用户名: 密码: 验证码:
锦屏一级水电站左岸渗流模型分析与高边坡稳定性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体渗流问题在岩质边坡稳定性评价中起着重要作用,近年来,随着国际上大型岩体工程的兴建,如大型水利水电工程的建设、裂隙性油气田的开发以及大型矿山的开采,所形成的大坝坝肩边坡、水库库岸边坡、矿山边坡、铁路和公路的道路边坡等,其地质条件之复杂均是空前的。对于裂隙岩体渗流的实验和理论上的研究得到了广泛的重视并逐渐成为一个热点问题。离散裂隙网络模型由于其能够更真实地反映裂隙岩体渗流而得到了广泛的研究。随机不连续面三维网络计算机模拟技术可以模拟构造裂隙系统的空间结构,为研究岩体渗流提供岩体空隙结构的物理背景。本文在国家自然科学基金面上项目“三维网络结构岩体水力学研究”(编号:40472136)研究的基础上,结合“锦屏一级水电站枢纽区工程边坡稳定性及支护对策研究”工程实例,借助随机不连续面三维网络计算机模拟技术,用界面元法对锦屏一级水电站左岸裂隙渗流模型进行了分析与探讨,最后对锦屏一级水电站左岸坝肩建立了三维数值模型,并进行了水电站高边坡开挖的稳定性分析和支护加固措施的研究。
The seepage is commonly existed in rock mass, the hydraulic head is a key factor in bodily sliding-proof stability judgment. So we investigate the seep way of groundwater and the force on the rock mass aroused by the groundwater, in order to judge the bodily sliding-proof stability with rock mechanics. The conceptual models on seepage flow in the fractured rock mass can be classified as three basic types: equivalent continuum models, discrete fractured network models and conceptual frameworks.The discrete fractured network model is on the basis of truly distributing of fractured network. It indicates the defined distribution in permeability space with fractured rock mass's hydraulics parameter and geometry parameter. When only the permeability of fissure is taken into account, the flow model in fractured network system can be founded according to the actually geometry distribution of fissure and the discontinuity.In recent years, the 3D network computational simulating technique for random discontinuities develops and grows up rapidly, it can simulate random discontinuity such joints, fissure etc in rock mass, can construct the distributing state of random discontinuity in 3Dspace and supply the physics foundation for the researching to the problem of the seepage in fractured rock mass.The FEM has more difficult in disposing discontinuous models problems mentioned above due to it is displacement compatible element, so it will create great error. Interface stress element can cover the shortage in solving discontinuous models problems.The author concluded systemically the research history and actuality on seepage in fractured rocks in the paper. By connected with the truly example of Jinping stage one hydropower station on Yalong river in Sichuan province, the author has introduced the general situation of the engineering and the engineering geological condition, besides these, the author also has performed the following work on five aspects:1. On the basis of great geological investigation outdoors, the author has stated the attitude of discontinuous joints and size of traces in number 38 tunnel, which is on the left bank of dam site. By utilizing the 3D network computational simulating technique for random discontinuities, the author has founded the space construction, provided the porosity
    structure's physics background in rock mass for the research to rock mass hydraulics problem and got the distribution of jointed trace in 3D space.2. Basic theory of interface stress element method is systemically formulated, which include mathematics foundation, mechanical foundation, stress model, displacement model, dominant equation, formula, solution method of discontinuous models and simulation of discontinuity of interface stress element method.3. The utility of interface stress element in seepage flow is formulated, and the difference of head is assumed to be accumulated on interface, so establish discrete model with block element and interface stress element to discrete the seepage flow into platelet. ? when interaction of seepage flow and displacement fields is no consideration, it should calculate the displacement fields at first, then look at osmotic pressure as a kind of extra pressure and make stress analysis of structure. For joint network, the osmotic pressure usually operate on the top and bottom surface as dint and it will vertically operate on the joint surface. (2) when proceeding coupling analysis of two fields mentioned above, the seepage flow and displacement fields arrange the same mesh reign the calculation scope of displacement fields, because the calculation scope of seepage flow is larger than calculation scope of displacement fields. But beyond the reach of that district out of the scope, a mesh of seepage flow is only arranged. When proceeding the seepage flow, the block element material in mesh is used as equivalent continuum models, then