用户名: 密码: 验证码:
中国白梨15个主栽品种S基因型及S_(29)-RNase基因的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自交不亲和性是被子植物中常见的一种生物学现象,是植物在长期进化过程中形成的防止近亲繁殖和物种退化的一种保护机制。梨是我国重要的果树之一,属配子体自交不亲和类型。目前生产上主要采用配置授粉品种的方法来克服梨品种的自交不亲和性,以保证高产稳产。白梨是我国主要的梨栽培系统之一,国内外对白梨品种S基因及S基因型鉴定方面的研究还刚刚起步,到2003年止,白梨中分离鉴定了8个新的S基因,并鉴定了近20个品种的S基因型。本论文以白梨15个品种为材料对其自交不亲和基因及品种基因型进行了研究,其主要结果如下:
     利用梨S_(1-8)-等位基因引物‘FTQQYQ’(P1)或‘5′-32bp’(P3)和‘IIWPNV’(P2)对白梨15个品种基因组DNA进行了S基因特异性PCR扩增,每个品种扩增出1-2个特异性DNA片段。通过PCR-RFLP检测方法和DNA片段的回收测序,及生物信息学分析,确定了11个品种的S基因型和4个品种一个S等位基因。大核白为S_(16)S_(19),马蹄黄为S_(16)S_(19),大水核为S_7S_(19),油梨为S_(16)S_(19),大理鸡腿为S_(17)S_(19),硬枝青为S_(12)S_(12),恩梨为S_1S_(19),天生伏为S_(29)S_(12),锦丰为S_(16)S_8,冬黄为S_(20)S_8,大鸭梨为S_1S_1S_(21)S_(21),蜜梨为S_(29)S_x,紫酥为S_(19)S_x,耀县银梨为S_(21)S_x,秋白为S_(19)S_x。
     利用DNA片段回收测序方法,从天生伏和蜜梨中分离鉴定了一个新的S基因,命名为S_(29)等位基因,在GeneBank中的接受号为AY601098。P1P2间DNA片段与沙梨S_(1-16)等位基因以及白梨中新发现的S等位基因具有很高的同源性,其相似性达79%~99%,其推导氨基酸序列与S_(1-28)等位基因的相似性达62-97%。此新S等位基因的P3+信号肽+P1+C1+C2+HV+内含子+P2区域的DNA序列大小为472bp,其中,内含子大小为147bp,其推导氨基酸序列大小为99,包括了信号肽、C1区、C2区、与S-RNase识别相关的HV区、与S-RNase结构有关的3个半胱氨酸残基以及与RNase功能有关的1个组氨酸残基。信号肽由27个氨基酸组成,C1区为11个氨基酸,C2区为10个氨基酸,HV区为15个氨基酸。
     总之,这些品种S基因型的确定及新S等位基因的发现为白梨授粉品种的配置及果树自交不亲和的深入研究提供科学依据。
Self-incompatibility, a common biological phenomenon in angiosperm, is an important protective mechanism of preventing close breeding and species retrogression that formed during long period evolution. Pear, an important fruit tree in China, belongs to the kind of gametophytic self-incompatibility (GS1). At present to arrange varieties for pollination or to perform artificial pollination is mainly adept to overcome SI for high and stable yield during the planting of pear. Brelschnider pear (Pyrus brelschnider) is a primary planting genealogy of pear in China. The researches on self-incompatible genes and S-genotypes of bretschnider pear are still in initial stage, 8 new S genes were isolated and determined and almost 20 cultivars' genotypes were determined in Bretschnider pear (Pyrus bretschnider) until 2003. In this paper, the researches on identification of S-genes and determination of S-genotypes of pear varieties are performed from 15 pear cultivars of bretschnider pear. The main results of this research are following as:
    The PCR on genomic DNA of 15 varieties of bretschnider pear were performed using special primers 'FTQQYQ'(Pl) or '5 ' -32bp'(P3) and 'IIWPNV'(P2) of pear S1-8-RNase, 1-2 special DNA fragments were obtained from each variety. The genotype of 11 varieties and one S-allelic gene of 4 varieties of Bretschnider pear are determined by PCR-RFLP system, DNA sequencing, and bioinformatics analysis. The genotypes of Dahebai, Yinzhiqing, Enli, Tianshengfu, Jinfeng, Donghuang, Dayali, Mili, Zisu, Yaoxianyinli, and Qoubai are S16S19, S16S19, S7S19, S15S19, S17S19, S12S12,
    S1S19, S29S12, S16S8, S20S8, S1S1S21S21, S29SX, S19SX, S2lSX, S19SX.
