用户名: 密码: 验证码:
浙江红山茶遗传多样性分析及观赏价值评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浙江红山茶(Camellia chekiangoleosa Hu)是我国浙江、江西、福建、安徽等省山区的特有树种,集观赏、油用、药用等价值于一身,是山茶新品种培育的物质基础和杂交育种的重要亲本,具有重要的观赏价值和经济价值。浙江红山茶冬春开花,花大色艳,已成为蜚声中外的园林观赏植物珍品。在木本食用油和花卉生产中有着巨大的潜在价值。通过对浙江红山茶野生种质资源实地调查及文献资料比对发现,浙江红山茶野生的分布区、面积及资源总量正在迅速减少,生存状况恶化,接近濒危。因此,急需对浙江红山茶野生资源的现状和遗传多样性进行系统研究,以制定科学的保护策略。
     本研究通过对其分布区内资源的实地调查、群落结构调查、表型性状分析、分子标记、叶绿体基因测序、观赏特性评价等研究,初步查明了浙江红山茶的分布状况、生态环境、濒危状况、致濒因素、资源遗传多样性特点、近缘种之间的亲缘关系,建立了观赏山茶观赏特性的评价标准和指标体系。主要结果如下:
     1、浙江红山茶野生资源集中分布在华东地区武夷山系和怀玉山系,水平分布于北纬25°50′~31°,东径113°52′~121°2′,垂直分布介于海拔360~1600m之间。人工林和半野生林资源数量较少,仅存2266.67hm2,主要集中在浙江省丽水地区的缙云、庆元、松阳、景宁、遂昌和青田,有2153.33 hm2,重点分布在浙西南山区和浙中丘陵盆地。福建霞浦有200年栽培历史的人工林,半野生林主要位于江西的德兴。
     2、浙江红山茶天然林和人工林群落结构特征调查显示:在5个种源地群落样地中的维管束植物共有86科202属363种,群落的表征科为蔷薇科(Rosaceae)、壳斗科(Fagaceae)、山茶科(Theaceae)等。不同种源地群落的区系特征显示群落成分复杂,属的地理成分中热带成分比例稍低于温带成分比例。植被均具有温带向热带的过渡性,群落区系属中国-日本森林植物亚区的华东区。5个种源地的群落中常绿阔叶树种均占绝对优势,群落成层现象明显,在垂直方向上大致可以分为5层,大乔木较少,乔木层树冠不连续,灌木层与乔木层的中下层个体数量占较大优势。物种的重要值计算结果显示,人工林中浙江红山茶占优势;野生林中浙江红山茶不占优势。各个种源地的生境南北差异不大,均以高位芽植物为主。物种多样性计算结果显示灌木层的多样性指数与均匀度指数都显著大于乔木层,在乔木中层以中下层的物种多样性较高,总体上5个群落的物种多样性与均匀度都较高。
     3、浙江红山茶表型变异分析结果显示:种内存在丰富的居群间、居群内个体间表型变异,其10个居群的叶、花、果、种子等22个表型性状差异显著,变异系数较大。其中变异程度最高的是柱裂深度,变异系数为55.11%,其次是花瓣宽和花径,均为30.95%。变异程度最低的是叶片厚度,变异系数为3.91%。主成份分析提取出了3个主要的变异因子,占到总变异的66.36%,虽然没有达到80%以上,但包含了大部分浙江红山茶表型性状信息。22个表型性状的平均表型分化系数为12.62%,说明浙江红山茶表型变异在居群间的贡献占12.62%,居群内个体间的贡献占87.38%,表明表型性状在居群内个体间的多样性高于居群间的多样性。居群内个体间变异是浙江红山茶形态变异的主要变异来源。平均遗传多样性指数(I)为1.7187,表现出丰富的遗传多样性。表型标记聚类结果表明:可将10个浙江红山茶居群划分为3大组群,组群与地理来源有明显的相关性。大多地理位置相近的如浙江开化、天台和缙云居群表型性状更为相似,聚在了一起,而距离较远的如岳西、永新、霞浦在15阈值处还各自独立,说明这三个居群与其他居群表型性状差距较大。
     4、应用ISSR分子标记方法对我国全分布区内的7个浙江红山茶居群共210个个体进行了遗传多样性分析。21个引物共扩增到384个位点,其中多态性位点372个。分析结果表明:⑴浙江红山茶在物种水平上的遗传多样性很高,多态位点百分率P(%)达96.88%,物种水平的Shannon信息指数(I)为0.4966,Nei基因多样性指数(h)为0.3331;而居群水平的遗传多样性较低,P%平均为59.79%,I平均为0.3106,h平均为0.2077;⑵居群间的遗传分化低于居群内个体间的遗传分化。居群间遗传多样性分化系数Gst=0.3758。AMOVA分子差异分析显示12.0%的变异存在于地区间,28.0%的变异存在于居群间,60.0%的变异存在于居群内个体间,居群内个体间的遗传分化明显。居群间的基因流较低,为0.8304。⑶210份个体的分子系统聚类分析(UPPGMA)结果显示,7个居群间的平均遗传距离为0.1986。开化居群和天台居群组成一组,再与缙云居群组成另一组,其次是霞浦、岳西和南丰,最远的是江西的永新。⑷居群间的地理距离及遗传一致度存在一定的相关性。研究认为,安徽岳西和福建霞浦的浙江红山茶居群可能早期引种于浙江境内。
     5、叶绿体psbA-trnH基因序列分析结果表明,浙江红山茶、厚叶红山茶、离蕊红山茶和闪光红山茶四个近缘种的叶绿体基因psbA-trnH序列相同,与前人的ITS序列分析结果一致,说明四者的亲缘关系很近,但厚叶红山茶与其他三个近缘种之间的差异还是比较大,其亲缘关系相对要远些。我们认为浙江红山茶、离蕊红山茶、闪光红山茶可视为同一物种,而厚叶红山茶还需更进一步研究。
     6、采用层次分析法和专家问卷法,建立递阶层次结构评价模型,从观赏山茶的观赏特性和生长势方面建立了观赏山茶观赏特性评价的指标体系,选出了生长势、株型、花色、花期、果色、开花季节、生长习性、嫩梢颜色、花的显示度、单位面积花量、花香、果量、果形、叶稠密度、花瓣着色类型、果径等16个权重较大的指标。
Camellia chekiangoleosa Hu is an endemic tree species distributed in the mountainous areas in Zhejiang, Jiangxi, Fujian, Anhui provinces in China. It has high values in ornamentals, edible oil use and Chinese medicine etc. This tree may be used as the important parent in hybridization for breeding ornamnetal camellias and edible oil varieteies. It flowering in winter and spring with splend large flowers, has become known in the world of ornamental plant treasures. It has the huge potential value in woody edible oils and flower production.
