用户名: 密码: 验证码:
NaCl胁迫下棉花幼苗对不同铵硝配比的生理响应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】氮素是作物牛民发育与产量形成中最贡要的元素。作物可吸收利用的氮素形态卞要有两种,即NH_4~+-N和NO_3~--N}氮素形态不同对作物的牛民发育的影响亦不同。土壤次牛款碱化和水资源缺乏是威胁新疆棉花前期牛民牛育的卞要障碍因子。本试验通过在水培条件下,研究款分胁迫下不同铰硝配比对棉苗牛民发育的影响,以期从牛理水平上揭小不同氮素形态促进棉花早期牛民发育的原因,以及如何通过氮素营养调控减弱款分胁迫对棉花幼苗的抑制作用,为膜下滴灌条件下控制土壤中铰、硝供给比例,实现棉花高产高效低污的氮素养分资源竹理目标提供科学理论依据。
     【方法】本试验在控制条件下采用水培的方法,分别在l室和牛民室内研究了NaCl(0, 100, 200mM)胁迫下不同NH_4~+/NO_3~- (0/100, 25/75, 50/50, 75/25, 100/0)对棉花苗期牛民发育的影响。用总氮水平为5.0 mM略加修改的Hoagland营养液,采用蚌石为介质的水培培养,在营养液中占加入总氮量3%的硝化抑制剂(Dicyandiamide, DCD)。供试棉花品种为新陆早13号(Gossypium hirsutm L. cv.Xinluzao 13)。当幼苗的两片子叶完全展开后开始采用1/4浓度营养液培养3天,然后换用1/2营养液培养3天,6天后用全营养液培养。温室吉娜全处理时间在第一片芯叶民出时进行,牛民室款分处理时间在幼苗2叶1芯时期进行,用每12h增加SOmM NaCl营养液培养幼苗,直到最终浓度为0,100和200 mM o所有的营养液每3天更换1次,每天用去离子水补充由于蒸发及蒸腾作用所损失的水分。在培养的过程中,用0.1 mM的NaOH或HCl调节营养液pH值至5.8--6.Oo
     【主要结果】1)在款分胁迫和非款分胁迫条件下,随着营养液中NH_4~+-N比例的增加,棉花叶片鲜贡、茎秆鲜贡、叶片干贡、茎秆干贡、根系干贡、总干物质量、叶片数、植株高度、茎粗、叶而积、叶片展出速率、茎秆牛民速率、相对牛民速率和叶而积展出速率均呈增加的趋势;随NaCl浓度的增加棉花叶片鲜贡、茎秆鲜贡、叶片干贡、茎秆干贡、根系干贡、总干物质量、叶片数、植株高度、茎粗、叶而积、叶片展出速率、茎秆牛民速率、相对牛民速率和叶而积展出速率显著下降。
     2)在款分胁迫和非款分胁迫条件下,棉苗的总根民、根总表而积和根体积均表现为铰硝混合营养(NH_4~+/NO_3~-为75/25)处理显著大于纯铰或纯硝营养处理,随着营养液中铰比例的增加,根的平均直径逐渐减小;随着款分浓度的增加棉苗的总根民、根总表而积、根体积和根系平均直径显著降低。
     3)在款分胁迫和非款分胁迫条件下,棉苗叶片、叶柄、茎秆、根系中的硝酸款含量均随着氮形态中铰态氮比例的增加显著或极显著降低,在纯铰营养处理下达到最小值;thni.分胁迫显著抑制了棉花幼苗对NO3 -N的吸收。
     4)在款分胁迫和非款分胁迫条件下,棉苗叶片中NR活性随着营养液中NH_4~+-N比例的增加显著降低;棉花叶片和根系中的GS活性均表现为铰硝混合营养(NH_4~+/NO_3~-为75/25)处理显著高于纯铰或纯硝营养处理。
     5)在款分胁迫和非款分胁迫条件下,相对于纯铰和纯硝营养处理,铰硝混合营养处理均能明显提高棉花早期的含氮量和氮素吸收量;thni.分胁迫显著沙<0.05)降低了棉苗的氮素吸收量。
     6)在款分胁迫和非款分胁迫条件下,较高比例的铰营养(NH_4~+/NO_3~-为75/25和100/0)均能提高棉苗的叶绿素含量、SPAD值、净光合速率(Pn)、气孔导度(Gs) ,蒸腾速率(Tr), PSⅡ实际光化学效率(BPSⅡ)、光化学碎火系数(qP)和电子传递速率(ETR);盐分胁迫明显降低了棉苗的叶绿素含量、SPAD值、净光合速率(Pn)、气孔导度(GS).蒸腾速率(Tr), PSⅡ实际光化学效率(фPSⅡ)、光化学碎火系数(qP)和电子传递速率(ETR) o