    A new S-gene, named S29, is isolated and determined from two varieties (Mili and Tianshengfu) by sequencing. The GeneBank accession number is AY601098. The isolated DNA fragments between PI and P2 display high homology (similarity of 79-99 %) with those of S1-16-RNase.and new determined S-genes in bretschnider pear, and the similarity between it's putative amino sequence and S1-28-RNase is up to 62-97%. The DNA bp numbers of the sum of P3, signal peptide, P1, C2, C2, HV, introns, and P2 of the new S-gene is 472. The DNA bp numbers of introns of the new S-gene is 147. The lengths of putative amino acids of the gene fragment is 99, it contains signal peptide, C1 region, C2 region, HV region related to the recognition function of S-RNase, 3 cysteine residues related to the structure of S-RNase and 1 histidine residue related to the activity of RNase. The residue length of signal peptide, C1 region, C2 region, and HV region is 27, 11, 10 and 15 respectively. To summary, the determination of genotypes of these varieties and discovery of new S-RNase gene provide an important scientific foundation for arranging pollination varieties and further study of SI in fruit tree.
引文
[1] 孟金陵.植物生殖遗传学[M].北京:科学出版社,1995.214-296.
    [2] De Nettancourt,D.,Incompatibility in angiosperms[M]. NewYork:Springer-Verlag, 1977.
    [3] Brewbaker JL. Biology of the angiosperm pollen grain[J].Indian Genet&plant. Breed, 1959,19:121-133.
    [4] 方瑾.植物的生殖讲座(五):被子植物的自交不亲和性[J].生物学通报,1996,31(2):28-30.
    [5] 华志明.植物自交不亲和性分子机理研究的一些进展[J].植物生理学通讯,1999,2:77-82.
    [6] 高新起,王秀玲.植物自交不亲和性[J].曲阜师范大学学报(自然科学版),1999,25(2):84-86.
    [7] Richards A.J. Plant breeding systems[M]. London: Allen&Unwin, 1986.
    [8] 胡适宜.植物受精作用(第四讲)[J].植物学通报,1984,2:93-99.
    [9] 薛勇彪,孟金陵.高等植物自交不亲和性的分子生物学[J].生物工程进展,1995,15(1):32-41.
    [10] 薛妙男.沙田柚自交和异交亲和性观察[J].园艺学报,1995,22(2):127-132.
    [11] 徐国华,李常青,张绍铃,等.植物自交不亲和性分子机理的研究进展[J].吉首大学学报(自然科学版),2002,23(1):32-37
    [12] Heeler M J, Franklin.Tong V E, Franklin F C H, et al. The Molecular and Genetic Basis of Pollenpistil Interactions[J].New Phytologist,2001,151:565-584.
    [13] East, E.M. The distribution of self-sterility in flowering plants[J]. Proc. Am Philos Soc, 1940,82:449-518.
    [14] Ockendon, D. J. Distribution of self-incompatibility alleles and breeding structure of openpollinated cultivars of brussels sprouts[J].Heredity, 1974,33:159-171.
    [15] kendon D J. An S-allele survey of cabbage (Brassica oleracea var capitata)[J]. Euphytica, 1982,31:325-331.
    [16] Poehlman J M. Breeding field crops[M]. New York: Henry Hdt and Co,1983.
    [17] Nasrallah J B, Nasrallah M E. The molecular genetics of self-incompatibility in Brassica[J]. Annu Rev Genet,1989,23:121-139.
    [18] Hiscock S J, Kues U Dickinson HG, et al. Molecular mechanisms of self-incompatibility in flowering plants and fungi-different means to the same end[J]. Trend cell biol, 1996,6:421-428.
    [19] Nasrallah J B, Nasrallah M E. Pollen-stigma signaling in the sporophytic self-incompatibility response[J]. Plant Cell, 1993,5:1325-1335.
    [20] Newbigin E, Anderson M A, Clake A E. Gametophytic self-incompatibility systems[J]. Plant Cell, 1993,5:1315-1324.
    [21] Dickinson H G. hDry Stigmas,Water and Self-incompatibility in Brassica[J]. Sexual Plant Reproduction, 1995,8:1-10.
    [22] Sulaman W, Arnaldo M, Yu K F, et al. Loss of Callose in the Stigma Papillae Does Not Affect the Brassica Self-incompatibility Pheynotype[J]. Planta, 1997,203:327-331.
    [23] Nasrallah,M.E.and Wallace,D H. Immunogenetics of self-incompatibility in Brassica oleracea L[J].Heredity, 1967a,22:519-527.
    [24] Nasrallah M.E.and Wallace, D H. Immunogenetics detection of antigens in self-incompatibility genotypes of cabbage[J]. Nature,1967b,213:700-701.
    [25] Nasrallah,M.E.et al,Self-incompatibility proteins in plants:detection,genetics,and possible mode of action[J]. Heredity, 1970,25:23-27.
