用户名: 密码: 验证码:
基于CVT的四轮驱动混合动力汽车传动控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着汽车工业的高速发展,资源短缺与环境污染日益严重,由于纯电动汽车短时间内在其长寿命、大容量电池等关键技术上难以突破,混合动力电动汽车将在相当长时间内发挥其独特优势。为了改善轻型SUV(Sport Utility Vehicle)汽车的燃油经济性和动力性能,本文提出了一种基于无级变速器(CVT)的四轮驱动混联式混合动力汽车系统结构方案,对四驱混合电动汽车整车传动控制策略相关技术进行了深入分析和研究。
     首先通过计算分析,确定了包括驱动和能源部件的参数设计和选型、关键零部件的选择及设计,以及所有部件在整车中的安装布置。同时基于Matlab/Simulink平台系统,采取理论建模为辅,试验建模为主的方法建立起CVT混联式四驱混合动力整车传动系统正向仿真模型,该模型既可以用驾驶员的转矩或功率需求作输入,也可将循环工况转化为驾驶员需求,所建模型可用于分析评价不同的设计方案和控制策略的优化,也可为实车控制策略的开发建立仿真分析平台。
     在分析了传统混合动力典型运行模式基础上,根据CVT混联式四驱混合动力整车动力总成系统结构特点,对包括驻车发电、电力变矩、纯电动、混合驱动等多种运行模式进行分类并分别进行详细的动力学分析,建立起各个运行模式下转矩、转速在传动过程中的变化规律和实现模式切换的发动机、电机及离合器控制规则。
     根据动力总成控制系统结构特点,以发动机、电机稳态效率图和电池充放电效率曲线为依据,并基于发动机效率曲线和等功率及等转矩曲线,求得发动机高效工作区的功率门限Pe _min、Pe _max以及转矩门限Te _min、Te _max。然后根据驾驶员对施加在车轮上的驱动需求(其中低速以驱动转矩为参考量,高速以驱动功率为参考量)、车速、电池SOC等,通过不同的逻辑门限参数区分混合动力系统在不同模式间切换的规律,通过离合器和电机系统协调控制,提出了保证模式切换的平顺性的控制方法。并以混合动力系统综合效率最大化为原则确定了不同运行模式下的最佳工作曲线,以及前后电机、发动机转矩及CVT速比及夹紧力在不同模式下的控制方法。基于Matlab/Simulink平台的仿真研究表明,这种根据整车运行工况并综合了转矩及功率需求为控制变量的多参量逻辑门限能量管理策略,能实现运行模式的合理切换,在不降低车辆动力性能的前提条件下,非常有效的降低混合动力汽车的燃油消耗,并保持电池SOC的基本稳定。
     以瞬时优化理论为基础,从等效燃油消耗量的思想出发,建立了四驱混联电动汽车在充?放电模式下的等效模型。在控制发动机工作于最佳燃油经济区的基础上,以有效燃油消耗率为优化目标函数,寻求出整车燃油消耗量最小时的理想操作线,理想操作线决定了发动机和各个电机的最佳控制值。并以此优化计算结果为基础,制定了模糊控制规则,仿真结果表明:基于瞬时优化的模糊控制策略能有效提高混联式混合动力汽车燃油经济性。
     针对基于CVT的四驱混联式电动汽车的模式切换问题进行了较深入的研究。通过发动机、电机和离合器的协调控制,提出可使系统快速响应以及在模式切换时平稳的控制要点。
     同时开发了基于CAN总线的多能源动力总成控制硬件系统,搭建完成了多能源动力总成半实物试验台架,并对CAN总线网络通讯、电子节气门系统、整车运行模式及模式切换等进行试验,最对改装后的混合动力汽车进行标定与匹配工作,并完成整车的动力性、燃油经济性试验。实验结果表明:改装后的混合动力汽车整车0~100km/h加速时间较原始车型减少3秒,燃油经济性提高约8%。同时整车模式切换较为平稳,没有明显冲击感觉。
The shortage of resources and environmental pollution become serious increasingly with the rapid development of the automobile industrial .Because the key techniques of pure electrical automobile will be difficult made a breakthrough in the near future, especially the high performance battery with big capacity and long life. The hybrid electric vehicle will show its special advantages in a very long time. In order to improve the fuel economy of the light sport utility vehicle, a new four wheels drive hybrid electric vehicle equipped with continuously variable transmission (CVT) is proposed, the whole vehicle driveline control strategy and related techniques are also thoroughly analyzed and researched.