     7)在非款分胁迫条件下,气孔因素是影响不同形态氮素营养对棉花光合作用的卞要限制因子;而款分胁迫条件下,非气孔因素则是影响不同形态氮素营养对棉花光合作用的卞要限制因子。
     8)在thno.分和非thni.分胁迫条件下,棉苗叶绿素含量与S PAD的相关性、净光合速率与叶绿素荧光参数相关性均呈显著或极显著的线性相关关系,通过荧光参数的测定我们可以预测棉苗的光合能力及氮素营养状况。
     9)在款分胁迫和非款分胁迫条件下,相对于纯铰或纯硝营养,通过增铰营养在一定程度上能降低棉花叶片和根系中的MDA含量,通过埃文斯蓝(Evans blue)染色法和根系活力的测定均证实铰硝混合营养( NH_4~+/No3-为75/25)在一定程度上能够减轻款分胁迫所导致的根系细胞膜脂过氧化作用,提高植物的抗逆境胁迫能力;随着款分浓度的增加棉苗叶片和根系中内一醛含量显著增大,而款分胁迫明显降低了根系的活力。
     10)在款分胁迫和非款分胁迫条件下,随着营养液中铰比例的增加,棉苗叶片和根系中的抗氧化酶(SOD, POX, CAT, APX和OR)活性均显著(p<0.05)增大,在NH_4~+/NO_3~-为75/25或100/0下达到最大值,但其中根系中的POX活性则随着铰比例的增加明显降低;短期的款分胁迫(盐分处理Sday,10day)可明显提高棉花体内抗氧化酶活性,随着胁迫时间的延民其活性则又显著降低,但通过增铰营养(NH_4~+/NO_3~-为75/25) AJ明显提高棉苗体内的抗氧化酶活性。
     【结论】相对于纯铰或纯硝营养,以铰、硝混合营养作为氮源可显著改善棉花幼苗的氮素吸收和氮素代谢酶活性,提高棉花植株的光合物质生产性能,促进棉花苗期的生民发育;在款分胁迫条件下,铰、硝混合营养可明显增强棉花体内保护酶系统和抗氧化剂系统的活性,降低MDA等有害物质的积累,减轻款分对棉花幼苗生民的抑制作用和伤害,促进棉花幼苗的生民。
[Objective] Nitrogen is the most important nutrient element in the growth and development and yieldformation of crops. NH_4~+-N and NO_3~--N are two major nitrogen forms which could be absorbed andassimilated by crops. Effects of nitrogen forms on the growth of crops are different. Secondary soilsalinization and scarcity of water resources are the major factors which restrain the growth of cottonseedlings at the earlier stages in Xinjiang province. The present studies dealt with the effect of differentammonium and nitrate ratios on the growth and development of cotton seedlings grown hydroponicallywith salt stress to elucidate the possible mechanisms by which different nitrogen forms influence thegrowth and development at the early stages of cotton seedlings at a physiological level and to enhancesalt tolerance through regulating nitrogen nutritional status in plants.