    [26] Nasrallah, M.E, et al. Genotype,protein,phenotype relationship in self-incompatibility of
    
    Brassica[J]. Genet.Res, 1972,20:151-160.
    [27] Nasrallah, M. E. Genetic control of quantitative variation in self-incompatibility proteins detected by immunodiffusion[J].Genetics, 1974,76:45-50.
    [28] Hinata, K.and Nishio, T. S-allele specificity of stigma proteins in Brassica oleracea and Brassica campestris[J]. Heredity,1978,41:93-100.
    [29] Nishio,T, Hinata,K. Comparative studies on S-glycoproteins purified from different S-genotypes in self-incompatible Brassica species.I.Purification and chemica properties[J]. Genetics, 1978,100:641-647.
    [30] Nasrallah J B, Kaoth, Goldberg M L, et al. A cDNA Clone Encoding an S-specific Glycoprotein From Brassica Oleracea[ J].Nature,1985,318:263-267.
    [31] Stein J C, Howlett B, Boyes D C,et al. Molecular Cloning of a Putative Receptor Protein kinase Gene Encoded at the Self-incompatibility Locus of Brassica Oleracea[J].Proceeding of the National Academy of Sciences, USA, 1991,88:8816-8820.
    [32] Nasrallah M.E,Kandasamy M.K, Nasrallah JB. A genetically define trans-acting locus regulates S-locus function in Brassica. Plant[J], 1992,2:497-506.
    [33] Nasrallah J B, Rundl S J, Nasrallah M E. Genetic evidence for the requirement of the Brassica S-locus receptor kinase in the self-incompatibility response[J]. Plant J, 1994,5:373-384.
    [34] Schopfer C R, Nasrallah M E, Nasrallah J B, et al. The Male Determinant of Self-incompatibility in Brassica[J]. Science, 1999,286:1697-1700.
    [35] Takayama S, Shibah H, Iwano M, et al. The Pollen Determinant of Self-incompatibility in Brassica Campestris[J]. Proceedings of the National Academy of Science, USA,2000,97:1920-1925.
    [36] Nasrallah JB,Kao-h,Chen CH et al. Amino acid sequence of glycoproteins encoded by three alleles of the S-locus of Brassica oleracea[J]. Nature, 1987,213:617-619.
    [37] Boyes DC, Nasrallah JB.An anther-specific gene encoded by an S-locus haplotype of Brassica produces complementary and differentially regulated transcripts[J].Plant Cell, 1995,7:1283-1294.
    [38] Yu K, Schfer U, Glavin T L, et al. Molecular characteriation of the S locus in two self-incompatible Brassica napus lines[J]. Plant Cell,1996,8:2369-2380.
    [39] Cui Y, Brugiere N,Jackman L et al. Structural and transcriptional comparative analysis of the S locus region in two self-incompatible Brassica napus lines[J].Plant Cell, 1999,11:2217-2231.
    [40] Cabrillae D, Delorme V, Garin J, et al. The S15 self-incompatibility haplotype in Brassica oleracea includes three S-gene family members expressed in sstigmas[J]. Plant Cell, 1999,11: 971-986.
    [41] Suzuki G, Kai N, Hirose T, Fukui K, et al. Genomic Organization of the S-locus: Identification and Characterization of Genes in the SLG/SRK Region of S9 Haplotype of Brassica Campestris(Syn) Rapa[J]. Genetics, 1999, 153:391-400.
    [42] Walker J C. Receptor like Protein Kinase Genes of Arabidopsis Thaliana[J]. Plant Journal, 1993,3:451-456.
    [43] Tantikanjana T, Nasrallah M E, Stein J C et al. An alternative transcript of the S-locus glycoprotein gene in a class-Ⅱ pollen-recessive self-incompatibility haplotype of Brassica oleracea encode a membrane-archored protein[J]. Plant Cell, 1993,5:657-666.
    [44] Nasrallah,J. B. et al, Self-incompatibility genes of Brassica oleraces: expression,isolation, and structure[J]. Proc. Natl. Acad. Sci. USA, 1988,65:5551-5555.
    
    
    [45] Chen,C.-H and Nasrallah,J.B., A new class of S sequences defined by a pollen recessive self-incompatibility allele of Brassica oleracea[J]. Mol. Gen. Genet. 1991,222:241-248.
    [46] Goring, D.R, et al. Identification of an S-locus glycoprotein allele introgressed from B.napus ssp. Rapifera to B.napus ssp.oleifera[J]. Plant,1992, 2:983-989.
    [47] 姜立杰,曹家树.芸苔属植物自交不亲性的分子机制[J].植物学通讯,2001,18(4):411-417.