     Firstly, the preferences of the powertrain components are confirmed through the calculation, as well as the selection and design of the key components, and the arrangement of each component. And then the forward-facing simulation model of the hybrid electric vehicle is founded in the Matlab/simulink platform, the model can accept the power demanded and torque demanded as the input parameters, and also can translate the inputted duty cycle into the power or torque of the driver demanded. It can be used to optimize the control strategy of simulation model as well as the real vehicle control strategy development.
     Secondly, the running mode of the traditional hybrid electric vehicle are analyzed, and then based on the system configuration of the four wheels drive hybrid electric vehicle , the classification of running mode of the vehicle and its dynamics characteristic are researched. including the generate electricity mode in halt, the engine and motor cooperative drive mode, only motor drive mode and so on. At the same time, the control strategies of the clutch/engine and the motor during mode transfer are also proposed.
     According to the static efficiency maps of the engine /motor and the charge/ discharge character of the battery, the optimization power curve and the optimization torque region of the engine are got by taking account of the equal power curve and equal torque curve. As a result, the mode transition rules are obtained by means of the power demanded or the torque demanded, the vehicle speed, the state of the charge (SOC) of the battery. The clutch and the motor cooperation control strategy are also proposed in order to keep smooth mode switching. at the same time ,the optimization operating line of the engine/motor in each mode, the output torque of the two motor ,the speed ratio of CVT,and the output torque of engine are got based on the maximum efficiency principle of the whole vehicle. The simulation results show that the control strategy take account of the required torque and required power simultaneity can comprehensively and efficiently manage the flow of energy among the driveline and keep the stability of the SOC , including the engine fuel economy is significantly improved while at the same time attractive driving performance is achieved.
     An equivalent model for charge/recharge modes of the 4WD hybrid electric vehicle is proposed through the method of the equivalent fuel consumption. When the engine is operated within the ranges of the best fuel economy, the desired operation curve (DOC) is derived based on the definition of optimization target function for the effective specific fuel consumption. The optimization result is obtained by calculating in the Matlab/Simulink, and then the fuzzy logic control rules are obtained by the optimization results. The simulation results show that the instantaneous optimization fuzzy logic control strategy can improve the fuel economy greatly.
     Besides, the control strategy of the mode transition are profound analysis according to the structure of power coupling of the hybrid electric vehicle , By means of cooperation control of the engine, motors and clutches. The control strategy that enables the system to achieve the sufficient response and smoothness in drive mode transition is proposed.
     Finally, the hybrid control unit (HCU) based on CAN bus is developed by using the chip of TMSF2812.The power train test bench is also established and the validity of the CAN net, the strategy of running mode shift, the electrically controlled throttle system are tested. Finally, the remodeled hybrid electric vehicle is tested in real road, experiment results show that the hybrid system improved fuel economy approximately 8 percent and deduced 3 seconds of the 0-to 100km/h acceleration time compare with the vehicle on which it is based. And the smooth mode transition is also obtained.