     [Method ] Hydroponics experiments were done to study the effect of different ammonium and nitrateratios (NH_4~+/NO_3~-:0/100, 25/75, 50/50, 75/25, 100/0) on the growth and development of cotton (Gossypiumhirsutum L. cv. Xinluzao 13) seedlings grown with different NaCl levels (0, 100, 200mM). When twocotyledons were fully expanded, .seedlings were allowed to grow with 1/4-strength Hoagland solution for 3days, and with half-strength Hoagland solution for further 3 days, and then with full-strength Hoaglandsolution until harvesting. Then the seedlings were exposed to salinity by adding NaCl to the growthmedium in an increment of 50 mM every 12 h, until the final concentrations of 100 and 200 mM NaCl werereached. All nutrient solutions were changed twice a week, and deionized water was added daily toreplenish the waters lost by transpiration. The solution pH was adjusted daliy to 5.8--6.0 using 0.1 mMNaOH or HCl.
     [Result ] 1) Under both salt stress and control conditions, leaf and stem fresh weight, leaf, stem and rootdry eight, total biomass, leaf number, stem length, stem diameter, leaf area, and leaf expansion rate andLeaf area expansion rate, stem extention rate and relative growth rate of cotton seedlings increasedsignificantly with increasing NH_4~+-N/NO_3~--N ratio. Increasing salt concentration from 100 to 200 mMNaCl caused a siginificant reduction in these parameters mentioned above.
     2) Under both salt stress and control conditions, total root length, root surface area, root length pervolume, root volume and root surface area per volume were higher in cotton seedlings grown with mixedammonium and nitrate supply than in cotton seedlings grown with sole ammonium or nitrate supply. Withenhancing of NH_4~+-N/NO_3~--N ratio root average diameter was diminished correspondingly. Salt caused areduction in total root length, root surface area, root length per volume, root sverage diameter, root volumeand root surface area per volume under the five nitrogen regimes tested.
     3) Under both salt stress and control conditions, with enhancing NH_4~+-N/NO_3~--N ratio nitrate contentin leaves, leaf stalks, stems and roots increased correspondingly; Salt stress caused a reduction in nitratecontent under the five nitrogen regimes tested.
     4) Under both salt stress and control conditions, with enhancing NH_4~+-N/NO_3~--N ratio NR activitiesof cotton seedlings reduced correspondingly, but GS activities increased correspondingly.
     5) Under both salt stress and control conditions, nitrogen concentration and nitrogen accumulationwere significantly higher in cotton seedlings grown with commixed ammonium and nitrate supply than incotton seedlings grown with sole ammonium or nitrate supply; Salt stress reduced seedling nitrogen uptakeunder the five nitrogen regimes tested.
     6) Under both salt stress and control conditions, chlorophyll content, SPAD reading, Pn, Gs, Tr,PS , qP and ETR significantly increased in cotton seedlings grown with ammomium/nitrate ratios of75/25 and 100/0 (p<0.05); but all this parameters were distinctly debased under salinity stress.
     7) Under control conditions, stomatal conductance was the major limiting factor to affectphotosyuthetic rate, but under salt stress conditions, non-stomatal conductance was the major limitingfactor.
     8) Under both salt stress and control conditions, a significant linear correlation was found betweenchlorophyll contents and SPAD readings, and between photosyuthetic rate and chlorophyll fluorescence(p<0.05) in cotton seedlings grown with different NaCl levels.
     9) Under both salt stress and control conditions, compared with sole ammonium or nitrate nutrition themixed ammonium and nitrate nutrition could reduce MDA content of cotton seedlings. Root activity washighest in salt-stressed cotton grown with ammomium/nitrate ratio of 75/25. Analysis by Evans blue dyeingmethods also showed that root membrane lipid peroxidation was the least severe in cotton seedlings grownwith ammomium/nitrate ratio of 75/25 under salt stress.
     10) Under both salt stress and control conditions, SOD, POX, CAT, APX and GR activities in cottonseedlings increased correspondingly with enhancing of NH_4~+-N/NO_3~--N ratio. Salt stress caused a reductionin SOD, POX, CAT, APX and GR activities under the five nitrogen regimes tested.
     conclusion In the present study, we can draw conclusions that through mixed ammonium and nitratenutrition significantly improved nitrogen uptake compared with sole ammonium or nitrate nutrition, andenhanced enzyme activities which involved in nitrogen assimilation as well. It is observed the parametersof cotton seedling photosynthetic characteristics, cotton dry weight and plant growth rate are substancialhigher under the treatment of mixed ammonium and nitrate nutrition than either sole ammonium or nitratetreatment; The mixed ammomium and nitrate nutrition obviously enthanced cotton seedling antioxidaseactivities, however reduce MDA content, therefore significantly alleviated the salt inhibtation effect tocotton seedlings.
