用户名: 密码: 验证码:
装备零件激光再制造成形零件几何特征及成形精度控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再制造技术在资源节约型和环境友好型和谐社会建设中显示出越来越重要的作用,各种再制造成形技术也正得到大力发展。其中,激光再制造成形技术克服了传统修复技术的不足,在机械零部件的再制造中得到日益广泛的应用,对于装备零件的维修保障工程发展具有重要军事意义和应用价值。
     本文侧重于激光再制造成形的工艺过程控制原理及应用研究。基于模块化思想,提出装备零件激光再制造成形模块化分类成形修复研究的方法,研究激光再制造成形结构几何特征并控制成形结构的形状,以提高修复结构的几何精度。针对损伤零件几何形状恢复技术进行研究,以实现多种损伤装备零件缺损部位预期形状修复结构的快速、高精度和自动化激光再制造成形为研究目的,构建了装备零件战场快速再制造成形软硬件系统,研究了基于激光再制造成形的结构几何形状的形成和变化机理,解决装备零件的激光再制造成形中修复结构局部几何特征不均匀的问题,建立工艺参数局部调整和成形结构几何特征变化的定量关系,并对表面、薄壁结构和三维立体结构三种类型损伤零件进行了激光再制造成形实际应用。
     本文的主要研究结论如下:
     以高机动性灵活性、装备现场保障、快速高精度成形修复为特点,构建了激光再制造成形软硬件系统,为激光再制造成形技术应用奠定坚实的硬件基础。系统主要由DLA60100型全固态激光器、AX-V6型机器人和AX-ST离线编程软件组成,该系统解决了复杂曲面上激光表面熔覆的位置精度问题,提高了激光扫描路径的位置精确性和编程灵活性;设计了环形送粉通道与光束同轴和四管环绕光束同轴两套方案的同轴送粉喷嘴,以解决侧向送粉在粉末利用率、成形效率和复杂路径的各向异性方面的不足。
     提出对多种损伤装备零件进行激光再制造模块化分类成形修复的研究思路,系统研究了线、表面、薄壁成形结构和三维立体成形结构四种类型的激光再制造成形结构的几何特征,为损伤零件几何形状恢复技术应用建立理论基础。从激光熔池的能量输入、粉末材料输入和熔池基面形状三个方面说明成形结构局部几何特征不均匀现象的形成原因,发现在激光再制造成形中,实际工艺参数和设定参数之间的差异导致熔池的形状变化是成形结构变形的主要原因;提出通过定量改变成形结构局部的工艺参数来改善成形结构的局部几何特征不均匀的控形方法。
     系统研究了通过控制结构局部工艺参数的方法来实现预期形状结构的成形和改善成形结构的局部几何特征不均匀的方法,提高了修复结构的形状精度。建立了激光再制造成形主要工艺参数包括激光输出功率、送粉量和激光扫描速度与成形结构几何特征之间的定量关系,建立了激光成形结构形状预测模型;通过与试验结果对比,验证了该模型的预测精度较高,预测误差在5%以内;提出了激光成形结构形状的具体方法和实际应用情况,主要控形方法为控制激光扫描速度、送粉量、熔池基面形状变化。
     基于控形方法对复杂表面磨损、薄壁结构局部缺口和局部立体结构缺损三种损伤类型的典型装备零件进行了快速、高精度和自动化激光再制造成形应用研究。复杂表面损伤修复的典型零件为某型坦克发动机凸轮轴,解决了其凸轮桃尖磨损造成升程超差的问题;典型薄壁结构激光再制造成形应用为圆筒缺口修复;而零件立体结构缺损的激光再制造成形典型零件为齿牙断裂的低载直齿轮,肋板有深裂纹的结构支撑件;上述应用实践中均实现了预期形状尺寸的结构激光高精度成形,且提出了实现高形状精度成形的关键工艺措施,对类似结构和损伤零件的激光再制造成形修复具有重要参考意义。
The remanufacturing engineering technologies have been widely used with great success for the development of resource conservation and environmental protection society. A lot of remanufacturing forming technologies has improved too. Mechanical parts remanufacturing technology with high-energy beam such as laser was widely used and it overcome the shortcoming of other traditional repair technologies.
     The quick repairing of local damaged equipment parts by laser remanufacturing forming technology has important military significance and applied value to repair and supply engineering of equipment parts. A classify research method about modularization of laser remanufacturing forming equipment parts was introduced. The typical technological process of laser remanufacturing forming was established, and its key elements were been analyzed too. The paper aimed at restoring of geometrical form of damaged parts, represented the laser forming technique of local structure formed at part damage region with expectant shape. As a result, a software and hardware system of laser remanufacturing forming was build, and the forming and deforming mechanics of laser remanufacturing forming structure were been expounded. In addition, the problem of non-uniform geometric character of formed structure in laser remanufacturing forming process was been solved. The practical applications of laser remanufacturing forming damaged surface, thin-wall structure, and local broken three-dimensional structure were been introduced too.