adopt permeability tensor of anisotropy to modify by iterating because of influence of deformation. (3) In this paper, interface stress element method and 2D fractured network is used to process discontinuous models seepage problem. It is the first time to construct a program with interface stress element method, 3D network computational simulating technique for random discontinuous and rock mass hydraulics to get the seepage path and water head in the fractured rock mass, which is innovational theoretically. The program is efficient and the result is correct by which used in rock mass of left dam shoulder in Jinping stage one hydropower station and the result is correct. The interface stress element method can establish the seepage model with divided mode and it also can establish a mode
    consistent with actual head of water. It can get seepage path of fractured network and distribute of head of water, which have important meaning to searching and stability judge of key blocks.4. An 3D—FEM analysis of high slope excavation in Left Abutment of Jinping stage one hydropower station is carried out with a program 3D-a, and stress and displacement of high slope is modeled in detail at spandrel groove and cable-crane platform of left abutment. (D The result of analysis shows that tensile stress zone exists at top of slope surface after excavation. The transform from high distance to the low distance become large one by one in order. The biggest deformation rebound of two sides is 14mm, the biggest deformation to slope outside is 5 mm, the biggest deformation rebound in the slope excavation is 6mm, the biggest deformation to slope outside is 3 mm. the rock mass deformation in the horizontal direction and vertical direction appears at the bottom of spandrel groove and the cable-crane platform;excavation of spandrel groove leads to unloading relaxation and deterioration of surface rock mass in the mountain No. 5, and the large block above the fault F42-9 will be a potential threat, all the above will be the focal point of slope support at excavating step by step.the biggest deformation rebound of two sides is 14mm, the biggest deformation to slope outside is 5 mm, the biggest deformation rebound in the slope excavation is 6mm, the biggest deformation to slope outside is 3 mm. (2) after excavation of spandrel groove, the tensile stress zone exists in each step the most deep of tensile stress zone is 7m;the biggest tensile stress is 0.2 MPa, which appears 1885m platform. The tensile stress magnitude is 0.1 MPa, its depth is 3~4m, which appears big area in upstream slope, the stress is distributed again in cable-crane platform, the biggest deformation rebound increase to 21mm, the biggest deformation to slope outside is 8 mm;the biggest deformation rebound from 1960m to 1885m with slope excavation is 30mm, the biggest deformation to slope outside is 17 mm, the biggest deformation rebound at upstream slope and downstream slope is 30~34mm;the biggest deformation rebound at bottom of spandrel groove is 41mm. After slope excavation of upstream slope and downstream slope, the displacement from upstream slope to downstream slope is 5—10mm,VI
    the displacement from downstream slope to upstream slope is 8— 16mm.5. According to stability analysis of slope excavation above, supporting measures after slope excavation is carried out, include combination supporting measures of pre-stressed cable, the piles with pre-stressed anchor cables, anchorage hole and Drain to cut the water.
引文
[1] 李智毅,杨裕云.[程地质学概论[M].北京:中国地质大学出版社,1994.
    [2] 崔政权,李宁.边坡工程—理论与实践最新发展[M].北京:中国水利电力出版社,1999.
    [3] 汝乃华,姜忠胜.大坝事故与安全.拱坝[M].北京:中国水利水电出版社,1995:90-92.
    [4] 汝乃华,姜忠胜.大坝事故与安全.拱坝[M].北京:中国水利水电出版社,1995:64-65
    [5] BellierJ, Londe R TheMalpassetdam, engineering foundation [J]. Conf. Proc. the Evaluation of Dam Safety, 1976.
    [6] Wittke W, Leonards GA. Modifiedhypothesis for failure of Malpasset dam [J]. Int. Workshoopon Dam Failure, Purdue University, West lafeyette, 1985.
    [7] 王恩志,孙役,黄远智等.三维离散裂隙网络渗流模型与实验模拟[J].水利学报,2002(5):37-40.
    [8] 陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].东北师范大学出版社,1995.
    [9] Snow D T. A parallel plate model of fracture permeable media[D]. Berkeley: University of California. 1965.
    [10] Louis C A. Study of groundwater flow in jointed rock and its influence on the stability of rock masses[R]. London: Rock Mechanics Research Report 10, Imperial College. 1969.