引文
[1] Anne B, Werner M K. Nitrate reductase activation state in barley roots in relation to the energy andcarbohydrate status[J]. Planta, 1996, 201:496-501
    [2] Arnozis P A, Nelemans J A, Findenegg G R. Phosphoenolpyruvate carboxylase activity in plants grownwith either NO3-or NH4+as inorganic nitrogen source[J]. Plant Physiology, 1988, 132: 23-27
    [3] Ashraf M. Salt tolerance of cotton: some new advances[J]. Critical Review on Plant Science, 2002, 21:1-30
    [4] Assimakopoulou A. Effect of iron supply and nitrogen form on growth, nutritional status and ferricreducing activity of spinach in nutrient solution culture[J]. Science Horticulture, 2006, 110: 21-29
    [5] Athilde O, Krapp A, Francoise D V. Analysis of the NRT2 nitrate transporter family Arabidopsisstructure and gene expression[J]. Plant Physiology, 2002, 129: 886-896
    [6] Azcon R, Gomez M and Tobar R. Effects of nitrogen source on growth , nutrition, photosynthetic rateand nitrogen metabolism of mycorrihizal and phosphorus-fertilized plants of Lactuca sativia L [J].New phytologist, 1992, 121: 227-234
    [7] Baozhen L, Weijie X, Shubin S, Qirong S, Guohua X. Physiological and molecular responses ofnitrogen-starved rice plants to re-supply of different nitrogen sources[J]. Plant and Soil, 2006, 287:145-159
    [8] Bartels D, Sunkar R. Drought and salt tolerance in plants[J]. Critical Review on Plant Science, 2005, 24:23-58
    [9] Catarina C N, Helenice M, Nidia M. Levels of nitrogen assimilation in bromeliads with different growthhabbit[J]. Journal of plant nutrition, 2001, 24(9): 1387-1398
    [10] Claussen W, Lenz F. Effect of ammonium and nitrate on net photosynthesis, flower formation, growthand yield of eggplants (Solanum melongena L.)[J]. Plant and Soil, 1995, 171: 267-274
    [11] Claussen W, Lenz F. Effect of ammonium or nitrate nutrition on net photosynthesis, growth, andactivity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry andstrawberry[J]. Plant and Soil, 1999, 208: 95-102
    [12] Farguhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of PlantPhysiology, 1982, 33: 317-345
    [13] Fetene M, Beck E. Reversal of the direction of photo synthate allocation in Urtica dioica L. plants byincreasing cytokinin import into the shoot[J]. Botanica Acta. 1993, 106: 235-240
    [14] Flores P, Carvajal M, Cerda A, Martinez V. Salinity and ammonium/nitrate interactions on tomatoplant development, nutrition, and metabolites[J]. Plant Nutrition, 2001, 24: 1561-1573
    [15] Forde B G and Woodall J. Glutamine synthetase in higher plants: molecular biology meets plantphysiology[M]. Cambridge University Press, Cambridge, New York, Melbourne. 1995, 1-18