     The main research conclusions are as follows:
     With the features such as high flexibility, part repair on site and rapid forming with high dimensional accuracy, the laser remanufacturing forming software and hardware system was been built. The system was the base of application of laser remanufacturing forming technology. The system mainly composed with DLA60100 solid-state laser, AX-V6 robot, and AX-ST off-line programming software. The location accuracy of laser scan path and adaptability of forming path programming were been increased by using this system. Two designs of coaxial powder feeding nozzle with ring-shaped powder deliver passage and four pipes surround laser beam were represented, and the shortages of lateral powder feeding nozzle such as poor powder usage, low formed efficiency and aeolotropism at laser scanning path were overcame.
     The theoretical basis of applications of damaged parts geometrical shape restores technology was system researched, which composed with geometry research of laser remanufacturing forming line, surface, thin-wall structure and 3D structure. A nonuniform phenomenon of geometrical characters of laser formed local structure was discovered, and its formative reasons were explained by analyzing molten-pool laser energy input, powder particles input and the shape of molten-pool bounded surface shape. The results show that the difference between actual processing parameters and ideal processing parameters was the main reason that leads to nonuniform phenomenon of geometrical characters. A technologic method to avoid this nonuniform phenomenon by quantitative accurate control of processing parameters was been presented.
     The geometric shape control methods of laser formed structure were been investigated systematically. The dimensional accuracy of laser formed structure was notable increased by using these methods. The function between mainly processing parameters, such as laser power, laser scanning speed and powder feeding rate, and laser formed structure geometry was been built. A dimensional prediction model was been built based on energy conservation principle and equation of mass conservation of laser molten-pool. The model forecast accuracy was satisfied and with maximal 5% error by experimental verification. According to the model, the geometric shape control objects were follows: laser-scanning speed, powder feeding rate and molten-pool bondage surface shape.
     Using laser remanufacturing forming technology, a wear part surface with complex shape, a thin-wall structure with top notch and a part with local structure cracked were been repaired creatively. The successful repairing result of these equipment parts indicated that we have expanded the application range of laser remanufacturing forming technology. The typical part of surface damaged with complex shape was a camshaft of tank engine, and its worn cam face was shape restored. The typical laser remanufacturing forming thin-wall part was a thin-wall cylinder with a top notch, and typical local 3D structure cracked parts were a low-load spur gear with broken gear tooth and a strutting piece of airplane undercarriage with cracking ribbed panel. The reparative structures with prospective shape and high dimensional accuracy were laser formed, and the key technological operation of shape control of laser formed structure was been presented too. The researches of laser remanufacturing forming typical parts have important reference significance to remanufacturing other parts with similar shape or similar damage.
引文
[1]徐滨士,马世宁.论表面工程[A].全国第二届表面工程学术讨论会文集[C].1991
    [2]徐滨士,马世宁,刘世参,等.表面工程的应用和再制造工程[J],材料保护, 2000, 33(1): 1-4
    [3]徐滨士,马世宁,刘世参,等. 21世纪的再制造工程[J],中国机械工程, 2000, 11(1-2): 36-38