    [11] Lomize G M. Flow in Fractured Rocks [M]. Moscow: Gosenergoizdat. 1951.
    [12] Louis, C., A study of groundwater flow in jointed rock and its influence on the stability of rock masses[R], Rock Mech. Res. Rep. 10, Imp. Coll., London, 1969.
    [13] Coakley, K., K. Muralidhar, J. C. S. Long, and L. R. Myer, Equivalent permeability of statistically simulated single fractures [A], Proc. Of the Conf. On Geostatistical, Sensitivity, and Uncertainty Methods for Ground-Water Flow and Radionuclide Transport Modeling, San Francisco, California, Sept. 15-17, 1987, edited by B. E. Buxton, pp. 441-469, Battelle Press, Columbus, Ohio, 1987.
    [14] Brown, S. R, Simple mathematical model of a rough fracture[J], I. Geophys. Res., 1995, 100(B4): 5941-5952.
    [15] Brown S R. Fluid flow through rock joints: the effect of surface roughness[J]. Journal of Geophysical Research, 1987, 92(B2): 1337-1347.
    [16] Zimmerman, R. W., S. Kumar, and GS. Bodvarsson, Lubrication theory analysis of the permeability of rough-walled fractures[J], Int. J. Rock Mach. Min. Sci & Geomech. Abstr., 1991, 28(4): 325-331.
    [17] Hakami, E., and E. Larsson, Aperture measurement and flow experiments on a single nature fracture[J], Int. J. Rock Mech. Min. Sci.&Geomech. Abstr., 1996, 33(4): 395-404.
    [18] 仵颜卿.岩体水力学基础(二)——岩体水力学的基本理论[J],水文地质工程地质,1997,24(1):41-45.
    [19] Witherspoon. E A, etal, New approaches to problems of fluid flow in fractured rock mass, Proc. U. S. Symp.Rock Mech, 22nd, 1981.
    [20] Louis C, Maini Y N T.Determination of in situ hydraulic parameters in jointed rock[C].Proc.2nd Congr.ISRM,1970 (1) .
    [21] 王媛,速宝玉。裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1).
    [22] Louis, C. Rock Hydraulics in Rock Mechanics[A], Edited by L. Muller, Springer-Verlag, Vienna, 1974.
    [23] 仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质,1995(6).
    [24] 徐卫亚.边坡及滑坡环境岩行力学与工程研究[M],北京:中国环境科学出版社,2000.
    [25] 仵颜卿,岩体水力学基础(一),岩体水力学基本问题[J],水文地质工程地质,1996(6):24-28.
    [26] Hsieh P, Neumann S P, Simpson E S, Stiles G. Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media, 2, Methodology with application to fractured rocks[J]. Water Resources Research, 1985: 21(11), 1667-1676.
    [27] Snow, D.T. Three-hole pressure test for anisotropyc foundation permeability [J], Felsmech. lngenieurgeol., 1966, 4(4), 198-314.
    [28] Louis C. and Y.N.T. Maini, Determination of in situ hydraulic parameters in jointed rock[A], Proc. 2nd congr. ISRM, 1970.
    [29] Oda, M. Permeability tensor for discontinuous rock masses[J], Geotechnique, 1985, 35(4): 483-495.
    [30] Hsieh, P. and S. P. Neumann, E. S. Simpson andG Stiles, Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media, 1, Theory[J] Water Resour. Res. 1985x, 21(11), 1655-1665.
    [31] Harstad H, Teufel LW, Lorenz J C. Characterization and simulation of naturally fractured tight gas sandstone[A]. Technical Conference & Exhibition held in Dallas[C], [s.l.]: [s.n.], 1995.
    [32] 田开铭、万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社.1989.
    [33] 仵彦卿,张悼元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [34] 朱学愚,谢春红.地下水运移模型[M].北京:中国建筑工业出版社,1990.
    [35] 肖裕行,王泳嘉,卢世宗等.裂隙岩体水力等效连续介质存在性的评价[J] ,岩石力学与工程学报,1999,18(1):75-80.
    [36] Barenblatt G I, Zheltov I P, Kochina I N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [J]. Journal of Applied Mathematics and Mechanics, 1960, 24: 852-864.
    [37] Warren, I. E., and P. J. Root, The behavior of naturally fractured reservoirs [J], Soc. Pet. Eng. 1., 1963, (3): 245-255.