    [48] Delorme V, Giranton JL, Hatzfeld V, et al. Characterization of the S-locus genes, SLG and SRK, of the Brassica S3 haplotype: Identification of a membrane-localized protein encoded by the S-locus receptor kinase gene[J]. Plant J,1995, 7:429-440.
    [49] Suzuki G, Watanabe M, Isogai M et al. Highly conserved 5'flanking regions of two self-incompatibility genes, SLG9 and SRKg[J]. Gene, 1997,191:123-126.
    [50] Glavin T L, Goring D R, Schafer U, Rothstein S J, Features of the extracellular domain of the S-locus receptor kinase from Brassica[J]. Molecular and General Genetics, 1994,244:630-637.
    [51] Watanable M, Takasaki T, Toriyama K, Yamakawa S, Isogai A, Suzuki A, Hinata K, A high degree of homology exists between the protein encoded by SLG and the S receptor domain encoded by SRK in self-incompatibility Brassica campestris L[J].Plant and Cell Physiology, 1994,35:1221-1229.
    [52] Doughty J, Hedderson F, McCubbin A et al. Interaction between a coating-bome peptide of the Brassica pollen grain and stigmatic S(self-incompatibility)-locus specific glycoprotein[J]. Proc Natl Acad Sci USA, 1993,90:467-471.
    [53] Stein JC, Dixit R, Nasrallah ME, et al. SRK the stigma-specific S locus receptor kinase of Brassica is targeted to the plasma membrance in transgenic tobacco[J]. Plant Cell. 1996,8:429-445.
    [54] Giranton JL, Dumas C, Cock JM, Gaude T. The integral membrane S-locus receptor kinase of Brassica has serine/threonine kinase activity in a membranous environment and spontaneously forms oligomers in planta[J]. Proc Natl Acad Sci USA, 2000, 97:3759-3764.
    [55] Cui Y, Bi YM, Brugiere N, et al. The S locus glycoprotein and the S receptor kinase are sufficient for self-pollen rejection in Brassica[J]. Proc. Natl. Acad. Sci. USA.2000,97:3713-3717.
    [56] Takasaki T, Hatakeyama K, Suzuki G, et al. The S receptor kinase determines selfincompatibility in Brassica stigma[J]. Nature. 2000, 403:913-916.
    [57] Bi Y-M, Brugiere N, Cui Y, Goring DR et al. Transformation of Arabidopsis with a Brassica SLG/SRK region and ARC 1 gene is not sufficient to transfer the self-incompatibility phenotype [J].Mol Gen Genet,2000,263:648-654.
    [58] Watanable M, Ito A, Takada Y, Ninomiya C, Kakizaki T, Takahata Y, Hatakeyama K, Hinata K, Suzuke G, Takasaki T et al. Highly devergent sequences of the pollen self-incompatibility(S) gene in class-I S haptotypes of Brassica campestris (syn, rapa) L[J]. FEBS Lett, 2000, 473: 139-144.
    [59] Tiesheng G, Maria M, Waheeda S et al. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase[J]. Pro.Natl.Acad. Sci.USA..1998,95:282-287.
    [60] Cabrillac D, Cock J M, Dumas C, et al. The S Locus Receptor Kinase is Inhibited by Thioredoxins and Activated by Pollen Coat Proteins[J]. Nature,2001,410:220-223.
    [61] Stone S L, Arnoldo M, Goring D R. Abreakdown of self-incompatibility in ARC1 angisense transgenic plants[J].Science. 1999,286:1729-1731.
    [62] Maria M, Waheeda S, Helen E et al.Further analysis of the interactions between the Brassica S receptor kinase and three interacting protein(ARC1,THLland THL2)in the yeast two-hybird
    
    system[J]. Plant Molecular Biology.2001,45:365-376.
    [63] Anderson M A, Mcfadden Gi, Bernatzky R, et al. Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata[J]. Plant Cell. 1989,1:483-491.
    [64] Kawata, Y, et al. Amino-acid sequence of ribonucease T2 from Aspergillus oryzae [J]. Eur. J.Biochem. 1988,103:408-418.
    [65] Mcclure B A, Haring V, Ebert P R,et al. Style Self-incompatibility Gene Products of Nicotiana Alata are Ribonucleases[J]. Nature, 1989, 342:955-957.
    [66] Ioerger T R, Clark A G, Kao, T-H. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation[J]. Proc Natl Acad Sci USA, 1990,87:732-735.
    [67] Kheyr-Pour A, Bintrim SB, Ioerger TR et al.Sequence diversity ofpostil S-proteins associated with gametophytic self-incompatibility in Nicotiana alata[J]. Sex plant Report, 1990,3:88-97.