    [4]徐滨士,马世宁,刘世参,等. 21世纪设备维修工程的新进展--再制造工程[J],装甲兵工程学院学报, 2000, 14(1): 8-12
    [5]徐滨士,马世宁,刘世参,等.表面工程的进展与再制造工程[J],同济大学学报, 2001, 29(9): 1085-1091
    [6]徐滨士.绿色再制造工程及其在我国的应用前景[R],中国工程院‘工程科技与发展战略’咨询报告集. 2002
    [7]徐滨士.第一讲装备再制造技术[J].中国设备工程, 2007, 11
    [8]李国英.表面工程技术手册[M].北京:机械工业出版社, 1998 (12 ): 30-31
    [9]装甲兵工程学院编.徐滨士院士科研文选[M].北京:机械工业出版社, 2001, 3
    [10]陈贤杰.先进制造技术的发展与对策[A].先进制造技术论文集[C],北京:机械工业出版社, 1996, 37
    [11]徐滨士.发展再制造工程,实现节能减排[J].装甲兵工程学院学报, 2007, 21(5): 1-5
    [12]国家自然科学基金委员会工程与材料学部学科发展战略研究报告(2006-2010).机械与制造科学[M].北京:科学出版社, 2006
    [13]徐滨士.纳米表面工程[M].北京:化学工业出版社, 2004, 1
    [14]徐滨士.发展装备再制造,提升军用装备保障力和战斗力[J].装甲兵工程学院学报, 2006, 20(3): 1-5
    [15]马世宁,孙晓峰,朱胜,等.机床数控化再制造[C].首届机电装备再制造工程学术研讨会, 2004 , 24-28
    [16]陈贤杰.先进制造技术的发展与对策[A].先进制造技术论文集[C],北京:机械工业出版社, 1996, 37
    [17]Ashly S. Rapid Prototyping is coming of age [J]. Mechanical Engineering, 1995, 117(7): 63
    [18]杨健.激光快速成形金属零件力学行为研究[D].西安:西北工业大学, 2004
    [19]王秀峰,罗宏杰.快速原型制造技术[M].北京:中国轻工业出版社, 2001, 212
    [20]王树杰.快速原型技术及其在铸造中的应用[J].铸造, 1998, 4: 23
    [21]潘东杰,黄列群,沈永华,等.快速成型--先进的现代化制造技术[J].铸造技术, 1999, 4: 12
    [22]傅仕伟,严隽琪,王成焘.快速成型技术及其在骨骼三维重构中的应用[J].上海交通大学学报, 1998, 32(5): 28
    [23]Kreutz E.W., Backes G., Gasser A., et al. Rapid prototyping with CO2 laser radiation[J]. Applied Surface Science, 1995, 86: 310-316
    [24]曾锡琴,朱小蓉.激光选区烧结成型材料的研究和应用现状[J].江苏技术师范学院学报, 2005, 6: 70-74
    [25]黄天佑,闻星火.快速成型技术及其在铸造中的应用[J].铸造, 1995, 2: 38
    [26]赵国群,王广春,贾玉玺.快速成形与制造技术的发展与应用[J].山东工业大学学报, 1999, 29(6): 536
    [27]李鹏.基于激光熔覆的三维金属零件激光直接制造技术研究[D].武汉:华中科技大学, 2005
    [28]Wanke M.C., Lehmann O., Muller K., et al. Laser Rapid Prototyping of Photonic Band-Gap Microstructures[J].Science, 1997, 275:1284
    [29]Kahlen F.J., Kar A..Tensile Strengths for Laser-Fabricated Parts and Similarity Parameters for Rapid Manufacturing[J]. Journal of Manufacturing Science and Engineering,2001, 123:38-44
    [30] Khaing M.W., Fuh J.Y.H., Lu L.. Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts[J]. Journal of Materials Processing Technology, 2001, 113: 269-272
    [31] Majumdar J.D., Pinkerton A., Liu Z., et al. Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel[J]. Applied Surface Science, 2005, 247:320-327
    [32] Paul C.P., Jain A., Ganesh P., et al. Laser rapid manufacturing of Colmonoy-6 components[J].Optics and Lasers in Engineering, 2006, 44:1096-1109
    [33] Syed W.U.H., Pinkerton A.j., Li L.. Combining wire and coaxial powder feeding in laser direct metal deposition for rapid prototyping[J]. Applied Surface Science, 2006, 252:4803-4808
    [34] Santos E.C.,Shionmi M., Osakada K., et al. Rapid manufacturing of metal componentsby laser forming[J]. International Journal of Machine Tools & Manufacture, 2006, 46: 1459-1468
    [35] Paul C.P., Ganesh P., Mishra S.K.,et al. Investigating laser rapid manufacturing for Inconel-625 components[J].Optics & Laser Technology, 2007,39:800-805
    [36]杨健,黄卫东,陈静,等. TC4钛合金激光快速成形力学性能[J].航空制造技术, 2007, 5:73-76
    [37]Zhong M L, Liu W J, Ning G G, et al. Laser direct manufacturing of tungsten nickel collimation component[J]. J Mater Process Technol, 2004, 47: 167-173
    [38]Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping[J]. Annals of CIRP, 1998, 47( 2): 525- 540
    [39]Wohlers T. Rapid Prototyping &Tooling State of the Industry [C].Second International Conference on Rapid Prototyping & Rapid Manufacturing, Beijing, China, 2002
    [40] Qian M., Lim L.C., Chen Z.D., et al. Parametric Studies of Laser Cladding Process[J]. Journal of Materials Processing Technology, 1997, 63: 590-593
    [41]Kaplan A.F.H., Groboth G.. Process Analysis of Laser Beam Cladding[J].Journal of Manufacturing Science and Engineering, 2001, 123: 609-614
    [42]关振中.激光加工工艺手册[M].北京:中国计量出版社, 1998, 200 -230.