    [38] 赵红亮.裂隙岩体三维网络流的渗径搜索,吉林大学硕士学位论文,2003.
    [39] Neuman, S.P., Stochastic continuum presentation of fractured rock permeability as an alternative to the REV and fracture network concepts[A], in Proc. of the 28th U.S. Symposium on Rock Mechanics[C], edited by I Farmer et al., pp. 533-561, A.A Balkema, Brookfield, Vt., 1987.
    [40] Bibby, R., Mass transport of solutes in dual-porosity media, Water Resour. Res.,1981, 17(4): 1075-1081.
    [41] Stafford, P., L. Torah, L. McKay, Influence of fracture truncation on dispersion: A dual permeability model [J]. 1. of Contaminant Hydrology, 1998, 30.
    [42] Bai, M.D. Elsworth, J-C. Roegiers, Multi porosity/mult permeability approach to the Simulation of naturally fractured reservoirs[J], Water Resources Research, 1993, 29: 6, 1621-1633.
    [43] Huyakorn P S. Finite element techniques for mode ling groundwater flow in fracture daquifers [J]. Water Resources Research, 1983,19 (5): 854-863.
    [44] Neretnieks, I., H. Abelin, L. Birgersson, L. Moreno, A. Rasmuson, and K. Skagius, Chemical transport in fractured rock[A], in Proceedings of Advances in Transpor phenomena in porous media[C], NATO Advanced Study Institute, Newark, Del., 1985.
    [45] 王恩志,王洪涛.双重裂隙系统渗流模型研究,岩石力学与工程学报[J],1998,17(4):400-406.
    [46] 杜广林,周维垣,赵吉东.裂隙介质中的多重裂隙网络渗流模型[J],岩石力学与工程学报.2000(19):1014-1018.
    [47] 陈钟祥,刘慈群.双重孔隙介质中两相驱替理论[J].力学学报,1980,12(2):100-119
    [48] 1966..
    [49] Snow D. Rock fracture spacing, openings and porosities [J]. J. Soil Mech. Founda. Div. ASCE, 1968, 94: 73-91.
    [50] 张有天.从岩石水力学观点看几个重大工程事故[J],水利学报,2000(5)
    [51] 万力,李定方,李吉庆.三维裂隙网络的多边形单元渗流模型[J].水利水运科 学研究,1993,(4):347-353.
    [52] 王恩志,岩体裂隙的网络分析及渗流模型[J],岩石力学与工程学报,12(3)1993,214-221.
    [53] 张有天,刘中.降雨过程裂隙网络饱和/非饱和非恒定渗流分析[J],岩石力学与工程学报,1997,16(2):104-111.
    [54] 毛昶熙,陈平,李祖贻.岩石裂隙渗流的计算与试验[J].水利水运科学研究,1984,(4).
    [55] 柴军瑞,仵彦卿.多重裂隙网络渗流模型研究[J],煤田地质与勘探,2000,28 (2).33-36
    [56] Romero, L., L. Moreno, and 1. Neretnieks, Nuctran: A computer program to calculate radionuclide transport in the near field of a repository[R], SKB Arbetsrapp. AR-95-14, Swed. KSrnbrlnslehautering AB, Stockholm, 1995.
    [57] Cocas, M.C., E. Ledoux, G de Marsily, A. Barbreau,只Calmels, B. Gaillard, and R. Margritta, Moedling fracture flow with a stochastic discrete fracture network: Calibration and validation, 2. The transport model [J],water Resour. Res, 1990, 26(3): 491-500.
    [58] Dershowitz, W.S., Rock mechanics approaches for understanding flow and transport pathways(A], paper presented at EUROCK'96, ISRM International Symposium on prediction and Performance in Rock Mechanics and Rock Engineering, Int. Soc. of Rock Mach., Torino, Italy, September 2-5, 1996.
    [59] Berkowitz, B., 1. Beer, and C. Braester, Continuum models for contaminant transport in fractured porous formations [J], Water Resour. Res., 1988, 24(8): 1225-1236.
    [60] 王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [61] 周志芳,李艳.解裂隙水一定问题的混合网络有限元法[J].河海大学学报,1996,(3).