     It was found out that the distributions, areas and resource quantities of C. chekiangoleosa are reducing rapidly, close to be in imminent danger through field surveys of germplasm resources and literature comparative analysis. Therefore it is urgent and necessary to do a systematic research on its current status quo and the genetic diversity so as to propose conservative strategies to protect it.
     This study primarily discovered its distribution status, ecological environment, endangered situation, threatening factors, genetic diversity, genetic relationship of the four similar species, and evaluation of ornamental value etc by means of doing field work, community composition investigation, phenotypic character analysis, molecular markers, chloroplasts gene sequencing. The main findings are as follows:
     1. The study showed that wild C. chekiangoleosa is mainly distributed in Wuyi and Huaiyu Mountains, and horizontally distributed at north latitude 25°50'~31°, east longitude 113°52'~121°2', and vertically distributed between 360~1600m above sea level.
     The resources of plantation and semi-wild forest is in samll quantity, which only remains 2266.67hm2, mainly in the area of Lishui regional, such as Jinyun County, Qingyuan County, Songyang County, Jingning County and Qingtian County in Zhejiang province, covering 2153.33hm2 in total. So the cultivation resources mainly distribute in the southwest of mountains and central hilly basin in Zhejiang province. It also revealed that Camellia chekiangoleosa has 200-year history in Xiapu County of Fujian province. Semi-wild forest mainly distributes in Dexing region of Jiangxi province.
     2. The results of community component of C. chekiangoleosa indicated that there were 86 families of vascular plants, including 202 genera and 363 species in C. chekiangoleosa communities from 5 provenances. The dominent families were Rosaceae, Fagaceae, Theaceae and so on. Floristic characteristics displayed complicated ingredients in communities, and in the geographical elements of genera, tropical composition proportion was slightly lower than temperate components in proportion. The vegetation had the character of transitional from temperate to tropical. It also showed that floras of the five provenances all belonged to East-China province in Sino-Japanese. Evergreen trees dominated in communities of the five provenances. In the vertical structure the layers were obvious and there were five plant layers, among which large trees in upper tree layer were few and tree canopy in middle tree layer was not continous, the individual number in shrub layer and in middle and lower tree layer were comparatively dominant. The important value of species showed that C. chekiangoleosa was dominant in plantation and not in wild forest. The community living envirnment of each provenance was nearly similar because the high-bud plants of each provenance were all majority. The statistics of species diversity revealed that Shannon-Wiener index and Pielou index in shrub layers were significantly larger than the index in tree layers. The indexes of species diversity in lower tree layers were larger than the indexes in the other tree layers. Above all, the species diversity was all higher among the five communities.
     3. The analysis of phenotypic diversity of C. chekiangolesa showed the variations within populations or between populations were rich. The differences of 22 phenotypic traits of leaf, flower, fruits and seeds in 10 populations measured in this study were found to be very significant, and the coefficients of variations were comparatively larger. The depth of the splited style got the highest value of variation, the variation coefficient was 55.11%, the second was 30.95% of the petal width and flower diameter, and the lowest was 3.91% of leaf blade thickness. According to principle component analysis,the first three main components made the contribution of 66.36% to variation. Although it didn’t reach over 80%, it still contained most information of phenotypic traits. The average phenotypic Differentiation coefficient (12.62%) of the 22 phenotypic traits indicated that phenotypic variations within populations (87.38%) were larger than the ones between populations (12.62%), and phenotypic variations within populations were the main variation source. High level of diversity was detected, with an average Shannon index (I) of 1.7187. The clustering results of phenotypic markers showed that: ten populations had been divided into three clusters. The clusters and geographical origin had obvious correlation. The more close in geography of the populations the more similar in phenotypes, such as Kaihua, Tiantai and Jinyun in Zhejiang province, and the three populations, such as Yuexi, Yongxing, Xiapu were independent at 15 threshold, showing that the three populations distinguish from the others.
     4. Genetic diversity of 210 individuals from seven populations of Camellia chekiangoleosa from its whole distribution were analyzed using ISSR molecular markers. A total of 384 loci, of which 372 were polymorphic ones, were detected using 21 ISSR primers. The results revealed an extraordinarily high level of genetic diversity at species level. Total percentage of polymorphic loci (P, % ) was 96.88% while Shannon’s information index (I) and Nei’s gene diversity (h) were 0.4966 and 0.3331 in the species. Whereas the genetic diversity at population level of Camellia chekiangoleosa was relatively low, and the value of P%, I and h were 59.79%, 0.3106 and 0.2077, respectively. The genetic differentiation (Gst= 0.3758) among the populations showed that the level of genetic differentiation among populations was lower than that within populations, Analysis of molecular variance (AMOVA) demonstrated that among-region variation accounted for 12.0%, the among-population component accounted for 28.0% of the total variations, while the within-population component accounted for 60.0%. The genetic differentiation was relatively high and the gene flow was low (0.8304). The pair-wise mean genetic distance among populations was 0.1696. The cluster analysis of 210 individuals showed that Kaihua population and Tiantai population were in one group, then with Jinyun, and then Xiapu, Yuexi and Nanfeng, and Yongxin population separated from all the other populations in the dendrogram. There is a certaqin association between geographical distance and genetic consistence. Thus it may be inferred that C. chekiangoleosa of Anhui Yuexi and Fujian Xiapu county might be introduced from Zhejiang Province.
     5. The analysis of chloroplasts gene psbA-trnH sequences showed that the four related species, such as C. chekiangoleosa, C. lucidissima, C. liberisamina, C. crassissima have the same genetic sequence of psbA-trnH, sharing the similar result of ITS sequencing analysis. This findings indicated that the genetic relationship of the four similar species is extremely close to each other. C. crassissima, however, is significantly different from the other three Camellias and its genetic relationship is relatively far from the other three ones. Thus it can be preliminarily determined that C. chekiangoleosa, C. lucidissima, C. liberisamina belong to the same species, and the genetic relationship between C. crassissima and the others needs to be studied further.
     6. By using AHP and questionnaire for experts methods, the level structural evaluation model and index system of ornamental character were proposed. The 16 greater weight indicators were selected, such as growth potential, plant shape, color of flowers, florescence, fruit color, bloom season, growth habit, young shoots color, flower visibility, the amount of flowers per unit area, flower fragrance, the number of flowers , fruit shape, leaf densities, colored petals types, fruit diameter etc.
引文
《安徽植物志》协作组.安徽植物志(第二卷)[M].北京,中国展望出版社, 1987: 406.