    [43] Sexton L., Lavin S., Byrne G., et al. Laser cladding of aerospace materials[J]. Journal of Materials Processing Technology, 2002, 122: 63-68
    [44] Conde A., Zubiri F., Damborenea Y.J.D.. Cladding of Ni–Cr–B–Si coatings with a high power diode laser[J]. Materials Science and Engineering, 2002, A334: 233-238
    [45]Eboo M., Elinderments A.. Advanced in laser cladding technology[C].LIA conf. Los Angeles, March 1985.12-17
    [46]Hundal M. S. DFE. Current Status and Challenges for the Future Design for Manufacyurebility[J]. ASME, 1994:89-98
    [47]Snow D.B., Breinan E.M., Kear B.H.. Rapid solidification processing of super alloy using high power lasers[A]. Super alloys. In Proceedings Fourth International Symposium[C], Alaitors Publishing Div., Baton Rouge, LA, 1980, 189-203
    [48]Brown C.O., Breinan E.M., Kear B.H.. Method for fabricating articles by sequential layer deposition[P]. US Patent: 4323756, 1982
    [49]Schwendner K.I., Banerjee R., Collins P.C., et al. Direct laser deposition of alloys from elemental powder blends[J]. Scripta Materialia, 2001, 45(10): 1123-1129
    [50]Lewis GK., Nemec R.B., Milewski J.O., et al. Directed light fabrication[A]. Proceedingsof the ICALEO '94[C]. Laser Institute of America, Orlando, Florida, 1994:17-26
    [51]Milewski J.O., Lewis GK., Thoma D.J., et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition[J]. Journal of Materials Processing Technology, 1998, 75(1-3): 165-172
    [52]Romero J.A., Griffith M.L., Atwood C.L., et al. Laser engineered net shaping LENSTM for additive component processing[A]. Proceedings of the Rapid Prototyping and Manufacturing Conference[C]. Dearborn, Ml,1996: 23-25
    [53]Keicher D.M., Miller WD., Smugeresky J.E., et al. Laser Engineered Net Shaping (LENS): Beyond Rapid Prototyping to Direct Fabrication[A]. Proceedings of the 1998 TMS Annual Meeting[C], San Antonio, Texas, 1998: 369-377
    [54]Ashley S.. From CAD art to rapid metal tools[J]. Mechanical Engineering, 1997, 119(3): 82-87
    [55]Mazumder J., Schifferer A., Choi J.. Direct Materials Deposition: Designed Macro and Microstructure[J]. Materials Research Innovations, 1999, 3(3):118-131
    [56]Koch J.L., Mazumder J.. Rapid Prototyping by Laser Cladding[J]. The International Society for Optical Engineering, 1993, 2306: 556-565
    [57]Murphy M., Lee C., Steen W. M.. Studies in Rapid Prototyping by Laser Surface Cladding[J]. Surf Coat Technol,1991,49(1): 40-45 [58 ]Hand D.P., Fox M.D.T., Haran F.M., et al. Optical focus control system for laser welding and direct casting[J]. Optics and Lasers in Engineering, 2000, 34: 415-427
    [59]Arcella A.D.H.. FCz Laser Forming Titanium Components[J]. Advanced Materials and Processes, 1998, 153(5): 29-31
    [60]Simon P.. Aero Met implementing novel T process[J]. Metal Powder Report,1998, 53(2): 24-26
    [61]Atwood C.L., Griffith M.L, Harwell L.D., et al. Laser spray fabrication for net-shape rapid product realization[R]. Sandia Raeport: LDRD, 1999
    [62]Koch J., Jmazumder L.. Rapid prototyping by laser cladding[R], Orlando FL: ICALEO, 1993
    [63] Wohlers T.. Future potential of rapid prototyping and manufacturing around the world[J]. Rapid Prototyping Journal, 1995, 1(1): 4-10