    [16] Gashaw L, Mugwira L M. Ammonium-N and nitrate-N effects on the growth and mineralcompositions of Tritical, wheat and rye[J]. Journal of Agronomy, 1981, 73: 47-51
    [17] Centy B E, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta, 1989, 990: 87-92
    [18] Cerard J, Dizengreme P. Properties of mitochondria isolated from greening soybean and lupin tissue[J]. Plant Science, 1988, 56: 1-9
    [19] Ciannopolitis N, Ries S K. Superoxide dismutase I. Occurrence in higher plants[J]. Plant Physiology. 1977, 59: 309-314
    [20] Coyal S S, Huffaker R C, Lorenz O A. Inhibitory effects of ammoniacal nitrogen on growth of radish plants. II. Investigation on the possible causes of ammonium toxicity to radish plants and its reversal by nitrate[J]. Journal of American Society of Horticultural Science, 1982, 107: 130-135
    [21] Coyal S S, Huffsker R C. The uptake of N03,and NH4+by intact wheat(Tritium aestivum)seedings[J]. Plant Physiology. 1986, 82: 1051-1056
    [22] Culati A, Jaiwal PK. Effect of NaCI on nitrate reductase, glutamate dehydrogenase and glutamate in Vigna radiata calli[J]. Biological Plant, 1996, 38: 177-183
    [23] Hammer P A, Tibbitts T W, Langhans R W. Baseline growth studies of `Grand Rapids' lettuce in controlled environments[J]. Annal Botany, 1989, 63: 643-649
    [24] He Z Q, He C X, Zhang ZB, et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCI stress[J]. Colloids and Surfaces, 2007, 59: 128-133
    [25] Hong Z L, Lakkineni K, Zhang Z H, et al. Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000, 122:1129-1136
    [26] Hua X J, Van D C B, Van M M, et al. Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis[J]. Plant Physiology, 1997, 114: 1215-1224
    [27] Kant S, Kaflcafi U. Ammonium and nitrate as a nitrogen source for plants[J]. Adv Plant Physiology, 2003, 5: 463-78
    [28] Kavikishor P B K, Hong Z, Miao C, et al. Overexpression of 41-pyrroline-5-carboxylate synthetase increases proline over production and confers osmotolerance in transgenic plants[J]. Plant Physiology, 1995, 108: 1387-1394
    [29] Krause C H, Weis E. Chlorophyll fluorescence as a tool in plant physiology 11 interpretation of fluorescence signals[J]. Photosyn Res., 1984, 5: 139-157
    [30] Kronzucker H J, Siddiqi M Y, Class A D M, Kirk C J D. Nitrate ammonium synergism in rice: A subcellular analysis[J]. Plant Physiology, 1999, 119: 1041-1046
    [31] Magalhaes J R, Huber D M. Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture[J]. Fertilizer Research, 1989, 21:1-6
    [32] Maxwell K, Johnson C N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2002, 51(345): 659-6681
    [33] Meloni D A, Oliva M A, Martinez CA, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Enviromental and Experimental Botany. 2003, 49: 69-76