    [62] 杨太华,孙钧.岩体裂隙非规则几何水力学特性研究[J].岩土工程学报,1997,19(4):10-14.
    [63] 莫海鸿,林德璋.裂隙介质网络水流模型的拓扑研究[J].岩石力学与工程学报,1997,16(2):97-103.
    [64] 王洪涛,李永祥.三维随机裂隙网络非稳定渗流模[J].水利水运科学研究,1997,(2):139-145.
    [65] 周创兵,熊文林.不连续面渗流与变形耦合的机理研究[J].水文地质工程地质,1996,23(3):14-17.
    [66] Cacas M C, Ledoux E, de Marsily G, Tille B, Barbreau A, Durand E, Feuga B, Peaudecerf P. Moedling fracture flow with a stochastic discrete fracture network: Calibration and validation, 1. The flow model[J]. Water Resources Research, 1990, 26(3): 479-489.
    [67] Herbert A J, Gale A, Lanyon G, Macleod R. Modeling for the Stripa site characterization and validation drift inflow: Prediction of flow through fractured rock[R]. Stockholm: Swedish Nuclear Power and Waste Management Company 1991.
    [68] La Pointe, P.R., P. Walmann, and S. Follin, Estimation of effective block conductivities based on discrete network analyses using data from the Aspd site[R], SKB Tech. Rep. 95-15, Swed. Nucl. Power and Waste Manage. Co., Stockholm, 1995.
    [69] Long, J. C. S., 1. S. Remer, C. R. Wilson, and P. A. Witherspoon, Porous media equivalents for networks of discontinuous fractures [J], Water Resour. Res., 1982, 18(3), 645-658.
    [70] Jing, L., O. Stephansson, Network topology and homogenization of fractured rocks[A], in Fluid Flow and Transport in Rocks: Mechanisms and effects[C], Edited by B. Jamtveit and B.W.D. Yardley, Chapman & Hall, London, UK, 1997.
    [71] 肖裕兴,王泳嘉,卢世宗等.裂隙岩体水力等效连续介质中物理量的讨论[J].岩士力学.1997,18(4),13-17.
    [72] 肖裕兴,王泳嘉,王思敬等.裂陈岩体水力离散介质网络的建立[J].岩石力学与工程学报,1998,17(4):412-418.
    [73] 肖裕兴,王泳易,卢世宗等.裂晾岩体水力等效连续介质存在性的评价[J].岩石力学与工程学报,1999,18(1):75-80.
    [74] Wang, M., Discrete fractures fluid flow modeling and field applications in fractured rocks[D], Univ. of Arizona, Arizona, U.S.A., 2000.
    [75] Goodman R E.不连续岩体中的工程地质方法[M].北方交通大学隧道与地质教研室译.北京:中国铁道出版社,1980.
    [76] 孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [77] 潘别桐,徐光黎等.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993.
    [78] KulatilakePHSW, etal.Joint network modeling with a Validation exercise in Stripa Mine Sweden[J]. Int J Rock Mech Sci & Geomech Abstr, 1993.
    [79] 陈剑平,肖树芳,王清等.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [80] 伍法权.统计岩体力学原理[M].武汉:中国地质大学出版社,1993.
    [81] 陈剑平,王清,肖树芳.岩体裂隙网络分数维计算机模拟[J].工程地质学报,1995,3(3):79-85.
    [82] 陈剑平.岩体裂隙网络分形特征研究[J].中国科协第二届全国青年学术讨论会文集[C].1995:482-485.
    [83] Kawai T. A new discrete model for analysis of solid mechanics problems. Seisan Kenkyu, 1977,19(4).
    [84] 钱令希,张雄.结构分析中的刚体有限元法.计算结构力学及其应用,1981,8(1).
    [85] 卓家寿,赵宁.不连续介质静、动力分析的刚体—弹簧元法.河海大学学报,1993,21(5).
    [86] 高培正,动力弹塑性刚体界面元法.工程力学,1996,13(4).
    [87] 卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    [88] Goodman R E, Shi G H. Block Theory and Its Application to Rock Engineering [M]. Prentice-Hall, Englewood Cliffs, N J, 1985.
    [89] 石根华.块体系统不连续变形数值分析新方法[M].任放译.北京:科学出版社,1993.