    [64]Wu X., Mei J.. Microstructure and mechanical properties of laser-fabricated Ti6A14V samples[A], European Congress and Exhibition on Powder Metallurgy(PM2001)[C], Nice, France. 2001:213-218
    [65]Wu X., Sharman R., Mei J., et al. Direct laser fabrication and microstructure of aburn-resistant Ti alloy[J]. Materials and Design, 2002, 23(3): 239-247
    [66]Wu X., Mei J.. Near net shape manufacturing of components using direct laser fabrication technology[J]. Journal of Materials Processing Technology, 2003, 135(2-3): 266-270
    [67]Wu X., Liang J., Mei J., et al. Microstructures of laser-deposited Ti-6A1-4V[J]. Materials and Design, 2004, 25(2): 137-144
    [68]Xue L., Islam M.U.. Free-form laser consolidation for producing metallurgically sound and functional components[J]. Journal of Laser Applications, 2000, 12(4): 160-165
    [69]Sigel J., Dausinger F., Hugel H.. Optic device for generating metallic parts with the LAPS-J process[A]. Proceedings of the SPIE, The Int. Society for Optical Engineering [C]. 1997: 86-94
    [70]Zhong Minlin, Liu Wenjin, Ning Guoqing, et al. Laser direct manufacturing of tungsten nickel collimation component[J]. Journal of Materials Processing Technology, 2004, 147(2):167-173
    [71]宁国庆,钟敏霖,杨林,等.激光直接制造金属零件过程的闭环控制研究[J].应用激光, 2002, 22(2): 172-176
    [72]Li Yanmin, Yang Haiou, Lin Xin, et al. The influences of processing parameters on forming characterizations during laser rapid forming[J]. Materials Science and Engineering, 2003, 360(1-2): 18-22
    [73]李延民,李建国,杨海欧,等.金属零件激光直接成形[J].应用激光, 2002, 22(2): 140-144
    [74]贾文鹏,林鑫,陈静,等.空心叶片激光快速成形过程的温度/应力场数值模拟[J].中国激光, 2007, 34(9): 1308-1312
    [75]于君,陈静,谭华,等.激光快速成形工艺参数对沉积层的影响[J].中国激光, 2007, 34(7): 1014-1018
    [76]陈静.激光快速成形过程粉末送进及熔池演化的实时观察研究[D].西安:西北工业大学, 2004
    [77]谭华.激光快速成形过程温度测量及组织控制研究[D].西安:西北工业大学, 2005
    [78]杨海欧,林鑫,陈静,等.利用激光快速成形技术制造高温合金不锈钢梯度材料[J].中国激光, 2005, 32(4): 567-570
    [79]黄卫东,李延民,冯莉萍,等.金属材料激光立体成形技术[J].材料工程, 2002, 3: 40-43
    [80]姬生欣.激光熔覆直接制造不锈钢零件的工艺与性能研究[D].武汉:华中科技大学,2005
    [81]李鹏.基于激光熔覆的三维金属零件激光直接制造技术研究[D].武汉:华中科技大学, 2005
    [82]姚纯,胡进,史建军,等.改进刮板式送粉器用于激光直接金属沉积成形[J].机械制造, 2006, 44(504): 27-28
    [83]黄家胜.大功率激光熔覆快速成形工艺实验研究[D].江苏:苏州大学, 2006
    [84]杨泰平,胡乾午,曾晓雁.金属件激光直接成形中截面轮廓线的生成算法研究[J].电加工与模具, 2003, 6: 32-34
    [85]Zhang Yongzhong, Xi Mingzhe, Gao Shiyou, et al. Characterization of laser direct deposited metallic parts[J]. Journal of Materials Processing Technology, 2003, 142(2): 582-585
    [86]张永忠,章萍芝,石力开,等.金属零件激光快速成型技术研究[J].材料导报, 2001, 15(12): 10-13
    [87]王华明,张凌云,李安,等.先进材料与高性能零件快速凝固激光加工研究进展[J].世界科技研究与发展, 2004, 26(3): 27-31
    [88]张剑峰,沈以赴,赵剑峰,等. Ni基金属粉末激光快速制造的研究[J].航空学报, 2002, 23 (3): 221- 225
    [89]许勤,张坚.激光快速成型技术研究现状与发展[J].九江学院学报(自然科学版),2005, 1: 8-10
    [90]张永忠,席明哲,石力开,等.激光快速成形316L不锈钢的组织及性能[J].稀有金属材料与工程, 2002, 31(2): 103-105
    [91]陈静,林鑫,王涛,等. 316L不锈钢激光快速成形过程中熔覆层的热裂机理[J].稀有金属材料与工程, 2003, 32(3): 183-186
    [92]张凯,刘伟军,尚晓峰,等.激光直接快速成形技术的研究进展(下)--国内篇[J].工具技术, 2005, 39: 3-5
    [93]陈静,谭华,杨海鸥,等.激光快速成形过程熔池行为的实时观察研究[J].应用激光, 2005, 25(2): 77-81
    [94]张凯,刘伟军,尚晓峰,等.激光直接快速成形金属材料及零件的研究进展(上)--国外篇[J].激光杂志, 2005, 26(4): 4-8
    [95]Shin B. S.. A new rapid manufacturing process for multi-face high-speed machining[J]. The international journal of advanced manufacturing technology, 2003, 22: 68-74
    [96]姚山,曾锋,叶昌科,等.新的激光快速成形方法及应用[J].机械工程学报, 2007, 43(5): 230-234
    [97]王华明,张述泉,汤海波,等.大型钛合金结构激光快速成形技术研究进展[J].航空精密制造技术, 2008, 44(6): 28-30
