科学出版社,2002:309-326
    [17] 哈秋龄.加载岩体力学与卸荷岩体力学,岩土工程学报,1998(7)P:114
    [18] 谢红强,何江达,徐进.岩石加卸载变形特征及力学参数试验研究。岩土工程学报,2003(5):335-338
    [19] 高玉春,徐进,何鹏等.大理岩加卸载力学特性的研究,岩石力学与工程学报,2005(2):456-460
    [20] An-Zeng Hua,Ming-Qing You, Rock failure due to energy release during unloading and application to underground rock burst control, Tunnelling and Underground Space Technology, July 2001: 241-246
    [21] Fei Honglu, Xu Xiaohe, Tang Chunan, Research on theory of catastrophe of rock burst in underground chamber, InternatiOnal Journal of Rock Mechanics and Mining Science, February 1996: 611-619
    [22] Casten. U; Fajklewicz. Z, Induced gravity anomalies and rock-burst risk in coal mines : a case history, International Journal of Rock Mechanics.and Mining Science, October 1993:1-13
    [23] Jenkins. F M, Williams. T. J, Wideman. C, J. Rock burst mechanism studies at the lucky friday mine, International Journal of Rock Mechanics and Mining Science, June 1990:955-962
    [24] 徐则民,黄润秋.罗杏春等.静荷载理论在岩爆研究中的局限性及岩爆岩石动力学机理的初步分析,岩石力学与工程学报,2003(8):1255-1262
    [25] 徐则民,黄润秋.范柱国等.长大隧道岩爆灾害研究进展,自然灾害学报,2004(4):16-24
    [26] 周火明,盛谦,李维树等.三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究,岩石力学与工程学报,2004(7):1078-1081
    [27] 盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究,中国科学院武汉岩土力学研究所博士学位论文,2002
    [28] 黄润秋,陈德基.岩质高边坡卸荷带形成及其工程性状研究,工程地质学报,2001(3):227-232
    [29] Qi Shengwen, Wu Faquan, Yah Fuzhang, etal. Mechanism of deep cracks in the left bank slope of Jinping first stage hydropower station, Engineering Geology, 73(2004):129-144
    [30] 薛翊国,陈剑平,黄润秋.锦屏一级水电站左坝肩边坡开挖三维有限元分析,世界地质,2006(2),P:196-200
    [31] 苏承东,杨圣奇.循环加卸载下岩样与强度特征试验,河海大学学报,2006(6):667-671
    [32] 陈运平,王思敬,王恩志.循环荷载下层理岩石的弹性和衰减各向异性,岩石力学与工程学报,2006(11):2233-2239
    [33] 席道英,薛彦伟,宛新.循环载荷下饱和砂岩的疲劳损伤,物探化探计算技术,2004(3):193-198
    [34] 尤明庆,苏承东,徐涛.岩石试样的加载卸载过程及杨氏模量,岩土工程学报,2001(9):588-592
    [35] H.Q.XIE, CH.HE, Study of the unloading characteristics of a rock mass using the triaxial test and damage mechanics, International Journal of Rock Mechanics and Mining Science, March, 2004:13-18
    [36] 王贤能,黄润秋.岩石卸荷破坏特征与岩爆现象,山地研究,1998(4),P:281-282
    [37] 沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征,岩石力学与工程学报,2003(12):2028-2031
    [38] 陈景涛,冯夏庭.高地应力下岩石的真三轴试验,岩石力学与工程学报,2006(8):1537-1543