    白永飞,许志信,李德新.内蒙古高原针茅草原群落α多样性研究[J].生物多样性, 2000, 8(4): 353-360.
    北京林学院遗传育种教研组.园林植物育种学(初版)[M].北京:农业出版社, 1962.
    宾晓芸,唐绍清,周俊亚,等.金花茶遗传多样性的ISSR分析[J].武汉植物学研究, 2005, 23(1): 20-26.
    宾晓芸.金花茶遗传多样性和居群遗传结构的ISSR, RAPD和AFLP分析[D].广西师范大学硕士学位论文, 2005.
    陈冬基,施德法.浙江省古田山自然保护区的森林植被类型[J].浙江林学院学报, 1986, 10(3): 1-7.
    陈俊愉,陈吉笙.百分制记分评选法——拟定并掌握柑桔株选标准的一个新途径[J].华中农学院学报, 1956(1): 84-99.
    陈俊愉,邓朝佐.用百分制评选三种金花茶优株试验[J].北京林业大学学报, 1986(3): 35-43.
    陈俊愉,梁振强.介绍一类新型的菊花——岩菊[C].北京园林绿化学会成立大会论文, 1964: 12.
    陈俊愉,王四清,王香春.花卉育种的几个关键环节[J].园艺学报, 1995, 22(4): 372-376.
    陈亮,虞富莲,杨亚军,等.茶树优质资源德定性的RAPD分析[J].茶叶科学, 1999, 19(1): 13-16.
    陈亮,杨亚军,虞富莲,等. 15个茶树品种遗传多样性的RAPD分析[J].茶叶科学,1998, 18(l): 21-27.
    陈攀.千岛湖库区植物功能特征及人为干扰对岛屿植物功能型的影响[D].金华:浙江师范大学硕士学位论文, 2009.
    陈睿,潘远智,陈其兵.野生花卉资源评价因子及评价方法确定[J].北方园艺, 2009(10): 201-204.
    陈守智,吴兴恩,钟瑞芳.大树杨梅果实数量性状的主成分分析[J].云南农业大学学报, 2003, 18(2):163-166.
    陈卫娟.中亚热带常绿阔叶林植物区系地理[D].上海:华东师范大学, 2006.
    陈新鹏.武夷山针阔混交林群落动态研究[D].福州:福建农林大学, 2009.
    达良俊,杨永川,宋永昌.浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型[J]. 植物生态学报, 2004, 28(3): 376-384.
    邓白罗,谭晓风,漆龙霖,等.山茶属红山茶组植物的RAPD分析及分类研究[J].林业科学, 2006, 42(5): 36-41.
    邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社, 1990, 21-25.
    戴国望.浙江红花油茶的封闭育苗方法研究[J].湖北林业科技, 1986 (2): 32-33.
    董建文,范小明,吴东来.福建长汀石峰寨景区桂花次生林群落物种数量特征[J].植物资源与环境学报, 2002, 11(4): 40-44.
    董静曦,吴赤卫. 27种引种桉树的园艺观赏价值[J].云南林业科技, 2003(4): 39-41.
    范繁荣.闽楠群落种间关联性的灰色系统理论分析[J].浙江林学院学报, 2008, 25(1): 33-36.
    方燕鸿.野生观赏植物观赏特性数量化评价[J].华东森林经理, 2005, 19(4): 45-50.
    福建省科学技术委员会《福建植物志》编写组.福建植物志[M].福建科学技术出版社, 1988: 470.
    抚州市统计局. 2005抚州统计年鉴[M].南昌:方志出版社, 2005.
    傅立国,陈潭清,郎揩永.中国高等植物(第六卷)[M].青岛:青岛出版社, 2003.
    抚州市统计局. 2005抚州统计年鉴[M].南昌:地方志出版社, 2005.
    高继银, Clifford R Parks,杜跃强.山茶属植物主要原种彩色图集[M].杭州:浙江科学出版社, 2005.
    高江云,陈进,夏永梅.国产姜科植物观赏特性评价及优良品种筛选[J].园艺学报,2002,29 (2) : 158-162.
    葛颂,洪德元.遗传多样性及其检测方法[M].北京:中国科学技术出版社, 1994, 123-140.
    葛颂,洪德元.生物多样性研究的原理与方法[M].北京:科学出版社, 1994.
    葛颂,王明庥,陈岳武.用同工酶研究马尾松群体的遗传结构[J].林业科学, 1988, 24(4): 399-409.
    顾万春.统计遗传学[M].北京:科学出版社, 2004.
    国家药典委员会.中华人民共和国药典一部[M].北京:化学工业出版社, 2005: 278.
    郭柯,郑度.喀喇昆仑山一昆仑山地区植物的生活型组成[J].植物生态学报, 1998, 22(1): 51-59.
    何金训,王益,毛向阳.浙江丽水白云山植物资源多样性研究[J].河北农业科学, 2008, 12 (3): 115-119.
    贺晶.山茶属红山茶组植物RAPD分类研究[D].中南林学院博士学位论文, 2001
    何正文,刘运生,陈立华,等.正交设计直观分析法优化PCR条件[J].湖南医科大学学报, 1998, 23(4): 403-404.
    洪伟,林成来,吴承祯.福建建溪流域常绿阔叶防护林物种多样性特征研究[J].生物多样性, 1999, 7(3): 208-213.
    侯继华,周道玮,姜世成.蚂蚁筑丘活动对松嫩草地植物群落多样性的影响[J].植物生态学报, 2002, 26(3): 323-329.
    侯渝嘉,何桥,李品武,等.应用ISSR分子标记研究茶树种质资源遗传多样性[J].西南农业学报, 2007, 20(3): 462-465.
    侯渝嘉,何桥,李中林,等.应用ISSR分子标记对茶树种质资源进行分子鉴定[J].西南农业学报, 2007, 20(6): 1272-1276.
    胡晖.我国茶花育种浅谈[J].浙江林业科技, 2004, 24(5): 51-53.
    胡先骕.中国山茶小志Ⅰ[ J].科学通报, 1957: 170.
    胡先骕.中国山茶属与连蕊茶属新种与新变种(一) [J].植物分类学报, 1965, 10(2): 131-132.
    胡哲森.浙江红山茶种子油中脂肪酸的分析[J].福建林学院学报, 1987, 7(1): 70–71.
    黄福平.茶树遗传多样性分析与遗传图谱构建[D].浙江大学博士论文, 2005.
    黄清平.利用层次分析法评价三明市野生观赏植物的引种驯化效果[J].中国园林, 2009(12): 93-96.