引文
[1]李兴虎.电动汽车概论.北京:北京理工大学出版社,2005
    [2]安东尼·所左曼诺夫斯基.混合动力城市公交车系统设计.北京:北京理工大学出版社,2007
    [3] Steinmaurer G, Del Re L, Johannes Kepler. Development and use of a series hybrid vehicle control strategy for the ADVISOR simulation tool. In: Proceedings of 2001 Joint ADVISOR/PSAT Vehicle Modeling Users Conference, Michigan,2001, 34-78
    [4] Reza Langari, Jong-Seob Won. Fuzzy Torque Distribution Control For A Parallel-Hybrid Electric Vehicle. In: Proceedings of 2001 Joint ADVISOR/PSAT Vehicle Modeling Users Conference. Michigan, 2001, 28–29
    [5] Barbarisi Osvaldo, Westervelt Eric R. Power Management Decoupling Control for a Hybrid Electric Vehicle. In: Proceedings of the44th IEEE Conference on Decision and Control, Spain, 2005, 12-15
    [6] Rousseau Aymeric. Argonne’s Hybrid Electric Vehicle Technology Development Program. In: Proceedings of 2001 Joint ADVISOR/PSAT Vehicle Modeling Users Conference, Michigan, 2001, 28-29
    [7] Min Sway-Tin, Jinbiao Li, Charles Yuan.Application of Optimiza- tion Tools to Vehicle Systems Analysis. In: Proceedings of 2001 Joint ADVISOR /PSAT Vehicle Modeling Users Conference, Michigan, 2001, 29-34
    [8]宋慧,胡骅.复合动力电动汽车的驱动模式和控制策略.世界汽车,2000,67(7):7-11
    [9]陈全世,朱家琏,田光宇.先进电动汽车技术(第一版).北京:化学工业出版社,2007,221-253
    [10] Wagner G. Improvement of Fuel Economy in Passenger Cars Using New Trans- mission Concepts, Powertrain International, 2002, 5(3): 38-44
    [11] Zoelch U, Schrode D. Optimization Method for Rating the Components of a Hybrid Vehicle, EVS14, 1997
    [12] Kim C. Fuel Economy Optimization for Parallel Hybrid Vehicle with CVT. SAE paper, 1999, 111(48): 337-342
    [13] Barry Powell.Xianjie Zhang. Computer Model for a Parallel Hybrid Electric Vehicle with CVT. In: Proceedings of the American Control Conference. Chicago, 2000, 345-457
    [14] Setlur P, Wagne J R. Nonlinear Control of a Continuously Variable Transmission for Hybrid Vehicle Powertrains. In: Proceedings of the American Control Co- nference, Arlington, 2001, 25-27
    [15] Lee H, Kim H. Improvement in fuel economy for a parallel hybrid electric vehicle by continuously variable transmission ratio control. Automobile Engineering, 2002, 219(3): 45-68
    [16] Jong-Seob Won, Reza Langari. An Energy Management and Charge Sustaining Strategy for a Parallel Hybrid Vehicle With CVT. IEEE Transactions on Control System Technology, 2005, 2(13):80-123
    [17] Richard Saeks, Chadwick J Cox. Adaptive Control of a Hybrid Electric Vehic- le.IEEE Transactions on Intelligent Transportation System, 2002, 4(3):213-234
    [18] Yuan Zhu, Yaobin Chen. A Four-Step Method to Design an Energy Management Strategy for Hybrid Vehicles. In: Proceeding of the 2004 American Control Conference, Boston Massachusetts, 2004
    [19]冬野,秦大同.基于无级变速传动的并联式混合动力汽车动力学仿真研究.机械工程学报,2003,39(1):79-83
    [20]秦大同,颜静,杨阳,胡建军.HEV再生制动过程中CVT速比控制策略.重庆大学学报(自然科学版),2007,45(01)
    [21]秦大同,谭强俊,杨阳,胡建军.CVT混合动力汽车再生制动控制策略与仿真分析.汽车工程,2007,29(03)
    [22]余群明,周健,喻伟雄.四驱混联电动汽车的燃油经济性优化研究.汽车工程,2007,29(2)
    [23]余群明,周健,黄伟.基于CVT的混联式电动汽车动力切换平稳性研究.汽车工程,2007,29(3)