    [39] 吴刚.岩体在加卸荷条件下破坏效应的对比分析,岩土力学,1997(6):13-16
    [40] 吴刚.卸荷应力状态下裂隙岩体的变形和强度特征,岩石力学与工程学报,1998(12):615-621
    [41] 李建林,孟庆义.卸荷岩体的各向异性研究,岩石力学与工程学报,2001(5):338-341
    [42] 李建林,王乐华.卸荷岩体的尺寸效应研究,岩石力学与工程学报,2003(12):2032-2036
    [43] 周济芳,李建林,陈兴周.卸荷岩体力学特性研究的试验条件,三峡大学学报,2004(12):514-516
    [44] 周济芳,杨学堂,李建林等.卸荷岩体宏观力学参数的分析方法再研究,三峡大学学报,2005(2):37-39
    [45] 徐干成,谢定义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究.岩土工程学报,1995,17(2):1-12
    [46] 潘别桐,黄润秋.工程地质数值法,地质出版社,1994:94-97
    [47] J.C.耶格,N.G.W库克著,中国科学院工程力学研究所译,岩石力学基础,科学出版社,1981
    [49] 周维垣主编.高等岩石力学.水利电力出版社,1989
    [50] 郑颖人,龚晓南.岩土塑性力学基础,煤碳工业出版社,1988
    [51] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理,中国建筑工业出版社,2002
    [52] 郑雨天.岩石力学的弹塑粘性理论基础,煤炭工业出版社,1988
    [53] 孙学英.工程岩体卸荷模型的研究与应用,岩土工程技术,2001(4):241-243
    [54] 吴刚,孙钧.复杂应力状态下完整岩体卸荷破坏的损伤力学分析,河海大学学报,1997,25(3):44-49
    [55] 周小平,哈秋聆,张永兴.峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究,岩石力学与工程学报,2005,24(18):3236-3244
    [56] 凌建明,刘尧军.卸荷条件下地下洞室围岩稳定的损伤力学分析方法,石家庄铁道学院学报,1998,11(4):10-15
    [57] M .Cai, , H .Horii. A constitutive model of highly jointed rockmasses. Mech. Mater. 1992(13):217-246.
    [58] M. Cai, P.K. Kaiser. Assessment of excavation damaged zone using a micromeehanics model, Tunnelling and underground space technology, 2005(20): 301-310
    [59] 孙广忠.岩体结构力学,科学出版社,1988,P:6-15
    [60] 张倬元,王士天,王兰生.工程地质分析原理,地质出版社,1994:92-136
    [61] 黄润秋,许模,陈剑平等.复杂岩体结构精细描述及其工程应用,科学出版社,2004
    [62] Hock, E. and Bieniawski, Z. T., Brittle fracture propagation in rock under compression, Int. J. Fract. Mech., 1965: 137-155.
    [63] Cook, N. Cz W., The failure of rock, Int. J. Rock Mech.Min. Sei., 1965,21(2): 389-403
    [64] Nolen-Hook, Sema R C, Gordon R. B. Optical detection of crack patterns in the opening-mode fracture of marble, Int. J. Rock mech. Min. Sci. Geomech. Abdtr., 1987,24(4) : 135-144
    [65] Reyes, O. and Einstein, H. H., Fracture mechanism of fractured rock, a fracture coalescence model, In Proc. 7th Int. Conf. On rock Meeh, Germany:A. A. Balkema, 1991(1): 333-340
    [66] 孙钧,凌建明.三峡船闸高边坡岩体的细观损伤及长期稳定性研究,岩石力学与工程学报,1997(1):2-8
    [67] 谢和平.孔隙与破断岩体的宏细观力学研究,岩土工程学报,1998,20(4):113-114
    [68] 周维垣,剡公瑞,杨若琼.岩体弹脆性损伤本构模型及工程应用,1998,20(5):53-57
    [69] 李术才,朱维申.加锚节理岩体断裂损伤模型及其应用,1998(8):52-56
    [70] 周小平,张永兴,哈秋聆.裂隙岩体加载和卸荷条件下应力强度因子,地下空间,2003,23(2):277-280