    黄启堂,游水生,黄榕辉,等.运用层次分析法评价木质藤本观赏植物资源[J].福建林学院学报, 1997, 17(3): 269-272.
    黄少甫,赵治芬,吴若箐.浙江红山茶染色体核型的分析[J].广西植物,1984, 4(4): 285-288.
    黄小强.江西铅山武夷山木本植物区系的研究[J].江西农业大学学报, 1985, 24(3): 77-85.
    黄永芳,陈锡沐,庄雪影,等.油茶种质资源遗传多样性分析[J].林业科学, 2006, 42(4): 38-43.
    黄兆祥,陈晓奇.江西大茅山金盆山常绿阔叶林的Q-型聚类分析[J].江西科学, 1993, 11(2): 111-120.
    黄宗强.福建二都以米槠为建群种的常绿阔叶林群落结构特征[J].福建林业科技, 2006, 33(1): 6-10.
    蒋彩虹,王元英,孙玉合. SSR和ISSR标记技术应用进展[J].中国烟草科学, 2007, 28(2): 1-5.
    江苏新医学院编.中药大辞典[M].上海:上海科学技术出版社, 2000,上册: 191
    《江西植物志》编辑委员会.江西植物志(第二卷)[M].北京:中国科学技术出版社, 2004: 704.
    金惠淑,梁月荣,陆建良.中、韩两国主要茶树品种基因组DNA多态性比较研究[J].茶叶科学, 2001, 21(2): 103-107
    金涛.松阳县原生林木种质资源调查及开发利用[J].现代农业科技, 2009, (11): 103, 105.
    金孝锋,丁炳扬,郑朝宗,等.浙江百山祖自然保护区种子植物区系分析[J].云南植物研究, 2004, 26 (6): 605-618.
    金则新.浙江天台山七子花群落特征的初步研究[J].广西植物, 1996, 16(1): 25-34.
    金则新,李钧敏,顾奇萍.云锦杜鹃自然居群遗传多样性的ISSR分析[J].园艺学报, 2006, 33(6): 1263-1267.
    康华靖,陈子林,刘鹏,等.大盘山自然保护区香果树种群结构与空间分布格局[J].生态学报, 2007, 27(1): 389-396.
    赖和英,刘美英.山茶油治疗放射性湿性皮炎效果好[J].中华护理杂志, 1999, 34 (10): 582.
    雷泞菲,苏智先,宋会兴.缙云山常绿阔叶林不同演替阶段植物生活型谱比较研究[J].应用生态学报, 2002, 13(3): 267-270.
    李丙贵.湖南山茶科植物研究[J].湖南师范大学学报:自然科学版, 1979(1): 88-100.
    李纪元,周建仁,倪穗,等.山茶属植物新品种特异性、一致性和稳定性测试指南,国家标准[M]. 2009.
    李克瑞,漆龙霖,赵思东,等.山茶属27种植物油脂理化性质及脂肪酸组成的研究[J].中南林学院学报, 1984, 4 (2): 101-109.
    李力.青岛耐冬山茶的多样性(Ⅱ)居群的遗传多样性分析[J].生物多样性, 1996, 4(1): 1-6.
    李时珍.本草纲目[M].北京:人民卫生出版社, 1979.
    李文英,顾万春.蒙古栎天然群体表型多样性研究.林业科学, 2005, 41(1): 49-56.
    李辛雷,李纪元,范妙华,等.山茶属主要物种耐热性研究[J].西北植物学报, 2006, 26(9): 1803-1810.
    李新.“中国油茶王”-大果红花油茶[J].农村新技术, 2005, (11): 29.
    李欣.居群遗传分析软件—GENALEX6简介[J].中国野生植物资源,2008, 27(4): 59-62.
    李秀芹,张国斌.岭南自然保护区山茶科植物资源及开发利用的探讨[J].黄山学院学报, 2005, 7(3): 58-60.
    梁机,杨振德,卢天玲,等.从茶多酚及氨基酸含量比较8种金花茶制茶适宜性[J].广西科学, 1999, 6(1): 72-74.
    梁盛业.中国名优茶花[M].北京:金盾出版社, 2000.
    林石狮,沈如江,凡强,等.江西三清山东亚—北美间断分布属植物缺萼枫香群落研究[J].生态环境, 2007, 16(2): 509-515.
    林绍生,李华芬,陈义增.应用模糊数学评价观叶植物的观赏性[J].亚热带植物通讯, 2000, 29(2): 43-47.
    林协.红山茶浙江[J].技术与市场(园林工程), 2005(5): 46-47.
    林勇明,吴承祯,洪伟,等.珍稀濒危植物长苞铁杉群落植物区系分析[J].热带亚热带植物学报, 2004, 12(6): 552-556.
    林郑和,陈荣冰,陈常颂,等. ISSR分子标记在茶树遗传关系分析中的初步应用[J].茶叶科学, 2007, 27(1): 45-50.
    刘本英,王平盛,季鹏章,等.云南特有茶组植物遗传多样性的ISSR研究[J].云南农业大学学报, 2008, 23(3): 302-308.
    刘洪谔,曾玉亮,徐柏明.红花油茶增产技术的研究[J].浙江林学学院学报, 1988, 5(3): 259-265.
    刘青林,陈俊愉.观赏植物花器官主要观赏性状的遗传与改良——文献综述[J].园艺学报,1998,25 (1) : 81-86.
    刘用焕,徐昭壬.福建省珍稀植物名录[J].林业勘察设计(福建), 1996(2): 57-62.
    刘宇婧,刘越,黄耀江,等.植物DNA条形码技术的发展及应用[J].植物资源与环境学报, 2011,20(1): 74-82, 93.
    刘玉莲,殷学波.樱花品种园艺学性状的综合评价[J].江苏农学院学报, 1996, 17(2): 39-43.
    刘振,王新超,赵丽萍,等.基于EST-SSR的西南茶区茶树资源遗传多样性和亲缘关系分析[J].分子植物育种, 2008, 6(1): 100-110.
    刘振虎,卢欣石,葛军.利用层次分析法综合评价9个草坪品种的耐盐性[J].草地学报, 2002, 10(3) :207-216.
    刘子雷,杨水平,姚小华,等.浙江红山茶果实形态变异研究[J].林业科学研究, 2007, 20(2): 263-266.
    刘子雷,杨水平,姚小华,等.浙江红花油茶开花性状变异规律研究[J].江西农业大学学报, 2010, 32(2): 0334-0338.
    刘子雷,姚小华,杨水平,等.浙江红山茶果实经济性状变异的研究[J].西南大学学报(自然科学版), 2007, 29(4): 83-88.