    [68] Matton DP, Maes C, Xike Q, Bertrand C, Morse D, Cappadocia M. Hypervariable domains of self-incompatibility Rnases mediate allele-specific pollen recognition[J]. Plant Cell, 1997, 9: 1757-1766.
    [69] Huang S, Lee HS, Kanmanandaa B et al. Ribonuclease activity of Petunia inflata S protein is essential for rejection of self-pollen. Plant Cell [J], 1994,6:1021-1028.
    [70] Anderson MA, Cornsii E C, Maus-L, et al. Cloning of cDNA for a Stylar Glycoprotein Associated With Expression of Self-incompatibility in Nicotiana Alata[J]. Nature, 1986,321:38-44.
    [71] Sassa H, Hirano H, Ikehashi H. Identification and Characterization of Stylar Glycoproteins Associated With Self-incompatibility genes of Japanese Pear, Pyrus Serotina Rehd[J]. Molecular General Genetics, 1993,241:17-25.
    [72] Xu Y, Carpenter R, Dickinson H, et al. Origin of Allelic Diversity in Antirrhinum S-locus RNase[J]. Plant Cell, 1996,8:805-814.
    [73] Stephenson A G, Goods V, Vogler D W. Interrelationships Among In breeding Depression, plasticity in the Self-incompatibility System, and the Breeding System of Campanula Ranunculoides L(Campanulaceae)[J]. Annals of Botany, 2000,85(A):211-219.
    [74] Dodds PN, Clarke AE, Newbigin E. A molecular perspective on pollination in flowering plants[J]. Cell, 1996,85:141-144.
    [75] Lee H S, Huang S, Kao T-h. S-proteins control rejection of incompatible pollen in Petunia inflata[J]. Nature, 1994, 367:560-563.
    [76] Murfett J, Atherton TL, Mou B et al. S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection[J]. Nature, 1994,367:563-566.
    [77] Royoj, Kunz C, Kowyama Y et al. Loss of a histidine residue at the active site of the S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruviaraun[J]. Proc Natl Acad Sci USA, 1994,91:6511-6514.
    [78] Kanmanandas B, Huang S, Kao T-h. Carbohydrate moiety of the petunia inflata S3 protein is not required for self-incompatibility interactions between pollen and pistil[J]. Plant Cell, 1994,6:1933-1940.
    [79] Golzjf, Su V, Clarke A E, Newbigine. A Molecular Description of Mutation Affecting the Pollen Component of the Nicotiana alata S-locus[J]. Genetics, 1999,152:1123-1135.
    [80] Luu DT, Qinx, Morse D, et al. S-RNase Uptake by Compatible Pollen Tubes in Gametophytic Self-incompatibility[J]. Nature, 2000,407:649-650.
    [81] McClure BA, Gray JE, Anderson MA et al, Self-incompatibility in Nicotiana alata involves
    
    degradation of pollen rRNA[J]. Nature, 1990,347:757-760.
    [82] Ishimizu T, Sato Y, Saito T et al., Identification and partial amino acid sequences of seven S-RNase associated with self-incompatibility of Japanese pear[J].Pyrus pyrifolia, J.Biochem,1996, 120:326-334.
    [83] Tao R, Yamane H, Sassa H et al., Identification of stylar RNase associated with gametop hytic self-incompatibility in almond(Pyrus dulcis)[J]. Plant Cell Physiol, 1997,38:304-311.
    [84] Broothaerts W, Janssens GA, Proost Pet al., cDNA cloning and molecular analysis of two self-incompatibility alleles from apple[J].Plant Mol Biol, 1995,27:499-511.
    [85] Norioka N, Ohnish Y, Noriok S et al., Nucleotide sequence of cDNA encoding S2-and S4-RNase from Japanese Pear(Pyrus pyrifolia)[J]. Plant Physiol, 1995, 108:1343.
    [86] Foote H, Ride J, Franklin-Tong VE et al. Cloning and expression of a distinctiveclass of self-incompatibility(S)gene from Papaver rhoeas[J]. Proc Natl Acad Sci USA, 1994, 91: 2265-2269.
    [87] Jaordan ND, Kakeda K, Conner A, et al. S-protein mutants indicate a functional role for SBP in the self-incompatibility reaction of Papaver rhoeas[J]. Plant J, 1999,20:119-125.
    [88] Hearn MJ, Franklin FCH, Ride JP. Identification of a membrane glycoprotein in pollen of Papaver rhoeas which binds stigmatic self-incompatibility(S-)protein[J]. Plant J,1996,9:467-475.
    [89] Franklin-Tong VE, Ride JP, Fmaklin FCH. Recombinant stigmatic self-incompatibility (S-)protien elicits a Ca~(2+) transient in pollen of Papaver rhoeas[J]. Plant J, 1995, 8:299-307.