    [71] 任建喜,葛修润,蒲毅彬等.岩石卸荷损伤演化机理CT实时分析初探,岩石力学与工程学,2000,19(6):679-701
    [72] 李银平,王元汉,肖四喜.岩石类材料中压剪裂纹的相互作用分析,岩石力学与工程学报,2003,22(4):552-555
    [73] 李银平,杨春和.裂纹几何特征对压剪复合断裂的影响分析,岩石力学与工程学报,2006,25(3):462-466
    [74] 周翠云,王良之,龙湘桂等.岩石闭合裂缝的压剪断裂形态,岩石力学与工程学报,1999,18(3):259-261
    [75] 周群力,刘振洪,王良之.对岩石压剪断裂核的扩容效应,岩石力学与工程学报,1999,18(4):444-446
    [76] 王桂尧,孙宗颀,徐纪成.岩石压剪断裂机理及强度准则的探讨,岩土工程学报,1996,18(4): 68-74
    [77] 李建林,孙志宏.节理岩体压剪断裂及其强度研究,岩石力学与工程学报,2000,19(4):444-448
    [78] 涂金良,刘光延,张镜剑.裂缝在压剪条件下的应力场和扩展能,清华大学学报(自然科学版),1996,36(1):54-58
    [79] 李建林,哈秋聆.节理岩体拉剪断裂与强度研究,岩石力学与工程学报,1998,17(3):259-266
    [80] James H. Hanson, Tulio N. Bittencourt, Anthony R. Ingraffea, Three-dimensional influence coefficient method for cohesive crack simulations, Engineering Fracture Mechanics, 2004(71): 2109-2124
    [81] 何满潮,袁和生,靖洪文等.中国煤矿锚杆支护理论与实践,科学出版社,2004:21-32
    [82] 董方庭,宋宏伟,靖洪文等.巷道围岩松动圈理论,煤炭学报,1994,19(1):21-32
    [83] 董方庭等.巷道围岩松动圈理论及其应用,煤炭工业出版社,2001
    [84] G. Backblom, C. D. Martin. Recent experiments in hard rocks to study the excavation response: Implications for the performance of a nuclear waste geological, Tunnelling and Underground Space Technology, 1999, 14(3):377-394
    [85] Detourney E, St John C M. Design charts for a deep circular tunnel under non-uniform loading, Rock Mech. And Rock Engn, 1996, 21(2):119-137
    [86] Cai M, Kaiser P K, Martin C D. Designing the Excavation Disturbed Zone for a nuclear repository in hard rock, Proc. Can. Nucl. Soc, 1996. Sept 20
    [87] Emsley S, Olsson O, Stenberg L etal. ZEDEX-a study of damage and disturbance from tunnel excavation by blasting and tunnel boring, SKB Technical Report, 1997, P: 30-97
    [88] 谷德振.地质构造与工程建设.科学通报.1963,(10):22-26
    [89] 孙玉科,李建国.岩质边坡稳定的工程地质研究,地质科学.1965:36-43
    [90] 谷德振.岩体工程地质力学基础北京:科学出版社,1979
    [91] 孙玉科,李建国.岩质边坡稳定的工程地质研究,地质科学,1965(7):36-43
    [92] 孙玉科,岩体结构力学—岩体工程地质力学的新发展,工程地质学报,1997,5(4):292-294
    [93] 孙广忠.论“岩体结构控制论”,工程地质学报,1993年创刊号:14-18
    [94] 黄达,黄润秋,陈强等.基体裂隙实测全迹长分布规律研究,水文地质工程地质,2005,(4):10-12
    [95] 张清,杜静.岩石力学基础,中国铁道出版社,1997
    [96] 中华人民共和国水利部.水利水电工程地质勘察规范(GB50287-99),中国计划出版社,1999
    [97] 湖南省水利水电勘测设计院.中小型水利水电工程地质勘察规范(S1SS-93),水利电力出版社,1994
    [98] 中华人民共和国国家标准.岩土工程勘察规范(GB50021-2001)
    [99] 中华人民共和国水利部.工程岩体分级标准((GB50218-94),北京:中国计划出版社出版,1995
    [100] 林宗元,岩土工程勘察设计手册.沈阳:辽宁科学技术出版社,1996