    [90] Goodman R E.不连续岩体中的工程地质方法[M].北方交通大学隧道与地质教研室译.北京:中国铁道出版社,1980.
    [91] 石根华.数值流形方法与非连续变形分析[M].裴觉民译.北京:清华大学出版社,1997.
    [92] 雅砻江锦屏一级水电站可行性研究报告—3地质工程.国家电力公司成都勘测设计研究院,2003.
    [93] 黄润秋,严明等.锦屏一级水电站枢纽区工程边坡稳定性及支护对策研究.成都理工大学,2005.
    [94] 王士天,黄润秋,李渝生等.雅砻江锦屏水电站重大工程地质问题研究[M].成都:成都科技大学出版社,1998:15-23.
    [95] 陈剑平,岩体随机不连续面三维网络数值模拟技术,岩土工程学报,2001,23(4):397-402.
    [96] 陈剑平.窗口不连续面迹长概率估算法,工程地质学报,1996,4(1):8-13.
    [97] 王良奎,陈剑平,卢波.样本窗口中不连续面体积密度的评价与应用,煤田地质与勘探,2002(6):42-44.
    [98] 陈剑平.窗口不连续面迹长概率估算法[J].工程地质学报,1996,4(1):8-13.
    [99] 卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    [100] Kawai T. Some consideration on the finite element method, Intj. for mum. meth. In engn., 1980,10 (16): 81-120.
    [101] Kawai T. A discrete model for analysis of solid mechanics problem Seisan Kenkyu, 1977,29(4): 208-210.
    [102] Kawat T. New discrete models and their application to seismic response analysis of stme4aes, Nuclear engineering and design, 1978, 48: 207-229.
    [103] Kawai T and Toi Y. A new elm in discrete analysis of plane strain problems, Seisan Kenkyu, 1977,29(4): 204-207.
    [104] 武清玺.基于界面元模型的响应面法及其在大型结构可靠度分析中的应用,河海大学博士学位论文,1999.
    [105] 方义琳.任意网络的界面元法及应用,河海大学博士学位论文,1998.
    [106] 赵宁.不连续介质的力学模型及其应用,河海大学博士学位论文,1995.
    [107] 王卫标.随机界面元模型及方法分析研究,河海大学硕士论文,1998.
    [108] 卓家寿,姜弘道.带有夹层岩基的三维弹塑牲分析,华东水利学院学报,1979,2:1-20.
    [109] 卓家寿,王荫堂.具有软弱结构面的岩基非线性分析[J] ,岩石力学与工程学报,1983 2(1):49-56.
    [110] 张雄.不连续介质力学分析的块体元一夹层模型[J] ,力学学报,1997,29(3):323-331.
    [111] 卓家寿.弹塑性力学中的广义变分原理[M] ,北京水利水电出版社,1989.
    [112] 卓家寿等.裂隙岩体渗流场与位移场的耦合作用分析[J] ,中国岩石力学与工程学会第四次学术大会论文集,北京,中国科学技术出版社,1996,197-203.
    [113] 卓家寿,章青.不连续介质力学问题的界面元法[M] .北京:科学出版社,2000.
    [114] 朱伯芳,有限单元法原理与应用[M] ,北京:中国水利水电出版社,1998:1-25.
    [115] 张倬元,王士天,王兰生.工程地质分析原理[M],地质出版社,1981:308-381.
    [116] 尚岳全,黄润秋.工程地质研究中的数值分析方法[M],成都:成都科技大学出版社,1993.
    [117] 唐辉明,晏鄂川,胡新丽.工程地质数值模拟的理论与方法[M].中国地质大学出版社,2002.
    [118] 黄润秋,王士天,胡卸文等.澜沧江小湾水电站高拱坝坝基重大工程地质问题研究[M].成都:西南交通大学出版社.1996:2-30.
    [119] 祁生文,伍法权,兰恒星.锦屏一级水电站普斯罗沟左岸深部裂缝成冈的工程地质分析[J].岩土工程学报,2002,24(5).
    [120] 陈胜宏.三峡工程船闸边坡的弹粘塑性自适应有限元分析[J],岩土力学,1998,19(1).
    [121] G·哥得赫.张清、张弥译,有限元法在岩土力学中的应用[M],北京:中国铁道出版社,1983:1-56.