    [34] Misra N, Dwivedi U N. Nitrogen assimilation in germinating Phaseolus aureus seeds under saline stress[J]. Plant Physiology, 1990, 135: 719-724
    [35] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7: 405-410
    [36] Peng Z, Lu Q, Verma D P S. Reciprocal regulation of41-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants[J]. Mol Cen Cenet., 1996, 253: 334-341
    [37] Raven J A. Regulation of pH and generation of osmolarity in relation to efficiency of use of water energy and nitrogen[J]. New phytologist. 1985, 101:24-27
    [38] Raven J A. Regulation of pH and generation of osmolarity in vascular plants:A cost-benefit analysis in relation to efficiency of use of energy, and water[J]. New phytologist, 1985, 101:25-77
    [39] Sagi M, Dovrat A, Kipnis T, Lips S H. Nitrate reductase, phosphoenolpyruvate carboxylase and glutamine synthetase in annual ryegrass as affected by salinity and nitrogen[J]. Plant Nutrition, 1998, 21:707-723
    [40] Sairam P K, Srivastava C C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress[J]. Plant Science, 2002, 162: 897-904
    [41] Salac L, Chaillou S. Nutrition azoteed svegetaux: importance physiologique etecoloique dela four nature da-zotesousla form enitrique of ammonia cal[J]. Bull Soc Ecophysiol., 1984, 9:111-120
    [42] Schutzendubel A, Schwanz P, Teichmann T, Cross K, Langenfeld-Heyser R, Codbold D L, et al. Cadmiuminduced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots[J]. Plant Physiology, 200, 127: 887-898
    [43] Siddiqi M Y, Malhotra B, Min X, Class A D M. Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop[J]. Plant Nutrition Soil Science, 2002, 165: 191-197
    [44] Surya K, Pragya K, Herman L, Simon B. Partial substitution of N03 by NH4+ fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley[J]. Journal of Plant Physiology, 2007, 164: 303-311
    [45] Teixeira J, Pereira S, Queiro's F, Fidalgo F. Specific roles of potato glutamine synthetase isoenzymes in callus tissue grown under salinity: molecular and biochemical responses. Plant Cell Tiss Organ Cult, 2006, 87: 1-7
    [46] Teixeira. J, Pereira S. High salinity and drought act on an organ-dependent manner on potatoglutamine synthetase expression and accumulation[J]. Enviromental and Experimental Botany. 2007, 60: 121-126
    [47] Tester M, Davenport R. Na十tolerance and Na+transport in higher plants[J]. Annal Botany, 2003, 91: 1-25
    [48] Tsai Y C, Kao C I I. Light-dependent ammonium ion toxicity of rice in response to phosphinothricin treatment [J]. Biological Plant, 2002, 45: 569-573
    [49] Tuna A L, Kaya C, Ashraf M, et al. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress[J]. Environmental and Experimental Botany. 2007, 59: 173-178
    [50] Van Kooten O, Snel J F H. The use of chlorophyll fluorescence nomeclature in plant stress physiology[J]. Photosyn Res., 1990, 25: 147-150