    [24]钟勇.基于CVT的类菱形混合动力电动汽车系统研究与仿真:[湖南大学博士学位论文],长沙:湖南大学机械与汽车工程学院,2005,60-110
    [25]白中浩,曹立波,王耀南.基于CVT的混合动力汽车建模与仿真.计算机仿真,2007,24(06)
    [26]钟勇,钟志华,李克.基于CVT的PHEV中内燃机的功率选择与控制策略研究,内燃机学报,2006,46(3)
    [27]张承慧,吴剑,崔纳新.基于无级变速器的并联式混合动力汽车能量管理策略,机械工程学报,2007,34(1)
    [28] Chau K T, Wong Y S. Overview of power management in hybrid electric vehicles. Energy Conversion and Management, 2002, 43: 1953–1968
    [29]胡红斐,黄向东,罗玉涛.一种混联式HEV瞬时优化监控策略的研究.中国机械工程,2006(6)
    [30]杨宏亮,陈全世.混联式混合动力汽车控制策略研究综述.公路交通科技,2002,19(1):103-107
    [31] SEILER J, SCHRODER D. Hybrid vehicle operating strategies. In: The 15th In- ternational Electric Vehicle Symposium(EVS 15), Brussels Belgium, 1998
    [32]何海,钟毅芳,蔡池兰.混合动力汽车能量管理控制器参数优化.华中科技大学学报(自然科学版),2006(9)
    [33]余志生.汽车理论(第1版).北京:机械工业出版社,1981,1-332
    [34]浦金欢.混合动力汽车能量优化管理与控制策略研究:[上海交通大学博士学位论文].上海:上海交通大学,2004
    [35] Rahman Z, Butler K L, Ehsani M. A comparison study between two parallel hybrid control concepts.SAE Paper, 2000, 1099(4)
    [36] Johnson V H, Wipke K B, Rausen D J. HEV control strategy for real-time optimi- zation of fuel economy and emissions. SAE Paper, 2000, 1154(3)
    [37] Powell B K, Bailey K E, Cikanek S R. Dynamic modeling and control of hybrid electric vehicle powertrain systems.IEEE Control Systems Magazine,1998,18(5):17-33
    [38] Markel T, Brooker A, Hendricks T, et al. ADVISOR:a systems analysis tool for advanced vehicle modeling. Journal of Power Sources, 2002, 110(2): 255-266
    [39]童毅,欧阳明高.前向式混合动力汽车模型中传动系建模与仿真.汽车工程,2003,5(25)
    [40]张翔,钱立军.电动汽车仿真软件进展.系统仿真学报,2004,16(8)
    [41] Marco Amrhein, Philip TKrein. Dynamic Simulation for Analysis of Hybrid Electric Vehicle System and Subsystem Interactions Including Power Electronics. In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2005, 3(54)
    [42]曾小华.混合动力客车节能机理与参数设计方法研究:[吉林大学博士学位论文].长春:吉林大学,2006
    [43]曾小华,王庆年等.基于ADVISOR2002混合动力汽车控制策略模块开发.汽车工程,2004,26(4):394-396
    [44] Hauer K H.Analysis tool for fuel cell vehicle hardwareand software (controls) w- ith anapplication to fuel economy comparisons of alternative system designs:[PhD Dissertation],University of California Davis,2001
    [45] MathWorks.Simulink/Stateflow technical examples—using Simulink and State- flow in automotive applications.Technical Report,1998
    [46] Crossley P R, Cook J A. A nonlinear engine model for drivetrain system deve-lopment.In:Proc of’91 IEEE International Control Conference, Edinburgh, UK,1991, 2: 921-925
    [47] Powell B K, Bailey K E, Cikanek S R. Dynamic modeling and control of hybrid electric vehicle powertrain systems. IEEE Control Systems Magazine,1998,18(5): 17-33
    [48] Johnson V H, wipke K b. HEV control strategy for real-time optimization of fuel economy and emissions. SAE Paper, 2000,1154(3)
    [49] Johnson V H, Pesaran A A. Temperture-Dependent Battery Models for Nihe-P- ower Lithium-ion batteries. EVS17 Electric Vehicle Associa- tion of the Americas, Canada, 2000
    [50] Johnson V H, Zolot M D, Pesaran A A.Development and Validation of a Temperature-dependent Resistance/Capacitance Battery Model for ADVISOR.EVS 18 Electric Vehicle Association of the Americas, Berlin German, 2001