    [101] 邵鹤皋,黄仁福.我国水电工程岩石力学试验研究工作的进展,水利水电技术,1987(4)
    [102] Bienlawski Z.T.1973.Engineering Classification of Jointed Rock Mass, Trans.S.Africa lnst, Civ.Engrs,1973, 15(12)
    [103] Palmstrom, Arild. Characterizing rock masses by the RMi for use in practical rock engineering; Prat 1: The development of Rock Mass index (RMi), Tunnelling and Underground Space Technology, 1996, 11 (2)
    [104] Palmstrom, Arild. Characterizing rock masses by the RMi for use in practical rock engineering; Prat 1: Some practical applications of the Rock Mass index(RMi), Tunnelling and Underground Space Technology, 1996, 11 (3)
    [105] 王思敬等.地下工程岩体稳定分析,科学出版社,1984
    [106] 杨志法,尚彦军,刘英.关于岩土工程类比法的研究.工程地质学报,1997.5(4):299—305
    [107] 杨志河,王永生.黄河大柳树水利枢纽工程地下洞群围岩稳定性.水利水电工程设计,2002,21(2):25-28.
    [108] 裴觉民,石根华.水电站地下厂房洞室的关键块体分析.岩石力学与工程学报,1990,9(1).
    [109] G H Shi..Discontinuous deformation analysis:the statics and computations,, a new numerical model for. The statics and dynamics deformable block structures 1992, 9 (2) :157-168.
    [110] Goodman .R.E., Shi Genhua. Block Theory and Application to Rock Engineering, Prentice-Hall, inc, Englewood Cliffs, New Jersey, 1985.
    [111] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock. ASCE Journal of the Soil Mechanics and Foundations Division, 1968, 14:637-659
    [112] 许强,黄润秋.1996.考虑地应力的洞室围岩块体稳定性分析的理论与实践.地质灾害与环境保护.1996,7(4)
    [113] 肖树芳,杨淑碧.岩体力学,地质出版社,1987:91-118
    [114] 朱大勇,钱七虎,周早生等.复杂形状洞室同岩应力的弹性解析分析.岩石力学与工程学报,1998(4):402-404
    [115] 朱大勇,钱七虎,周早生等.复杂形状洞室映射函数的新解法.岩石力学与工程学报,1999(3):279-282
    [116] 于学馥,郑颖人,刘怀恒等.地下工程围岩稳定性分析.煤炭工业出版社,1983
    [117] FLAC3D,Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0,User's Manual, ltasca Consulting Group, Inc.USA
    [118] 陈帅宇,周维垣,杨强等.三维快速拉格朗日法进行水布亚地下厂房的稳定分析,岩石力学与工程学报,2003,22(7):1047-1053
    [119] 孙红月,尚岳全,张春生.洞室围岩薄弱区三维数值模拟研究,岩石力学与工程学报,2004,23(13):2192-2196
    [120] 余卫平,耿克勤,汪小刚.某水电站地下厂房洞室群围岩稳定分析,岩土力学,2004,25(12):1955-1960
    [121] 王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算,岩土力学,2005,26(12):1936-1940
    [122] 金峰,王光纶,贾伟伟.离散元-边界元动力耦合模型在地下结构动力分析中的应用,水利学报,2001(2):24-28
    [123] 邬爱清,丁秀丽,陈胜宏等.DDA方法在复杂地质条件下地下厂房围岩变形与破坏特征分析 中的应用,岩石力学与工程学报,2006,25(1):1-8
    [124] 赵震英.群洞开控围岩破坏过程试验,水利学报,1995.23(12):24-28.
    [125] 朱维申.复杂条件下围岩稳定性与岩体动态施工力学,科学出版社,1996:56-66.