    [98]张安峰,李涤尘,卢秉恒.激光直接金属快速成形技术的研究进展[J].兵器材料科学与工程, 2007, 30(5): 68-72
    [99]Labudovic M., Hu D., Kovacevic R.. A three dimensional model for direct laser metal powder deposition and rapid prototyping[J]. Journal of Materials Science, 2003, 38: 35- 49
    [100]Sarkar S., Mohan P. R., Chakraborty S., et al. Transport phenomena in laser surface alloying[J]. Journal of Materials Science, 2003, 38: 155-164
    [101]曾大文,谢长生.激光熔覆温度场和流场数值模拟研究现状和发展趋势[J].材料科学与工程, 1997, 15 (4): l-8
    [102]曾大文,谢长生.激光熔覆二维准稳态流场及温度场的数值模拟[J].金属学报, 1999, 35 (6): 604-610
    [103]刘振侠,黄卫东,万柏涛.送粉式激光熔覆数值模型基本问题研究[J].中国激光, 2003, 30(6): 567-570
    [104]曾大文,谢长生.激光熔池三维非稳态对流传热过程的数值模拟[J].激光技术, 2002, 26 (2): 102-105
    [105]邹德宁,雷永平,黄廷禄,等.移动热源条件下熔池内流体流动和传热问题的数值研究[J].金属学报, 2000, 4:387-390
    [106]Lin J., Hwang B.C.. Coaxial laser cladding on an inclined substrate[J]. Optics &Laser Technology, 1999, 31:571-578
    [107] Steen W.M., Weerasinghe V.M., Monson P.. Some Aspects of the Formation of Laser Clad Tracks[J]. SPIE, 1986, 650: 226-234
    [108]Hu Y.P., Chen C.W, Mukherjee, K.. Innovative Laser-Aided Manufacturing of Patterned Stamping and Cutting Dies: Processing Parameters[J]. Materials and Manufacturing Processes, 1998, 13(3): 369-387
    [109]卢建刚.激光熔覆成形薄壁试件的工艺和显微组织研究[D].长沙:湖南大学, 2004
    [110]杨洗陈,李会山,王云山,等.用于重大装备修复的激光再制造技术[J].激光与光电子学进展, 2003, 40(10): 53-57
    [111]张兴泉.激光再制造三维运动光束头[D].天津:天津工业大学, 2007
    [112]YANG Xichen, Zhao Xin, Wang Yunshan. New development of laser cladding system onarea for industrial application [J]. The proceedings of SPIE. 1996, 2888(6-7): 14-20
    [113]陈江,刘玉兰.激光再制造技术工程化应用[J].中国表面工程, 2006, 19(5): 50-55
    [114]陈光霞,卢尧君,曾晓雁. Nd:YAG激光器金属零件激光快速成型工艺研究[J].热加工工艺, 2006, 35(23): 9-11
    [115]叶和清,王忠柯,许德胜,等.碳钢件表面裂纹缺陷激光修复研究[J].中国激光, 2001, 28(11): 1045-1048
    [116]朱蓓蒂,曾晓雁,胡项,等.汽轮机末级叶片的激光熔覆研究[J].中国激光.1994, 21(6): 526-529
    [117]张松,康煌平,朱荆璞.鼓风机叶片激光熔覆的应用研究[J].中国激光, 1995, 22(5): 395-400
    [118]石世宏,王新林.激光熔覆化工阀门密封面的实验研究[J].激光技术, 1998, 22(6): 333-335
    [119]徐滨士,刘世参,刘学惠,等.离子喷涂及堆焊[M].北京:中国铁道出版社.1986
    [120]林学春,侯玮,张玲,等. 6 kW高效、高功率全固态连续波激光器[J].中国激光, 2007, 34: 900
    [121]彭钦军,张鸿博,薄勇,等. 1906 W高效准连续全固态激光器[J].中国激光, 2006, 33: 1318
    [122]李斌,李永大,陈金强,等. LD泵浦Nd:YAG全固态蓝光激光器技术[J].应用激光, 2007, 27(4): 300-304.
    [123]高静,于欣,张文平,等. LD抽运全固态蓝光激光器的研究进展[J].光学技术, 2007, 32(3): 430-434
    [124]吕文华.大功率LD泵浦全固态激光器综述[J].潍坊学院学报2003, 3(2): 29-30
    [125]郑权,陈颖新,钱龙生.全固态激光器产业发展的趋势[J].光机电信息, 2001, 12: 17-20
    [126]王玉英.工业用固体激光器的现状[J].光机电信息, 2004, 9: 20-23
    [127]Li L.. The advances and characteristics of high-power diode laser materials Processing[J]. Optics and Lasers in Engineering, 2000, 34: 231-253
    [128]Haake J., Zediker D.M.. Laser Processing [J]. Advanced Materials & Processes, 2000, 10: 35-37
    [129]史建军.激光宽速熔覆装置及工艺研究[D].苏州:苏州大学, 2006
    [130] Lin J.. A simple model of powder catchment in coaxial laser cladding[J]. Optics & Laser Technology, 1999, 31(3): 233-238
    [131]Li Peng,Yang Taiping, Hu Qianwu, et al. Direct Laser Fabrication of Nickel Alloy Samples[J]. International Journal of Machine Tools and Manufacture, 2005, 45:1288-1294
    [132]朱银峰.用于激光再制造的二轴送粉头的设计[D].天津:天津工业大学, 2005
    [133]张正伟,杨武雄,陈铠,等.激光熔覆快速成形技术送粉喷嘴的研制[J].激光杂志, 2007,28(1): 79-80
    [134]杜汉斌,胡伦骥,胡席远.激光填丝焊技术[J].航空制造技术, 2002, 11 : 60-63
    [135]姚建华,刘新文,张群莉,等.基于绿色再制造的多层激光送丝堆焊[J].应用激光, 2005, 25(4): 84-86.