    [90] Kakeda K, Jordan ND, Conner A, et al. Identification of residues in a hydrophilic loop of the Papaver rhoeas S protein that play a crucial role in recognitin of incompabible pollen[J]. Plant Cell, 1998,10:1723-1732.
    [91] Rudd JJ, Franklin. Tong V E. Unravelling Response-specificity in Ca~(2+) Signalling Pathways in Plant Cells[J]. New Phytologist, 2001,151: 7-34.
    [92] 王桂娥.大白菜自交不亲和系自交不亲和性的克服[J].种子科技,1997(4):42.
    [93] 曹必好,王远欧,克服甘监自交不亲和性方法的探讨[J].蔬菜,1998(3):26.
    [94] 曹必好,王远欧,克服甘监自交不亲和性的探讨[J].天津农业科学,1993(3):32-34.
    [95] 张宝珍,李素文.温、湿度对花椰蕾期授粉结荚率的影响[J].天津农业科学.1995,1(1):4-6.
    [96] Iizuka, M..Studies on the fertility of artifical polyploid plants,Ⅳ. Dual pollination with self-incompatible and cross-compatible pollen in Brassica[J]. Bul. Res. Inst. Food. Sci. Kyoto. Univ, 1957, 19:52-62.
    [97] Nasrallah, M. E. et al. Genotype, protein, Phenotype relationship in self-incompatibility system by maturing stigmas of brassica oleracea[J]. Planta, 1979,146:179-183.
    [98] Roberts I N. Pollen stigma interactions in brassica oleracea[J]. Theor Appl. Genet, 1980, 58:241-246.
    [99] Roberts, I. N. et al. A glycoprotein associated with the acquisition of the self-incompatibility system by maturing stigmas of brassica oleracea[J]. Planta, 1979,146:179-183.
    [100] 薛妙男,李楠,张杏辉等.沙田柚自交不亲和花柱糖蛋白产生的时空关系[J].广西植物,2000,20(2):164-167.
    [101] Dayton, D. E. Overcoming self-incompatibility in apple with killed compatible pollen[J].J. Am. Soc. Horti.Sci., 1974,99:190-192.
    [102] 邵有全,苗如意,岳青,康黎芳,蜜蜂授粉对人白菜自交不亲和系结实的影响[J].山西
    
    农业科学,1998,26(3):67-49.
    [103] 吴飞燕,钮心恪,孙日飞等.利用蜜蜂授粉使人白菜自交不亲和系获高产[J].中国养蜂.1996(6):20-21.
    [104] Matsubara S.Overcoming self-incompatibility in Raphanus sativus L. with hightemperature[J].J.Am.Soc.Hot.Sci,1980,105:842-846.
    [105] Qaraeen A.M.Pseudo-compatibility in Tradescantia paludose, I. Temperatrue treatment[J].Hereditas, 1980,93:223-229.
    [106] Taylor J.P.Carbon dioxide treatment as an effective aid to the production of selfed seed in kale and Brussels sprouts[J].Euphytica, 1982,31:957-964.
    [107] Thompson K.F. Application of recessive self-incompatibility to production of hybrid rape seed[J]. 5th Intl.Rape seed Conf, 1978,6:12-16.
    [108] 胡繁荣.利用BA克服大白菜自交不亲和性[J].中国蔬菜,1998(1):29.
    [109] 吕俊,朱利泉,王小佳等.利用蛋白激酶抑制和激活剂调控甘蓝自交不亲和性[J].园艺学报,2001(3):135-239.
    [110] Emsweller S.L.The role napjhthalene acetamide and potassium gibberellate in overcoming self-incompatibiliy in Liliun longiflorum[J].Proc, Am.Soc.Hort.Sci,1960,75:720-725.
    [111] Nasrallah J B, Nasrallah M E.Electrophretic heterogeneity exhibited by the S-allele specific glycoproteins of Brassica [J]. Experimentia, 1984, 40: 270-281.
    [112] Shivanna K R.Pollen stigma interaction:bud pollination in the Cruciferae[J].Acta Bot Neerl,1978,27:107-119.
    [113] 高俊杰.用花粉提取液克服大白菜自交不亲和性研究[J].北方园艺,1997(6):1-2.
    [114] 王金勋.影响十字花科自交不亲和系亲和指数的九个因素[J].福建农科院学报,1994,9(2):46-50.
    [115] Nakanishi T.Control of self-incompatibility by CO_2 gas in Brassica[J].Plant Cell Physil,1969,10:1247-1251.
    [116] Nakanishi T, Hinata K. Self-seed production by CO_2 gas treatment in self-incompatibility cabbage[J].Euphytica, 1975,24:117-120.
    [117] 胡代泽,安彩泰,董惠珍等.用化学方法克服油菜自交不亲和性研究[J].中国油料,1983,(2):1-3.