    刘子雷.浙江红山茶主要性状变异规律研究[D].西南大学硕士学位论文, 2007, 6
    芦建国,李舒仪.武夷山自然保护区山茶科观赏植物应用初探[J].福建林业科技, 2009, 36(2): 63-67.
    罗佳,周建平,谭惠元.红花油茶的主要成分分析[J].现代食品科技, 2010, 26(1): 109-113
    罗军武,施兆鹏,沈程文,等.茶树种质资源遗传多样性的RAPD分析[J].作物学报, 2004, 30(3): 266-269.
    罗晓莹,庄雪影,杨跃生.杜鹃红山茶遗传多样性的ISSR分析[J].热带亚热带植物学报, 2007, 15(2): 93-100.
    骆琴娅,漆龙霖,杨昌智,等.低温对山茶属不同物种幼林期离体叶细胞的膜伤害[J].经济林研究, 1995, 13(1): 22-24.
    马克明.物种多度格局研究进展[J].植物生态学报, 2003, 27(3): 412-426.
    马克平,黄建辉,陈灵芝.北京东灵山地区植物群落多样性的研究:Ⅱ丰富度、均匀度和物种多样性指数[J].生态学报, 1995, 15(3): 268-277.
    马克平.试论生物多样性的概念[J].生物多样性, 1993, 1(1): 20-22.
    毛志滨,郝日明,姜鹏,等.南京地区耐寒常绿阔叶树种资源调查[J].植物资源与环境学报, 2004, 13(2): 49-53.
    梅小洪,郑泽仁.缙云县大洋山国家重点保护野生植物资源及保护对策[J].现代农业科技, 2010(1): 225, 227.
    闵天禄.山茶属山茶组植物的分类、分化和分布[J].云南植物研究, 1998, 20(2): 127-148.
    闵天禄.世界山茶属的研究[M].昆明:云南科技出版社, 2000.
    明军,顾万春.紫丁香表型多样性研究[J].林业科学研究, 2006, 19(2): 199-204.
    缪诗孝.红花油茶高产栽培技术[J].现代农业科技, 2008, (9): 37-39.
    倪穗.山茶属红山茶组植物系统学研究[D].南京林业大学博士论文, 2007, 6.
    倪穗,李纪元,王强. 20个茶花品种遗传关系的ISSR分析[J].林业科学研究, 2009, 22(5): 623-629.
    彭少麟,周厚诚,陈天杏.广东森林群落的组成结构数量特征[J].植物生态学与地植物学学报, 1989, 13(1): 10-17.
    祁承经,林亲众.湖南树木志[M].长沙:湖南科学技术出版社, 2001, 7: 124.
    祁承经,喻勋林.湖南种子植物总览[M].长沙:湖南科学技术出版社, 2002, 1: 120.
    钱迎新,余燕.红花油茶、滇山茶育苗技术研究[J].贵州林业科技, 2005, 33(1): 17-19.
    裘宝林.浙江植物志(第四卷)[M].杭州:浙江科学技术出版社, 1993.
    冉潇,丛日晨,杨建民.北京鹜峰地区松栋混交群落结构与物种多样性[J].河北农业大学学报, 2006, 29(4): 27-33.
    沈程文.广东茶树种质遗传多样性的形态和分子评价及其亲缘关系研究[D].湖南农业大学博士论文, 2007.
    施苏华,唐绍清,陈月琴,等. 11种金花茶植物的RAPD分析及其系统学意义[J].植物分类学报, 1998, 36 (4): 317-322.
    史作民,程瑞梅,刘世荣,等.宝天曼植物群落物种多样性研究[J].林业科学, 2002, 38(6): 17-23.
    宋永昌.植被生态学[M].上海:华东师范大学出版社, 2001.
    谭晓风,漆龙霖,贺晶,等.山茶属植物油茶组与金花茶组的分子分类[J].中南林学院学报, 2005, 25(4): 31-34.
    谭雁.陇西山自然保护区考察记[J].植物杂志, 1992(4): 4-7.
    谭月萍.茶树SSR分子标记技术体系的建立与应用[D].湖南农业大学, 2007, 5.
    唐丽,刘友全,钟秋平.南天竹开发利用价值评价体系的建立[J].中南林业科技大学学报, 2007, 27(6): 97-103.
    汤孟平,周国模,施拥军.天目山常绿阔叶林优势种群及其空间分布格局[J].植物生态学报, 2006, 30(5): 743-752.
    唐绍清,杜林方,王燕.山茶属金花茶组金花茶系的AFLP分析[J].武汉植物学研究, 2004, 22(1): 44-48.
    唐绍清,施苏华,钟杨,等.基于ITS序列探讨山茶属金花茶组的系统发育关系[J].广西植物, 2004, 24 (6): 488-492.
    陶正明.江西省铜鼓县木本植物区系的初步研究[J].浙江师范大学学报:自然科学版, 1998, 21(2): 62-70.
    田敏,李纪元,倪穗,等.基于ITS序列的红山茶组植物系统发育关系的研究[J].园艺学报, 2008, 35 (11): 1685-1688.
    童遵明.浙南庆元县万里林区主要乔灌木及林型介绍[J].浙江林业科技, 1980(10): 10-14.
    王保明,陈永忠,谭晓风,等.应用ISSR分析油茶无性系的遗传多样性[J].东北林业大学学报, 2008, 36(6): 19-24.
    王昌腾.丽水北山森林公园种子植物区系[J].中南林业科技大学学报, 2008, 28(1): 21-29.
    王菲彬,芦建国.蜡梅切花观赏特性的综合评价[J].林业科技开发, 2005, 19(5): 25-27.
    王金荣,朱锦忠,朱仕俊,等.浙江三角潭省级森林公园野生树种资源应用分类[J].华东森林经理, 2009, 23(3): 44-48.
    王景祥.试论浙江省森林植物区系[J].植物分类学报, 1986, 23(3): 165-176.
    王曙跃.一种性能优良的天然表面活性剂—茶皂素[J].日用化学工业, 1987, (2): 33.
    王永红,李纪元,田敏,等.低温胁迫对山茶物种2个抗寒性生理指标的影响[J].林业科学研究, 2006, 19(1): 121-124.
    王永奇,林红景,陆敏珠,等.山茶属植物药用研究的最新进展[J].中国药物与临床, 2008, 8(10): 764-765.
    王永奇,吴小娟,李红冰,等.药用山茶属植物的研究[J].大连大学学报, 2006, 27(4): 47-56.
    韦福民,张方钢,陈子林.大盘山自然保护区珍稀濒危植物现状及其保护策略[J].浙江林业科技, 2007, 27(3): 69-74.