    [51]薛殿伦,王红岩,王立公,郑联珠等.金属带式无级变速汽车的建模与性能仿真.农业机械学报,2003,34(6):4-8
    [52]刘明辉.混合动力客车整车控制策略及总成参数匹配研究:[吉林大学博士学位论文].长春:吉林大学,2005
    [53]杜爱民,冯旭云.四轮驱动混合动力汽车能量管理策略仿真.同济大学学报(自然科学版),2006,6
    [54]于秀敏,曹珊,李君.混合动力汽车控制策略的研究现状及其发展趋势.机械工程学报,2006,11
    [55] Frederick G,Harmon.The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network. Neural Net- works, 2005, 18:772–780
    [56] Huang Xiangdong, Zhao Kegang. Study on a new split type of HEV powertrains. International Journal of Vehicle Design, 2005, 38(1):96-105
    [57] Tsai L W, Schultz G. A motor-integrated parallel hybrid transmission. Journal of Mechanical Design, 2004,5(126):889-894
    [58] Van Druten R M. Mild hybrids with CVT:Comparison of electrical and mechan- ical torque assist,VDI Berichte, 2001,1610:331-345
    [59] Setlur P, Wagner J R. Nonlinear control of a continuously variable transmission (CVT) for hybrid vehicle powertrains.In: Proceedings of the American Control Conference, 2001, 2:1304-1309
    [60] Lee H, Kim H. Improvement in fuel economy for a parallel hybrid electric veh-icle by continuously variable transmission ratio control. In: Proceedings of the Insti- tution of Mechanical Engineers,Part D:Journal of Automobile Engineering, 2005, 121(9):43-51
    [61] David Huang K a, Sheng-Chung Tzeng. Integration mechanism for a parallel hybridvehicle system. Applied Energy, 2005, 82:133–147
    [62] Schlurmann J, Schroder D. Design and implementation of the control system in the optimized CVT-hybrid-driveline. Innovative Power Train Systems, 2006, 1975:175-193
    [63] Hohn BR, Pflaum H. Concept and potential of "CVT-hybrid-driveline" Integrated. Powertrain and Driveline Systems, 2006, 200(6): 127-139
    [64] Miller, John M. Hybrid electric vehicle propulsion system architectures of the e-CVT type. IEEE Transactions on Power Electronics, 2006, 3(21): 756-767
    [65] Zhang Y, Lin H. Performance modeling and optimization of a novel multi-mode hybrid powertrain. Journal of Mechanical Design, Transactions of the ASME, 2006, 1(128): 79-89
    [66]周云山,钟勇.汽车电子控制技术.北京:机械工业出版社,2003
    [67] Jong-Seob Won, Reza Langari. An Energy Management and Charge Sustaining Strategy for a Parallel Hybrid Vehicle With CVT. IEEE Transactions on control system technology, 2005, 2(13)
    [68] Chan-Chiao Lin, Jun-Mo Kang, Grizzle J W, et al. Energy Management Strategy for a Parallel Hybrid Electric Truck. Proceedings of the American Control Conference, Arlington, 2001, 2878-2883
    [69] Chunho Kim, Eok NamGoong, Seongchul Lee, et al. Fuel Economy Optimization for Parallel Hybrid Vehicles with CVT. SAE, 1999, 1114(8)
    [70] Gino Paganelli, Gabriele Ercole, Avra Brahma, et al.General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review 22, 2001, 511-518
    [71] Valerie Johnson, Keith Wipke,David Rausen.HEV Control Strategy for Real-Time Optimization of Fuel Economy and Emissions. SAE paper, 2000, 115(43)
    [72] Zoelch U, Schroder D. Optimization Method for Rating the Components of a Hybrid Vehicle. Electric Vehicle Symposium EVS97, 1997