    [118] 傅廷栋.中国油菜杂种优势利用研究概况.中国国际油菜科学讨论会论文选[M].上海,上海科技出版社,1991:118-123.
    [119] 经章,建强.利用化学方法克服甘监型油菜自交不亲和性研究.中国国际油菜科学讨论会论文选[M].上海,上海科技出版社,1991:131-134.
    [120] 陈越.NaCl溶液可克服白菜型油菜自交不亲和性[J].陕西农业科学,1997(3),43-44.
    [121] 张恩慧,鲁玉妙,食盐和硼对甘蓝自交不亲性的影响[J].中国蔬菜,1996(5):29
    [122] 孟平红,吴康云.不同处理对克服甘蓝自交不亲和性的效果的探讨[J].种子,2003(1):69-69.
    [123] 杨锐,余阳俊,徐家炳等.花期喷盐水结合蜜蜂授粉克服大白菜自交不亲和性试验[J].华北农学报,1995,10(2):77-81.
    [124] 李正吉,赵胜业,倪树林等.喷盐水克服大白菜自交不亲和的研究[J].疏菜,1997,28.
    [125] 宋尚伟,王兰菊,张晓伟,等.大白菜喷施NaCl克服自交不亲和性的研究[J].安徽农业科学,2003,31(5):831-832.
    [126] 许东,黄聪丽,何大京等.利用食盐水克服花椰菜自交不亲和性初试[J].福建农业科技,1996(5):24.
    [127] 安彩泰,孙万泉.州化学方法克服芸苔属(Brassica)作物自交不亲和性的研究.Ⅰ.用NaCl克服芸苔属作物自交不亲和性的实际应刚效应[J].甘肃农业大学学报,1985,(2):54-60.
    [128] 安彩泰,孙万泉.用化学方法克服芸苔属(Brassica)作物自交不亲和性的研究.Ⅳ.用NaCl克服自交不亲和性机理初探[J].甘肃农业大学学报,1989(4):29-35.
    [129] 唐爱均,董永利,王亚红等.食盐水克服菜花自交不亲和性分析[J].陕西农业科学.
    
    2000(9):15-16.
    [130] 小林森已.园艺作物授粉花粉媒介昆虫.增殖利用[M].东京:诚文堂新光社,1986.1-16.
    [131] 张绍铃,房经贵,杨记磙.果树自交不亲和性的遗传与生理机制及其研究[J].果树学报,2001,18(1):49—52.
    [132] Kobel F, Steinegger P, Anliker J. Wertere Untersuchungen uberdie Befruchtung sverhaltnisse der Apfel-und Birnsorten[J]. Landw Jb schweiz, 1939, 53: 160-191.
    [133] Hiratsuka S. Detection and inheritance of a stylar protein associated with a self-incompatibility genotype of Japanese pear[J], Euphytica, 1992a,51:55-59.
    [134] Hiratsuka S. Characterization of an S-allele associated protein in Japanese pear[J], Euphytica, 1992b,62:103-110.
    [135] Hiratsuka S, Okada Y, Tamura F et al Stylar basic protein corresponding to 5 self-incompatibility allele of Japanese pear[J]. Japan.Sco.Hort.Sci, 1995,64(3):471-478.
    [136] Zhang Shao Ling, Shin Hiratsuka. Variations in S-protein levels in styles of Japanese pear and the Expression of self-incompatibility[J].J. Japan.Soc.Hort.Sci. 1999,68(5):911-918.
    [137] 张绍铃,平土冢伸,徐国华,等.梨自交不亲和及其亲和突变品种花柱内S_4(S_4~(SM))基因的表达与作用的比较[J].植物学报,2001,43(1):1172-1178.
    [138] Tomimoto Y, T. Nakazaki, H. Ikehashi et al.. Analysis self-incompatibility related ribonucleases(S-RNase)in two species of pears. Pyrus communis and Pyrus ussuriensis[J].Scientic Horticulture, 1996,66:159-167.
    [139] Sassa H, Mase N, Hirano H et al Identification of self-incompatibility-related glycoproteins in styles of apple[J], Theor Appl Ggenet, 1994,89:201-205.
    [140] Certal A C, Sanchez A M, Kokko H et al. S-RNase in apple are expressed in the pistil along the pollen tube growth path[J]. Sexual Plant Reproduction. 1999,12:2,94-98.
    [141] Ushijima K, Sassa-H, Tao R et al, Cloning and characterization of cDNA encoding S-Rnases from almond(Prunus dulcis): primary structural features and sequence diversity of the S-RNase in Rosaceae[J]. Molecular and General Genetics. 1998, 260:2-3,261-268.