    韦霄,韦记青,蒋水元,等.迁地保护的金花茶遗传多样性评价[J].广西植物, 2005, 25(3): 215-218.
    文彬,兆瑞堂,陈玉山.草莓品种的数量分类研究[J].华南师范大学学报, 2000(1): 99-103.
    闻丽,张日清,刘友全,等.不同培养条件对油茶花药愈伤组织形成的影响[J].经济林研究, 2007, 25(2): 9-14.
    吴洪明.福建金花茶组植物种质资源研究与评价[D].福建农林大学, 2004.
    吴征镒,路安民,汤彦承,等.中国被子植物科属综论[M].北京:科学出版社, 2003, 54-1071.
    吴征镒,周浙昆,李德铢,等.世界种子植物科的分布区类型系统[J].云南植物研究, 2003, 12(3): 185-189.
    吴征镒.世界种子植物科的分布区类型系统的修订[J].云南植物研究, 2003, 25(5): 535-538.
    吴征镒.中国种子植物属的分布区类型[J].云南植物研究, 1991, (增刊): 1-139.
    吴征镒.中国种子植物属的分布区类型[J].云南植物研究, 1993, (增刊): 141-178.
    吴征镒.中国种子植物属的分布区类型[J].云南植物研究, 1991, 12(3): 159-165.
    夏老长.南丰县志[M].北京:中共中央党校出版社, 1994.
    谢晋阳,陈灵芝.意大利威尼托大区刺叶栎林的生物多样性研究[J].植物学报, 1995, 37(5): 386-393.
    谢益贵,练发良,雷珍,等.浙江箬竂岘自然保护区紫金牛科植物资源及其群落调查报告[J].林业科技, 2010,35(2): 19-22.
    谢中德,吴国芳.安徽大别山多枝尖山区植物区系的研究[J].华东师范大学学报:自然科学版, 1993(1): 102-110.
    薛海兵,李玉善.亚热带北缘浙江红山茶和腾冲红花油茶引种成功[J].陕西林业科技, 1996, (4): 53-54.
    阎爱民,陈文新.苜蓿、草木樨、锦鸡儿根瘤菌的表型多样性分析[J].生物多样性, 1999, 7(2): 112-118.
    杨强胜,张化珍,乔埃虎,等. 26种园林树木观赏性综合评价[J].内蒙古农业科技, 2008(2): 69-71.
    杨志玲,李纪元,范正琪,等.山茶属红山茶组内杂交亲和性及其影响因子[J].中南林学院学报, 2004, 24(4): 32-36.
    杨志玲,李纪元.保存温度对红山茶组物种及品种花粉生活力的影响[J].浙江林业科技, 2004, 24(5): 1–3.
    杨志玲,栾启福,高继银.长瓣短柱茶与浙江红山茶有性杂交过程花粉管显微观察[J].江西农业大学学报, 2005, 27(5): 740-743.
    姚明哲,陈亮,王新超,等.我国茶树无性系品种遗传多样性和亲缘关系的ISSR分析[J].作物学报, 2007, 33(4): 598-604.
    姚小华,王开良,罗细芳,等.我国油茶产业化现状及发展思路[J].林业科技开发, 2005, 19(1): 3-6.
    姚小贞,丁炳扬,金孝锋,等.凤阳山红豆杉群落乔木层主要种群生态位研究[J].浙江大学学报:农业与生命科学版, 2006, 32 (5): 569-575.
    伊艳杰,袁壬俊,童美芳,等.运用AHP法综合评价河南部分桂花品种[J].河南大学学报, 2004, 34 (4): 60-64.
    余继忠.福鼎大白茶半同胞系和云南大叶茶半同胞系遗传多样性和亲缘关系研究[D].中国农科院博士论文, 2010.
    俞德浚.中国植物对世界园艺的贡献[J].园艺学报, 1962, 1(2): 99-108.
    虞晓芬,傅袱.多指标综合评价方法综述[J].统计与决策, 2004, 11: 119-121.
    于秀林,任雪松.多元统计分析[M].北京:中国统计出版社, 1999.
    岳含云.灰色关联度分析在作物性状分析上的应用[J].农业系统科学与综合研究, 2000, 16(4): 296-302.
    岳明,任毅,党高弟,等.佛坪国家级自然保护区植物群落物种多样性特征[J].生物多样性, 1999, 7(4): 263-269.
    岳天样.生物多样性研究及其问题[J].生态学报,2001, 21(3): 462-467.
    岳西县地方志编纂委员会编.岳西县志[M].黄山:黄山书社, 1996.
    翟建中,黄建.上海地区引种红花油茶病虫害防治[J].森林保护, 2010, (11): 34-35.
    张宏达,任善湘.中国植物志(第49卷第3册) [M].北京:科技出版社, 1998: 4.
    张宏达.华南山茶新纪录[J].中山大学学报, 1984(2): 75-80.
    张宏达.山茶属植物的系统研究[J].中山大学学报(自然科学), 1981,论丛(1): 1-12.
    张建新,胡伯智,王昌腾.大山峰野生观赏植物资源研究[J].浙江林业科技, 2005, 25(3): 51-56.
    张景荣,刘军.名贵茶花种质资源的RAPD分析[J].西北植物学报, 2006, 26(4): 0683-0687.
    张俊福,邓本让,朱玉仙.应用模糊数学[M].北京:地质出版社, 1988, 14-19.
    张乐初.中国茶花文化[M].上海文化出版社, 2003, 2.
    张立.浙江省山茶天然居群的遗传多样性研究[D].北京林业大学硕士论文, 2008.
    张茂钦,左显东.木本花卉100种[M].昆明:云南民族出版社, 2004
    张日清,王承南,李建安,等.关于油茶现代产业化体系建设的战略思考[J].经济林研究, 2010, 28(2): 146-150.
    张志祥,刘鹏,邱志军,等.浙江九龙山自然保护区黄山松种群冰雪灾害干扰及其受灾影响因子分析[J].植物生态学报, 2010, 34(2): 223-232.
    赵焕臣,许树柏,和金生.层次分析法[M].北京:科技出版社, 1986.
    浙江珍稀濒危植物编委会.浙江珍稀濒危植物[M].杭州:浙江科学技术出版社, 1994.
    中国科学院生物多样性委员会.生物多样性研究的原理与方法[A].北京:中国科学技术出版, 1994.
    周满宏,唐红.甘肃省忍冬科野生观赏植物资源评价及利用[J].中国园林, 2000(3): 74-76.
    周满宏.甘肃杜鹃花属野生观赏植物资源评价及利用[J].中国林副特产, 2000, 54(3): 62-63.
    朱圣潮.浙江大洋山木本植物区系的研究[J].上海交通大学学报(农业科学版), 2004, 22(3): 220-226.