    [51] Veeranagamallaiah C, Chandraobulreddy P, Jyothsnakumari C, Sudhakar C, Clutamine synthetase expression and pyrroline-5-carboxylate reductase activity influence proline accumulation in two cultivars of foxtail millet(Setaria italica L.) with differential salt sensitivity[J]. Enviromental and Experimental Botany. 2007, 60: 239-244
    [52] Xie Z, Duan L, Tian X, Wang B, Eneji A E, Li Z. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity[J]. Plant Physiology, 2007 06: 001-010
    [53] Yazici I, Turkan I, Sekmen A H, Demiral T. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation[J]. Environmental and Experimental Botany, 2007, 61:49-57
    [54] Zhang C S, Lu Q, Verma D P S. Characterization of41-pyrroline-5-carboxylate synthetase gene promoter in transgenic Arabidopsis thaliana subjected to water stress[J]. Plant Science, 1997, 129: 81-89
    [55]鲍士旦主编.土壤农化分析(第二版)[M].北京:中国农业出版社,2002:264-268
    [56]蔡克强,黄维南.杨梅硝酸还原酶活力研究[J].核农学报,1990, (2): 99-104
    [57]曹翠玲,李牛秀,张占平.氮素形态对小麦牛民中后期保打‘酶等牛理特性的影响[J].土壤通报,2003, 34(4): 295-298
    [58]曹翠玲,李牛秀.氮素形态对作物牛理特性及牛民的影响[J].华中农业大学学报,2004, 23(5): 581-586
    [59]曹慧,王孝威,韩振海等.水分胁迫诱导平邑甜茶叶片衰老期间内肤酶与活性氧累积的关系[J].中国农业科学,2004, 7(2): 274-279
    [60]陈春宏,张耀东,高祖民.不同氮素形态对甜菜铁素营养的影响[J].上海农业学报,1993, 9(1): 44-48[61 ]陈贵,周毅,郭世伟,沈其荣.局部根系水分胁迫下不同形态氮素营养对苗期水稻的影响[J].中国水稻科学,2006, 20(6): 638-644
    [62]陈贵,周毅,郭世伟,沈其荣.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究[Jl.中国农业科学,2007, 40(10): 2162-2168
    [63]陈惠哲, Natalia Ladatko,朱德峰等.款胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究[J].植物生态学报,2007, 31(5): 937-945
    [64]陈巍,罗金葵,姜慧梅,沈其荣.不同形态氮素比例对不同小白菜品种生物量和硝酸款含量的影响[J].土壤学报,2004, 41(3): 420-425
    [65]陈献勇,廖镜思.水分胁迫对果梅光合色素和光合作用的影响[J].福建农业大学学报,2000, 29(1): 35-39
    [66]陈晓远,高志红,李玉华.供氮形态和水分胁迫对苗期水稻吸收氮素营养的影响[J].华北农学报,2008, 23(1): 163-167
    [67]崔文采.新疆土壤[M].北京:科学出版社,1996
    [68]戴廷波,曹卫星,孙传范.增铰营养对小麦氮及司’一质营养含量和积累的影响[J].应用生态学报,2002, 13(2): 382-384
    [69]戴延波,曹卫星,孙传范等.增铰营养对小麦光合作用及硝酸还原酶和谷氮酞胺合成酶的影[J].应用生态学报,2003, 14(9): 1529-1532
    [70]策海荣,李金才,李存东.不同N H4+/N03比例的氮素营养对棉花氮素代谢的影响[J].应用生态学报,2004, 15(4): 728-730[71 ]策海荣,张月辰,李金才,李存东,耿博.增铰营养条件下棉花的形态反应及物质积累与分配[J].棉花学报,2001,13(4): 293-296
    [72]策园园,策彩霞,卢颖林,缪辰,沈其荣. NH4+一N部分代替N03 -N对番茄生育中后期氮代谢相关酶活性的影响[J].土壤学报,2006, 43(2): 261-266
    [73]杜洪艳,白寅,柏彦超,蔡树美,沈淮东,钱晓晴. NaCI胁迫下氮形态对水稻幼苗营养的影响[J].江西农业学报,2008, 20(7): 7-9
    [74]葛江丽,石雷,谷卫彬,唐宇丹,张金政,姜闯道,任大明.款胁迫条件下甜高粱幼苗的光合特性及光系统II功能调节[fJl.作物学报,2007, 33(8): 1272-1278
    [75]郭培国,陈建军,郑燕玲.氮素形态对烤烟光合特性影响的研究[J].植物学通报,1999, 16: 262-267.
    [76]韩亚琦,唐宇丹,张少英等.款胁迫抑制榭栋2变种光合作用的机理研究[J].西北植物学报,2007, 27(3): os83-os87
    [77]惠红霞,许兴,李守明.款胁迫抑制构记光合作用的可能机理[J].生态学杂志,2004, 23(1): s-9
    [78]李彩凤,马凤鸣,赵越等.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响[J].作物学报,2003, 29(1): 128-132