    [122] 隋旺华.岩层移动计算中应用FEM的地质与岩石力学问题[J].江苏煤炭,1994(1):39-43.
    [123] 崔政权、李宁,边坡工程——理论与实践最新发展[M],中国水利水电出版社,1999:1-34.
    [124] 刘红帅,薄景山,耿冬青等.岩质滑坡稳定性有限元分析[J].岩十力学,2004(11)
    [125] 汪小刚,夏万仁,郭映龙等.水电工程高边坡稳定问题研究现状和发展方向[J],水力发电,1994(5):15-18.
    [126] 黄润秋,许强,陶连金等.地质灾害过程模拟和过程控制研究[M],科学出版社,2002.11:1-95.
    [127] 何满潮,王树仁。大变形数值方法在软岩工程中的应用[J] .岩土力学,2004(2)。
    [128] 李晓春.小湾水电站坝肩岩体裂隙网络渗流的三维网络与无网格法耦合模型研究,吉林大学博士学位论文,2005.
    [129] 王良奎.溪洛渡水电站坝肩节理岩体变形参数模型研究,吉林大学博土学位论文,2002.
    [130] 徐佩华.锦屏Ⅰ级水电站近坝高陡反倾岸坡稳定性研究,吉林大学硕士学位论文,2003.
    [131] 赵红亮.裂隙岩体三维网络流的渗径搜索,吉林大学硕士学位论文,2003.
    [132] 张雪东.呷爬滑坡稳定性评价与治理方案设计,吉林大学硕士学位论文,2004.
    [133] 刘传正.地质灾害防治工程设计的基本问题[J].水文地质工程地质,1995,22(1):7-11.
    [134] 刘传正.论地质灾害防治工程的地质观与工程观[J].工程地质学报,1997,5(4):368-374.
    [135] 林宗元主编.岩土工程勘察设计手册[M].沈阳:辽宁科学技术出版社,1996.
    [136] 秦四清.滑坡工程治理优化设计与信息化施工[J].中国地质灾害与防治学报,1999,10(2):1-9.
    [137] 黄润秋,严明.锦屏一级水电站枢纽区工程边坡稳定性及支护对策研究.成都理工大学,2005.
    [138] 唐辉明,马淑芝,刘佑荣等.三峡工程库区赵树岭滑坡稳定性与防治对策研究[J].地球科学,2002,27(5):621-625.
    [139] 桂树强,殷坤龙,罗平.预应力锚索抗滑桩治理滑坡应用研究[J].岩土力学,2003(24):239-244..
    [140] 刘小丽,周德培,杨涛.预应力锚索抗滑桩设计中确定锚索预应力值的一种方法[J].工程地质学报,2002,10(3):317-320.
    [141] 宋从军,周德培,削世国.预应力锚索地梁的内力计算[J].西南交通大学学报,2001(5):486-490.
    [142] 夏雄,周德培.预应力锚索地梁在边坡加固中的应用实例[J].岩土力学,2002,23(2):242-245.
    [143] 周德培,王建松.预应力锚索抗滑桩内力的一种计算方法[J].岩土力学与工程学报,2002,21(2):242-245.
    [144] 储成伍.预应力锚索桩技术在滑坡整治中的应用[J].铁道标准设计,2000,20(4):33-35.
    [145] 田景贵,范草原.预应力锚索抗滑桩的机理初步分析及设计[J].重庆交通学院学报,1998,17(4):60-64.
    [146] 王化卿,李传珠,刘励忠等.预应力锚索抗滑桩设计与施工[M].滑坡文集, 1990:34-41.
    [147] 马连城,郑桂斌.我国水利水电工程高边坡的加固与治理[J] .水利发电,2000(1).
    [148] 李同春,张丹,周桂云等.洪家渡2号塌滑体加固抗滑桩及锚固洞有限元内力分析[J] ,河海大学学报,2004(2).
    [149] 张杰,刘强.糯扎渡水电站坝体下游右岸坡稳定分析及支护[J] .云南水利发电,2003(4).
    [150] 陈洪凯,唐红梅.三峡工程永久船闸排水洞中排水孔优化布设模式研究[J],重庆交通学院学报,1998(1).
    [151] 许光祥.永久船闸排水洞中仰角、铅直排水孔排水效果[J] ,中国三峡建设,1999(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700