    朱勇强,骆东林,叶杰成,等.武义县木本植物资源调查报告[J].浙江林学院学报, 1998, 15 (4): 378-395.
    朱勇强.遂昌大西坑地区珍稀濒危植物资源调查[J].华东森林经理, 1997, 11(3): 17-20.
    祝燕,赵谷风,张俪文,等.古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构[J].植物生态学报, 2008, 32(2): 262-273.
    庄瑞林.茶花的选种目标及其杂交育种技术[J].花木盆景(花卉园艺), 2004(11): 6-7.
    庄瑞林.山茶的抗寒性问题[J].经济林研究, 1993, 11(2): 79-80.
    庄瑞林.中国油茶[M].北京:中国林业出版社, 1988: 112.
    邹晓明,阮宏华.福建将石地区森林植被类型考察[J].南京林业大学学报, 1986(3): 44-66.
    Agrawal A A. Optimal foraging and phenotypic plasticity in plants[J]. Trends in Ecology and Evolution, 2002, 17(7): 305.
    Aradhya K M, Mueller-Dombois D, Ranker T A. Genetic structure and differentiation in Metrosideros polymorpha (Myrtaceae) along altitudinal gradients in Maui, Hawaii[J]. Genetical Research, 1993, 61: 159-170.
    Arista, M. The structure and dynamics of an Abies pinsapo forest in southern Spain[J]. Forest Ecology and Management, 1995, 74: 81-89.
    Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360: 1935-1943. Brochmann C, Soltis P.S. Recurrent formation and polyphly of Nordic polyploids in Draba(Brassicaceae) [J].Amer.J.Bot, 1992, 79(6): 673-688.
    Brown A H D, Clegg M T, Kahler A L, Weir B S. Plant population genetics, breeding and genetic resources[J]. USA: Sinauer Associater, 1989, 43-63.
    Chechowitz N, Chappell D M, Guttman S I, et a1. Morphological, electrophoretic, and ecological analysis of Quercus macrocapa population in the Black Hills of South Dakota and Wyoming[J]. Can J Bot. 1990, 68: 2185-2194.
    Crawly M J. Plant Ecology[M]. (2nd ed). Oxford: Blackwell Scientific Publication, 1997. 475-479. Currie D J. Energy and Large-scale patterns of animal and plant-species richness[J]. American Naturalist, 1991, 137: 27-49.
    Dachler, C. C., Yorkston, M.., et a1. Genetic variation in morphology and growth characters of Acacia koa in the Hawaiian Islands[J]. International Joumal of Pland Science, 1999, 160(4): 767-773.
    Daebler C C, Yorkston M, Sun W, et al. Genetic variation and process of domestication of Stenocereus stellatus(Cactaceae) in central Mexico[J]. American Journal of Botany. 1999, 86: 522-533.
    Don D, Korshikov I I, Mudrik E A. Elevation-Dependent Genetic Variation of Plants and Seed Embryos in the Crimea Mountain Population of Pinus pallasiana[J]. Russian Journal of Ecology, 2006, 37(2): 79-83.
    Double M C, Peakall R, Beck NR, Cockburn A. Dispersal, philopatry and infidelity: dissecting local genetic structure in superb fairy-wrens (Malurus cyaneus) [J]. Evolution, 2005, 59, 625-635.
    Evanno, G., S.Regnaut, J.Goudet. Detecting the number of clusters of individuals using the softwarestructure: a simulation study. Molecular Ecology, 2005, 14 (8) : 2611-2620
    Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitocondrial DNA restriction sites [J]. Genetics, 1992, 131, 479-491.
    Falush, D., M.Stephens, K.P.Jonathan. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies[J]. Genetics, 2003, 164(4): 1567-1587.
    Fang DQ, Roose M L. 1997. Identification of closely related citrus cultivars with inter-simple sequence repeatmarkers[J].Theoretical and Applied Genetics, 95: 408 -417.
    Fazekas AJ, Burgess KS, Kesanakurti PR, et al. Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well[J]. PLOS ONE, 2008, 3(7): 1-12.
    Fisher, R. A. et al. The relation between the number of individuals and the number of individuals and the number of species in a random sample of an animal population[J]. Anim. Ecol. 1943, 12: 42-58.
    Franco J,Crossa J, Ribaut J M, et al.A method for combining molecular markers and phenotypic attributes for classifying plant genotypes[J]. Theor. Appl. Genet., 2000, 103: 944-952.
    Hamrick J L, MJ Golt. Allozyme diversity in plant species. In: Brown A H D, M T Clegg, A L Kahler et al. (eds.), Plant population genetic, breeding, and genetic resources[M]. Sunderland: Sinauer Associates, 1989, 43-63.
    Jenczewski E, Prosperi J M, Ronfort J. Evidence for gene flow between wild and cultivated Medicago sativa based on allozyne marker and quantitative traits[J]. American Journal of Botany. 1999, 86: 677-687.
    Jonas C S, Geber M A. Variation among populations of Clarkia unguiculata(Orangraceae) along altitudinal and latitudinal gradients. American Journal of Botany. 1999, 86: 333-343.
    Kimura M.A. simple method for estimating evolutionary rates base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16: 111-l20.
    Kratochwil. Biodiversity in ecosystems: some principles. In: Kratochwil A.(ed.) Biodiversity in Ecosystems[M]. Kluwer Academic Publishers, Dordrecht. 1999, 5-38.
    Lahaye R, van der Bank M, Bogarin D, Wamer J, PuPulin F, Gigot G, Maurin O, Duthoit S,barraelough TG, Vincent S. DNA barcoding the floras of biodiversity hotsPots[J]. Proceedings of the National Academy of Sciences, USA, 2008b, 105: 2923-2928.
    Levin S A. Fragile dominion. Reading[M]. Massachusetts: Helix Books, 1999, 57: 70-72.
    Jiyuan Li, Sui Ni. Guidelines for the conduct of tests for Distinctness, Uniformity and Stability of ornamental camellias[M]. Mexico: UPOV-TWO, 2010, 43.
    Jiyuan Li, Sui Ni, Xinlei Li, Xiangqi Zhang, Jiyin Gao. Developing the International Test Guideline of Distinctness, Uniformity and Stability for Ornamental Camellia Varieties[J]. International Camellia Journal, 2008, 112-118.
    Jiyuan Li, Sui Ni, Xinlei Li, Xiangqi Zhang, Jiyin Gao. Developing the International Test Guideline of Distinctness, Uniformity and Stability for Ornamental Camellia Varieties[M]. International Camellia Congress, Falmouth, Cornwall, England, 2008, 4: 64-73.