    [126] 姜小兰,陈进,操建国等.锦屏一级水电站地下厂房洞室群地质力学模型试验分析,长江科学院院报,2005,22(1):51-53
    [127] 陈四清,张倬元等.非线性工程地质导引,西南交通大学出版社,1993
    [128] 黄润秋,许强.工程地质广义系统科学分析原理及应用,地质出版社,1997
    [129] M. Cai, P. K. Kaiser, Y. Tasaka, etal. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations, International Journal of Rock Mechanics & Mining Sciences, 2004(41): 833-847
    [130] 周国庆,崔广心,程锡禄等.地下工程问题三轴模拟试验台及其应用,岩土工程学报,1999,21(6):715-718
    [131] 赵建军.公路边坡稳定性快速评价方法及应用研究[D].成都理工大学博士学位论文,2007:51
    [132] 长江三峡勘测研究院有限公司.长江三峡水利枢纽右岸地下电站主厂房洞室顶拱围岩稳定施工期地质专题分析报告(一),2005
    [133] 杨小艳,王岳,黄达.大型硬岩地下硐室围岩二次应力场特征弹脆塑性分析,水文地质工程地质,2007(5)
    [134] Q.Sheng, Z.Q.Yue, C.F.Lee, et al. Estimating the excavation disturbed zone in the permanent shiplock slopes of the Three Gorges Project, China. International Journal of Rock Mechanics and Mining Sciences, 39(2002):165-184
    [135] 黄子平,EinarBroch,吕明.水电站地下厂房洞室顶拱的形成与锚同, 岩石力学与工程学报,2005,24(8):1348-1354
    [136] 刘维国,单钰铭,傅荣华.岩石扩容过程中的体积应变与超声横波速度,成都理工大学学报(自然科学版),2006,23(4):360-364
    [137] Ge Xiurun. Post failure behavior and a brittle-plastic model of brittle rock, In: Computer Methods and advances in Geomechanics, Rotterdam: A.A Balkema, 1997:151-160
    [138] 郑宏,葛修润,李焯芬.脆塑性岩体的分析原理及其应用,岩石力学与工程学报,1997,16(1):8-21
    [139] 吴家龙.弹性力学,高等教育出版社,2001:54-55
    [140] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理,中国建筑工业出版社,2002:150-156
    [141] F. Varas a, E. Alonso b, L.R. Alejano. Study of bifurcation in the problem of unloading a circular excavation in a strain-softening material, Tunnelling and Underground Space Technology 2005(20): 311-322
    [142] Owen D R J, Hinton E. Finite Elements in Plasticity: Theory and Practice[M]. Swansea: Prineridge Press Limited, 1980
    [143] WONG R H C, CHAU K T. Crack coalescence in a rock-like material containing two cracks. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2):147-164
    [144] BOBET A, EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888
    [145] WONG R H C, CHAU K T, TANG C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws-Part I: experimental approach[J]. International Journal of Rock Mechanics and Mining Sciences. 2001.38: 909-924.
    [146] 朱维中,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用.科学出版,2002:133-140.