    [142] Boskovic R, Tobutt KR, Correlation of stylar ribonuclease zymograns with incompatibility alleles in sweet cherry[J]. Euphytica, 1996,90:245-250.
    [143] Boskovic R, Russell K, Tobutt KR, Inheritance of stylar ribonucleases in cherry progenies and reassignment of incompatibility alleles to incompatibility groups[J]. Euphytica, 1997, 95: 221-228.
    [144] Riuchi,H.et al., Primary structure of a bass non-specific ribonuclease from Rhizopus niveus[J]. J Bilchem. 1998,103:408-418.
    [145] Janssens GA, Goderis LJ, Broekaert WF, et al.A molecular method for S-allele identification in apple based on allele-specific PCR[J]. Theor Appl Genet, 1995,91: 691-698.
    [146] Sassa H, NishiT, Kowyama Y et al. Self-incompatibility(S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease super family[J], Mol. Gen. Gent. 1996,250:547-557.
    [147] Tamura M, Ushijima K, Sassa H, et al, Identification of self-incompatibility genotypes of almond by allele-specific PCR analysis[J]. Hort. Sci. 2000,35:1121-1123.
    [148] Yaegaki H, Shimada T, Moriguchi T, et al. Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot(Prumus mume Sieb. et Zucc.)[J]. Sex Plant Reprod, 2001, 13: 251-257.
    [149] 张纠铃,曹生民,吴华清.果树自交不亲和性基因型及其鉴定方法[J].果树学
    
    报,2003,20(5):358-363.
    [150] 郭元林.梨品种自交不亲和性等位基因的鉴定[J].国外作物育种,2003 32-33.
    [151] Fanklin FCH, Lawrence MJ, Franklin-Tong Cell and molecular biology of self-incompatibility in flowering plant[J]. Inter Rev of Cytol,1994,158:61-63.
    [152] Damerval C,de Vienne D, Zivy M,et al.Technical improvements in two dimensional electrophoresis increase the level of genetic variation detected in wheat-seeding protein[J]. Eiectrophoresis,1986,7:52-54.
    [153] Ishimizu T, Inoue K, Shimonaka M, et al.PCR-based method for identifying the S-genotypes of Japanese pear cultivars[J]. Theor Appl Genet, 1999,98:961-967.
    [154] Wiersma PA, Wu Z, Zhou L, et al. Identification of new self-incompatibility alleles in sweet cherry(Cerasus avium L.)and charification of incompatibility groups by PCR and sequencing analysis[J]. Theor Appl Genet,2001,102:700-708.
    [155] Tan X F,Wu-yun T N, Li X G.Determination of S-Genotypes of Pyrus pyrifolia (Chinese pear)Cultivars by S-RNase Sequencing and PCR-RFLP Analyses[J].Adu Plant Sci(发表中).
    [156] Tan X F,Wu-yun T N,Nakanishi T,Takai Y.Identification and Characterization of seven new S-RNase genes in Pyrus pyrifolia (Chinese pear)[J]. Adu Plant Sci(发表中).
    [157] 佐藤昭宏.RT-PCR S遗传子型推定[D].修士学位论文,2001(日本).
    [158] Wuyun Tana, Xiaofeng-T, Dangquan-Zhang. Discovery of six S-RNase new genes and determination of S-genotypes in the Pyrus bretschneideri, Adu Plant Sci.(发表中)
    [159] Wuyun Tana, Xiaofeng-T, Dangquan-Zhang. Discovery of a new S-RNase and determination of S-genotypes by PCR-RFLP in pear (Pyrus bretschneideri), Adu Plant Sci(发表中)
    [160] 中国农业科学院果树研究所主编.果树种质资源目录(第一集)[M].北京:农业出版社,1993.
    [161] 陈厚今,杨文芳,葛敏等.砀山酥梨花朵定位授粉试验初报[J],山西果树,1998(74)4:42-44.
    [162] 谭晓风,漆龙霖,黄晓光等,山茶属植物叶片DNA抽提[J],中南林学院学报,1999(4):16-21.
    [163] F 奥斯伯,R 布伦特,R E.金斯顿主编.精编分子生物学实验指南[M].北京:科学出版社,1998.
    [164] 钟扬,张亮,赵琼等.简明生物信息学[M].北京:高等教育出版社,2001.73.
    [165] 王哲,黄高升,NCBI的数据库资源及其应用[J].生命科学,2002,14(1):59-62.
    [166] 黄积涛,张嘉琪,韩宝成等.Internet上的生物信息学[J].天津理工学院学报,2000,16(3):99-108.
    [167] 程滨.生物信息学在新基因克隆中的应用[J].安徽农业技术师范学院学报 2000,14(3):45-46.
    [168] 尚丹,卢铭,生物信息学概述[J].北京大学学报,2001,33(1):92-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700