    Liu Z M, Zhao A M, Kang X Y, Zhou S L, López Pujol J. Genetic Diversity, Population Structure, and Conservation of Sophora moorcroftiana (Fabaceae), a Shrub Endemic to the Tibetan Plateau[J]. Plant Biology, 2006, 8: 81-92.
    Magurran A.E. Ecological Diversity and Its Measurement[M]. Princeton University Press, Princeton, New Jersey, 1988,1-156.
    May R M. An Overview: Real and Apparent Patterns in Community Structures. In: Strong, D R ed. Ecological Communities: Conceptual Issues and the Evidence[M]. Princetion University Press. 1984.3-16.
    May r m. The search for patterns in the balance of nature: advances and retreats[J]. Ecology, 1986, 67: 1115-1126.
    M, Barton N H. Acomparson of three indirect methods for estimating average levels of gene flow[J]. Evolution, 1989, 43: 1349-1368.
    M. Z. Yao, L. Chen and Y. R. Liang. Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes[J]. Plant Breeding, 2008, 127: 166-172
    Nakajima, Yet al. Characterization of genetic diversity of nuclear and mitochondrial genomes in Daucus varities by RAPD and AFLP[J]. Plant cell Report, 1998, 17: 848-853.
    Paul S. Wachira F N. Powell W, Waugh R. Diversity and genetic differentiation among population of India and Kenyan tea(Camellia sinensis) revealed by AFLP marker[J]. Theor ApplGenet, 1997, 94: 255-263.
    Peakall R, Ruibal M, Lindenmayer D B. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes[J]. Evolution, 2003, 57, 1182-1195.
    Peakall R, Smouse PE, HuffDR. Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dactyloides[J]. Molecular Ecology, 1995, 4, 135-147.
    Pritchard, J.K., M.Stephens, P. Donnelly. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2): 945-959.
    R.J Schnell, C.T. Olano, R.J. Campbell. AFLP analysis genetic diversity within a jackfruit germp; asm collection[J]. Scientia Horticulturae 91(2001):261-274.
    Rach J, DeSalle R, Sarkar I N, et al. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata[J]. roceedings of the Royal Society B: Biological Sciences, 2008, 275: 237-247.
    Rohlf F J. Numerical taxonnony and multivariate analysis system[M]. New York, Exter Publishers, 1994. Saaty T L. The Analytic Hierarchy Process [M]. New York: McCraw Hill, Inc, 1980.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4: 406-425.
    Salmon A, Clotault J, Jenczewski E, Chable V, Manzanares-Dauleux M J. Brassica oleracea displays a high level of DNA methylation polymorphism[J]. Plant Science, 2008, 174: 61-70.
    Sheldon, I.G., L.A. Weigt. Morphological, electrophoretic, and ecological analysis of Quercus Macrocarpa population in the Black Hills of South Dakota and Wyoming[J]. Can. J. Bot, 1990, 168: 2185-2194.
    Smart S M. Ecological assessment of vegetation from a nature reserve using regional reference data and indicator scores[J]. Biodiversity and Conservation, 2000, 9: 811-832.
    Smouse PE, Long JC, Sokal R R. Multiple regression and correlation extensions of the Mantel test of matrix correspondence[J]. Systematic Zoology, 1986, 35, 627-632.
    Smouse PE, Peakall R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure[J]. Heredity, 1999, 82, 561-573.
    Tapan Kumar Mondal. Assessment of genetic diversity of tea by inter-simple sequence repeat polymerase chain reaction[J]. Euphytica, 2002, 128: 307-315.
    Vadim V.Goremykin, Karen I. Hirsch-Ernst, Stefan Wolfl, et. The Chloroplast Genome of Nymphaea alba: Whole-Genome Analyses and the Problem of Identifying the Most Basal Angiosperm[J]. Society for Molecular Biology and Evolution, 2004, 21(7): 1445–1454.
    Volis, S., Mendlinger, S., Whittaker, L. O., et a1. Phenotypic variation and stress resistance in core and peripheral populations of Hordeum spontaneum[J]. Biodiversity and Conservation, 1998, 7: 799-813.
    Wachira F N,Waugh R,Hackett C A,Powell W. Detection of genetic diversity in tea (Camellia sinensis) using RAPD Marker[J]. Genome, 1995, 38: 201-210.
    Wachira F N. Charactenzation and estimation of genetic relatedness among heterogeneous population of commercial tea clones by randomly amplified polymorphic DNA sample[J]. Tea, 1996, 18(1): 11-20.
    Wachira F N. Genetic diversity in tea revealed by randomly amplified polymorphic DNA markers[J]. Tea, 1996, 17(2): 60-68.
    W.J.SUTHERLAN.生态学调查方法手册[M].北京:科学技术文献出版社, 1997.
    WolfeAD, Xiang QY, Kephart SR. Assessing hybridization in natural population of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat(ISSR) bands[J]. Molecular Ecology, 1998, 7: 1107-1125.
    Wright S. Evolution in Mendelian population[J]. Genetics, 1931, 6: 91-159.
    Wu M-Z. Studies on genetic relationship among the Korean native tea trees and physicochemical properties of its green tea. Dissertation for Doctorate Degree of Philosophy(Korea) [D]: Korea university(博士学位论丈[韩国]:高丽大学校), 1994:27-29.
    Wu, X. P., Y. Zheng, K.P. Ma. Population distribution and dynamics of Quercus liaotungensis, Fraxinus rhynchophlla and Acer mono in Dongling Mountain, Beijing[J]. Acta Botanica Sinica, 2002, 44(2): 212-223.
    Xiao XH, Liu FQ, Yuan HL, et al. An outlook on the authentication of Traditional Chinese Drug ( TCD ) by DNA molecular marker [J]. Chin TraditHerb Drug, 2003, 31 (8) : 561-565.
    Xie C Y, Ying C C.Genetic architecture and adaptive landscape of interior lodgepole pine (Pinus contorta ssp. Latifolia) in Canada[J]. Canada Joumal of Forest Research. 1995, 25: 2010-2021.
    Yeh, F. C., R. C. Yang, and T, Boyle. POPGENE, version 1.32 ed., Software Microsoft Window-Based Freeware for Population Genetic Analysis[M]. University of Alberta, Edmonton, Alta. 1997.
    Zhou YQ. Application of DNA Molecular Markers Technique to Plant Research (DNA分子标记技术在植物研究中的应用) [M]. Beijing: Chemical Industry Press, 2005.
    ZIETKIEWICZE, RAFALSKIA, LABUDA D. Genome finger printing by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J]. Genomics, 1994, 20 (2): 176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700