    [147] 朱维中,陈卫忠,申晋.雁形裂纹扩展的模型试验及断裂力学机制研究.固体力学学报,1998,19(4):355-360
    [148] 邱绪光.实用相似理论.北京航天航空大学出版社,1988,39-67
    [149] 林韵梅.实验岩石力学—模拟研究.煤炭工业出版社,1984:24-32
    [150] 徐文胜,许迎年,王元汉等.岩爆模拟材料的筛选试验研究.岩石力学与工程学报,2000,19(增):873-877
    [151] 张平,李宁,贺若兰等.不同应变速率下非贯通裂隙介质的力学特性研究[J].岩土工程学报,2006,28(6):750-755
    [152] 李庆芬,胡胜海,朱世范.断裂力学及其工程应用[M].哈尔滨工程大学出版社,1998:6
    [153] B·K·A阿特金森.岩石断裂力学[M].尹祥础,修济刚泽.:地震出版社,1992:97-104
    [154] Horii H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure[J]. Geophy. Res, 1985(B):3105-3125
    [155] 李术才.加锚断裂节理岩体断裂损伤模型及其应用.中科院武汉岩土力学研究所博士学何论文.1996
    [156] 宋玉普,赵国藩,彭放等.轻骨料砼在双轴压压及拉压状态下的变形和强度特性.建筑结构学报,1994,15(2):17-21
    [157] Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states. Acta Metal, 1986,34(3):497-510
    [158] Kemeny J, Cook N. G. W. effective moduli, non-linear deformation and strength of a cracked elastic solid, Int, J. Rock Mech. Min. Sci. & Geomech, 1986, 23(2):107-118
    [159] 范天佑.断裂动力学引论.北京理工大学出版社, 1990:118-177
    [160] Y.H. Hao, R. Azzam. the plastic zones and displacements around underground openings in rock masses containing a fault[J]. Tunnelling and Underground Space Technology. 2005 (20): 49-61
    [161] 李新平,朱瑞庚,夏元友.裂隙分布对地下硐室稳定性的影响研究.金属矿山,1997,(3):10-15
    [162] 黄润秋,黄达,宋肖冰.卸荷条件下二峡地下厂房大型联合块体稳定性的三维数值模拟分析.地学前缘,2007,14(2):268-275
    [163] 黄达,黄润秋.开挖卸荷条件下大型地下洞室块体稳定性的对比分析.岩石力学与工和学报,2007(S2)
    [164] 谢晔,刘军,李仲奎等.在大型地下开挖中围岩块体稳定性分析.岩石力学与工程学报,2006,25(2):306-311.
    [165] 白明洲,黄润秋,王士天等.开挖卸荷条件下高边墙岩体变形和破坏的数值计算.中国地质灾害与防治学报,2000,11(2):34-3
    [166] 刘金龙,栾茂田等.关于强度折减有限元方法中边坡失稳判据判断.岩土力学,2005,26(8):1345-1348.
    [167] 马建勋,赖志生,蔡庆娥,徐振立.基于强度折减法的边坡稳定性三维有限元分析.岩石力学与工程学报,2004,23(16):2690-2693.
    [168] 赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座Ⅱ——有限元强度折减法中边坡失稳的判据探讨,岩土力学,2005,26(2):332—335.
    [169] 连镇营,韩国城,孔宪京等.强度折减有限元法研究开挖边坡的稳定性.岩土工程学报,2004,23(4):407—411.
    [170] 栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用.防灾减灾工程学报,2003,23(3):1—8.
    [171] 郑宏,李春光,李焯芬,葛修润.求解安全系数的有限元法.岩土工程学报,2002,24(5):626—628.
    [172] 陈菲,邓建辉.岩坡稳定的三维强度折减法分析[J].岩石力学与工程学报,2006,25(12):2546—2551.
    [173] 李红,宫必宁,陈琰.有限元强度折减法边坡失稳判据.水利与建筑工程学报,2007,5(1):79—82.
    [174] 刘祚秋,周翠英,董立国等.边坡稳定及加固分析的有限元强度折减法.岩土力学,2003,24(4):644—648.
    [175] 刘金龙,栾茂田等.关于强度折减有限元方法中边坡失稳判据判断.岩土力学,2005,26(8):1345—1348.
    [176] 肖武.基于强度折减法和容重增加法的边坡稳定分析及工程研究.河海大学硕士学何论文,2005.
    [177] 宋二祥.土工结构安全系数的有限元计算.岩土工程学报,1997,19(2):1-7.
    [178] 李宁,段小强,陈方方等.围岩松动圈的弹塑性位移反分析方法探索[J].岩石力学与工程学报,2006,25(7):1304-1308
    [179] 黄润秋,黄达,宋肖冰等.三峡地下电站主厂房开挖二次应力场特征及对围岩稳定性和加固措施影响研究.成都理工大学科研报告,2006:60-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700