    [136]Crement D.J..Narrow groove welding of titanium using the hot-wire gas tungsten arc process[J]. Welding Journal, 1993, 3: 71-76
    [137]Jae D., Yun P.. Plunging method for Nd:YAG laser cladding with wire feeding[J]. Optics and lasers in Engineering, 2000, 33: 57-60
    [138]Vilar R. Laser cladding[J]. Journal of laser application,1999, 11(2): 84-87
    [139]Syed W.U.H., Pinkerton A.J., Li L.. Combined wire and powder feeding laser direct metal deposition for rapid prototyping[R]. San Francisco, California, USA: 23rd International Congress on Applications of Lasers & Electro-Optics (ICALEO2004), 2004
    [140]Syed W.U.H., Pinkerton A.J., Li L.. A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping[J]. Applied Surface Science, 2005, 247: 268-276
    [141] Syed W.U.H., Pinkerton A.J., Liu Z., et al. Coincident wire and powder deposition by laser to form compositionally graded material[J]. Surface & Coatings Technology, 2007, 201(16-17): 7083-7091
    [142]Syed W.U.H., Pinkerton A.J., Li L.. Combining wire and coaxial powder feeding in laser direct metal depositionfor rapid prototyping[J]. Applied Surface Science, 2006, 252(13): 4803-4808
    [143] Lin Jehnming. Laser attenuation of the focused powder streans in coaxial laser cladding[J]. Journal of laser appplocations, 2000, 12(1): 28-33
    [144]Starly B., Lau A., Sun W., et al. Direct slicing of STEP based NURBS models for layered manufacturing[J]. Computer-Aided Design, 2005, 37 (4): 387-397
    [145]周满元,习俊通,李君.一种基于STEP的CAD模型直接分层方法[J].计算机集成制造系统, 2005, 11(9): 1243-1246
    [146]Zhou M.Y.. STEP-based approach for direct slicing of CAD models for layered manufacturing [J]. International Journal of Production Research, 2005, 43(15): 3273-3285
    [147]Zhou M Y, Xi J T, Yan J Q. Adaptive direct slicing with non-uniform cusp heights for rapid prototyping [J]. International Journal of Advanced Manufacturing Technology, 2004, 23 (2): 20-27
    [148]李占利,胡德州.三维模型的直接分层软件研究与开发[J].西安科技学院学报, 2002, 22 (2): 189-193
    [149]Cao W, Miyamoto Y.. Direct slicing from AutoCAD solid models for rapid prototyping[J]. International Journal of Advanced Manufacturing Technology, 2003, 21 (10P11): 739-742
    [150]Zhao Zhiwen, Laperrière Luc. Adaptive direct slicing of the solid model for rapid prototyping [J]. International Journal of Production Research, 2000, 38 (1): 69-83
    [151]Chen X, Wang C, Ye X, et al. Direct slicing from power-SHAPE models for rapid prototyping [J]. International Journal of Advanced Manufacturing Technology, 2001, 17(7): 543-547
    [152]史玉升,黄树槐,陈绪兵,等.三维CAD模型直接切片技术及其在快速成型中的应用[J].计算机辅助设计与图形学学报, 2002, 14 (12): 1172-1178
    [153]Shi Y, Chen X, Cai D, et al. Application software system based on direct slicing for rapid prototyping [J]. International Journal of Production Research, 2004, 42(11): 2227-2242
    [154]Chang C C. Direct slicing and G-code contour for rapid prototyping machine of UV resin spray using Power SOLUTION macro commands[J]. International Journal of Advanced Manufracturing Technology, 2004, 23 (5P6): 358-365
    [155]董未名,严冬明,周登文,等.基于CAD模型的直接快速成型软件[J].计算机辅助设计与图形学学报, 2004, 16(3): 360-367
    [156]Susila B, Gunasekaran A, Arunachalam S, et al. Interfacing geometric model data with rapid prototyping systems [J]. Journal of Intelligent Manufacturing, 1999, 10(3): 323-329
    [157]Zhu W M, Yu K M. Drexel-based direct slicing of multi-material assemblies[J]. International Journal of Advanced Manufacturing Technology, 2001, 18(4): 285-302