    [73] Kim C.Fuel Economy Optimization for Parallel Hybrid Vehicle with CVT.SAE paper,1999,111(48):337-342
    [74] Pierluigi Pisu, Kerem Koprubasi. Energy Management and Drivability ControlProblems for Hybrid Electric Vehicles.In:Proceedings of the 44th IEEE Conference on Decision and Control,The European Control Conference, Seville,Spain, 2005
    [75]王伟华,王庆年,金启前.混合动力客车多能源动力总成控制器研制与试验.汽车工程,2004,26(2)
    [76]王晓明,谢辉.混合动力轿车多能源动力总成控制系统研制与开发.汽车工程,2006,6(28)
    [77]廖承林,张俊智,卢青春.混合动力轿车动力总成控制系统的研发.汽车工程,2006,5(28)
    [78]朱正礼,殷承良,张建武.混合动力车中CAN总线系统的应用.交通运输工程学报,2004,4(3)
    [79]王晓明,陈熙,赵春明.多能源动力总成硬件在环仿真试验系统开发与研究.汽车工程,2006,3(28)
    [80]罗禹贡,杨殿阁.轻度混合动力电动汽车多能源动力总成控制器的开发.机械工程学报,2006,07
    [81] Labrosse Jean J(邵贝贝译). UC/OS-Ⅱ—源码公开的实时嵌入式操作系.北京:中国电力出版社,2001
    [82]田江学,屈卫东.CAN总线在混合动力汽车中的应用.计算机工程, 2003, 29(18)
    [83]颜伟超,殷承良,周宇星.CAN总线在混合动力汽车上的应用.工业计算机控制,2005,18(3):55-56
    [84] Tyrus Jason M, Long Ryan M. Hybrid Electric Sport Utility Vehicles. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1607-1622
    [85] Hiroatsu Endo, Masatoshi Ito, Tatsuya Ozeki.Development of Toyota’s Transaxle for Mini-van Hybrid Vehicles. JSAE Review, 2003, 24: 109-116
    [86]杜兴山.并联混合动力电动汽车动力系统的建模与仿真:[清华大学硕士学位论文].北京:清华大学,2000
    [87] Salman M, Schouten N, Kheir N. Control Strategies for Parallel Hybrid Vehicles.In: Proceedings of the 2000 American Control Conference, Chicago, 2000
    [88] Wang A, Chen Y, Zhang R. A Novel Design of Energy Management System for Hybrid Electric Vehicles Using Evolutionary Comutation.In: Proceedings of 18th Electric Vehicle Symposium, Berlin, 2001
    [89] Lee H, Sul S. Fuzzy - Logic - Based Torque Control Strategy for Parallel - Type Hybrid Electric Vehicle. IEEE Transactions on Industrial Electronics,1998, 45(4):625-632
    [90]舒红,秦大同,胡建军.混合动力汽车控制策略研究现状及发展趋势.重庆大学学报,2001,24(6):24-31
    [91] Cikanek S R, Baily K E, Barasu R C,et al. Control System and Dynamic Model Validation for a Parallel Hybrid Electric Vehicle. Proceedings of the American Control Conference, SanDiefo California, 1999, 1222-1224
    [92] Delprat S,Paganelli. Algorithmic Optimization Tool for Evaluation of HEV Strategies. Beijing: EVS16, 1999
    [93] Paganelli G,Antin J.Conception and Control of Parallel Hybrid Car Power train.Brussels:EVS15,1998
    [94]初亮.混合动力总成的控制算法和参数匹配研究:[吉林大学博士论文].长春:吉林大学,2002
    [95] Feng A N,Barthmatthew, Scora G. Impacts of Diverse Driving Cycles on Electric and Hybrid Electric Vehicle Performance.SAE paper,1997,972(46):36-38
    [96] Karl-Heinz Hauer. Analysis Tool for Fuel Cell Vehicle Hardware and Software with an Application to Fuel Economy Comparisons of Alternative System Designs:[Doctor of Philosophy], University of California, 2001
    [97] Selzer H, Ament Ch, Sorg M.Electric Storage System for Great Mileage and High Acceleration. ISATA Forum, Dublin, 2000
    [98]童毅.并联式混合动力系统动态协调控制问题的研究:[清华大学博士学位论文].北京:清华大学,2004,56-125
    [99]王伟华.并联混合动力汽车的控制:[吉林大学博士学位论文].长春:吉林大学,2006,10-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700