    [158]陈绪兵,叶献方,黄树槐.快速成形领域中的直接切片研究[J].中国机械工程, 2002, 13(7): 71-73
    [159]靳晓曙,杨洗陈.激光直接制造和再制造中的三维CAD模型直接分层技术[J].计算机辅助设计与图形学学报, 2007, 19(6): 757-762
    [160]David A., Frank A.. Laser forming titanium components[J]. Advanced Materials & Processes, 1998, 5: 29-30
    [161]Lin J., Hwang B.C.. Coaxial laser cladding on an inclined substrate[J]. Optics & LaserTech, 1999, 31: 571-578
    [162]Lin J, Steen W.M.. Design characteristics and development of a nozzle for coaxial cladding[J] J. Laser App1., 1998, 10: 55-63
    [163]Dehm G., Medres B., Shepeleva L., et al. Microstructure and tribological properties of Ni-based claddings on Cu substrates[J]. Wear, 1999, 225-229: 18-26
    [164]Xu G., Kutsuna M., Liu Z., et al. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes[J]. Materials Science and Engineering A, 2006, 417: 63-72
    [165]Zhou S.F., Zeng X.Y., Hu Q.W., et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization[J]. Applied Surface Science, 2008, 255: 1646-1653
    [166]杨胶溪,左铁钏,徐文清,等.球墨铸铁表面激光熔覆钻基合金涂层的研究[J].激光技术, 2006, 30(5): 517-519
    [167]陈莉,赵宇,黄凤晓,等.铸铁表面激光熔覆铁基自熔合金的组织与性能[J].热加工工艺, 2005, 1: 46-48
    [168]马运哲,董世运,徐滨士,等.铁基合金激光熔覆技术工艺优化研究[J].中国表面工程, 2006, 19(5): 154-160
    [169]宋杰,张庆茂,林晓聪,等.铁基合金激光熔覆层的摩擦学特性[J].中国激光, 2008, 35(5): 776-781
    [170]董世运,韩杰才,王茂才,等.激光熔敷铜合金的组织特征及结晶过程分析[J].金属热处理, 2000, 3: 1-3
    [171]董世运,马运哲,徐滨士,等.激光熔覆材料研究现状[J].材料导报, 2006, 20(6): 5-9
    [172]马运哲.坦克重载齿面激光再制造铁基自强化合金层组织与性能研究[D].北京:装甲兵工程学院, 2007
    [173]康明.论模块化的设计思想[A/OL]. http://www.dataie.com, 2009.3.10
    [174]韩全平,邓毅凌,马宪卫.柔性制造系统及应用[J].江苏航空, 2000, 2: 16-19
    [175]Lin J.. A simple model of powder catchment in coaxial laser cladding[J]. Optics & Laser Technology, 1999, 31(3): 233-238
    [176]朱银峰.用于激光再制造的二轴送粉头的设计[D].天津:天津工业大学, 2005
    [177]Oliveira U., Ocelik V., Hosson J.T.M.. Analysis of coaxial laser cladding processing conditions[J]. Surface & Coatings Technology, 2005, 197: 127-136
    [178]王志坚,尚晓峰,徐丽.激光工程化净成形同轴送粉的研究[J].沈阳航空工业学院学报, 2004, 21(1): 20-22
    [179]刘运武.基于激光再制造的三维同轴送粉工作头研究[D].天津:天津工业大学, 2004
    [180]石世宏,傅戈雁,姚纯,等.激光精密熔覆光粉同轴装置[P].中国: CN1814391A, 2006.8.
    [181] Fu Yunchang, Loredo A.,Martin B, et al. A theoretical model for laser and powder particles interaction during laser cladding[J]. Journal of Materials Processing Technology, 2002, 128: 106-112
    [182] Zhu W.D., Liu Q.B., Li H.T., et al. A simulation model for the temperature field in bioceramic coating cladded by wide-band laser[J]. Materials and Design, 2007, 28: 2673-2677
    [183]王永峰,薛春芳,田欣利,等.送粉式激光熔覆能量有效利用率分析[J].激光技术, 2004, 28(2): 113-115
    [184]Mazumder J., Dutta D., Kikuchi N.,et al. Closed loop direct metal deposition: Art to part[J]. Optics and Lasers in Engineering. 2000, 34: 397-414
    [185]Hu D. M., Kovacevic R.. Sensing, modeling and control for laser-based additive manufacturing[J]. International Journal of Machine Tools & Manufacture. 2003, 43: 51-60
    [186]Hand D. P., Fox M. D. T., Haran F. M., et al. Optical focus control system for laser welding and direct casting[J]. Optics and Lasers in Engineering. 2000, 34: 415-427
    [187]于君.激光快速成形沉积层几何参数监测与控制研究[D].西安:西北工业大学, 2007
    [188]Grunenwald B., Nowotny S., Henning W., et al. New Technological Development in Laser Cladding[A]. Morditce B. L. ICAL EOp93 Laser Material Processing[C], Paul Denney Isamu Miyamoto: Processing of SPIE, 1993: 934-944
    [189]Lalas C., Tsirbas K., Salonitis K., et al. An analytical model of the laser clad geometry[J]. Int J Adv Manuf Technol, 2007, 2: 34-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700