    [79]李存东,策海荣,李金才.不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响[J].棉花学报,2003, 1s(2): 87-90
    [80]李合生主编.现代植物生理学[M].北京:高等教育出版社,2002, 41 s-420
    [81]李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001
    [82]李良霞,李建龙,土艳,潘永年,李高扬,图雅.不同氮源对高温胁迫下高羊茅抗氧化酶活性的影响[Jl.贵州农业科学,2007, 35(6): 11-14
    [83]李玲,余光辉,钟富华.水分胁迫下植物脯氮酸累积的分子机理[J].华南师范大学学报(自然科学版),2003, O1: 126-134
    [84]刘春华,苏加楷,黄文惠.禾本科牧草五利‘耐款牛理指标的研究[J].草业学报,1993, 2(1): 46-54
    [85]刘根红,谢应忠,兰剑,杨锐,赵功强. NaCI水分复合胁迫下宁夏十种卞栽简楷品种幼苗体内脯氮酸含量变化[J].+旱地区农业研究,2008, 26 (3): 146-150
    [86]刘国强,p一黎明,刘金定.棉花品利‘资源耐th性鉴定研究[J].作物品种资fit;;, 1993, (2): 21-22
    [87]刘永华,朱祝军,魏国强.不同光强下氮素形态对番茄谷氮酞胺合成酶和光呼吸的影响[J].植物牛理学通讯,2004,40(6): 680-682
    [88]刘正鲁,朱月林,胡春梅等.氯化钠胁迫对嫁接茄子生长、抗氧化酶和活性氧代谢的影响[J].应用牛态学报,2007, 18(3): 537-541
    [89]卢凤刚,郭丽娟,陈贵林,任良玉,昌桂云,高洪波.不同氮素形态及配比对非菜产量和品质的影响[J].河北农业大学学报,2006, 29(1): 27-30
    [90]陆景陵卞编.植物营养学(上册)[M].北京:中国农业出版社,2003
    [91]罗宾(陈恺元等译).棉花牛理学[M].上海:上海科技出版社,1983
    [92]毛桂莲,许兴,张渊.N aCl胁迫对构记叶绿素荧光特性和活性氧代谢的影响[J].干旱地区农业研究,2005, 23(3): 21-24
    [93]潘瑞炽,策愚得.植物牛理学[M].高等教育出版社,北京,1995, 318-335
    [94]钱晓Ilh,沈其荣,徐国华.配合施用NH4+一N和N03 -N对旱作水稻牛民与水分利用效率的影响[J].土壤学报,2003, 40(6): 894-900
    [95]沈艳,谢应忠.牧草抗旱性和耐th性研究进展[J].宁夏农学院学报,2004, 25(1): 65-71
    [96]石i1:强.铰态氮和硝态氮营养与大豆幼苗的抗氰呼吸作用fJl.植物牛理报,1997, 23(2): 204-208
    [97]司江英,江晓IJIJ,陈冬梅,封克.不同pH和氮素形态对作物幼苗牛民的影响[J].扬州大学学报(农业与牛命科学版),2007, 28(3): 68-71
    [98]宋娜,郭世伟,沈其荣.不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及牛民的影响[J].植物学通报,2007, 24(4): 477-483
    [99]孙静,王宪泽,款胁迫对小麦过氧化物同工酶基因表达的影响[J].麦类作物学报2006, 26(1): 42-44
    [100]孙亚卿,绍金旺,王莹,樊明寿.氮素形态对燕麦生长和根际PH值的影响[J].华北农学报,2004, 19(3): 59-61
    [101]谭万能和李秧秧.不同氮素形态对向日葵牛民和光合功能的影响[J].西北植物学报2005, 25(6): 1191-1194
    [102]王丽燕,赵可夫.玉米幼苗对款胁迫的牛理响应研究[J].作物学报,2005, 31(2): 264-266
    [103]王仁宙,华春,罗庆云,刘友良.th胁迫下水稻叶绿体中Na+, Cl积累导致叶片净光合速率下降[J].植物牛理与分子牛物学学报,2002, 28(5): 385-390
    [104]王宪泽,程炳嵩,张国珍.氮素形态与作物生育的关系及其影响因子[J].山东农业大学学报,1990, (1): 93-98
    [105]王雪青,张俊文,魏建华等.th胁迫下野大麦耐th生理机制初探[J].华北农学报,2007, 22(1): 17-21
    [106]魏国强,朱祝军,方学智等.N aCl胁迫对不同品种黄瓜幼苗生民、叶绿素荧光特性和活性氧代识寸的影响[J].中国农业科学,2004, 37(11): 1754-1759
    [107]吴芳,高迎旭,宋娜,郭世伟,沈其荣.氮素形态及水分胁迫对水稻根系生理特性的影响[[J].南京农业大学学报,2008, 31(1): 63 -66
    [108]武海,张树源,许大全等.珊瑚树叶片叶绿素荧光非光化学碎火的日变化和季节变化[J].植物生理学报,1997, 23(2): 145-1501
    [109]肖凯,张树华,}h定辉,张荣铣.不同形态氮素营养对小麦光合特性的影响[J].作物学报,2000, 26: 53-58
    [110]谢振宇,杨光穗.研究牧草耐th性研究进展[J].草业科学,2003, 20(8): 11-18
    [111]辛承松,策合忠,唐薇,温四民.棉花款害与耐却吐的生理和分子机理研究进展[J].棉花学报,2005, 17(5): 309-313
    [112]辛国荣,策美玲.水分胁迫下植物乙烯、脯氮酸积累、气孔反应的研究现状[J].草业科学,1997, 14(2): 62 -66
    [113]杨IJIJ琴,夏小燕,江晓丽,司江英,封克.pH,氮素形态和Ca2+对玉米幼苗根系发育的影响[J].扬州大学学报(农业与生命科学版),2007, 28(4): 47-51
    [114]杨素欣,土振锰.款胁迫下小麦愈伤组织生理生化特性的变化[J].西北农业大学学报,1999, 27(2): 48-51
    [115]袁琳,克热木·伊力,张利权.N aCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005, 29(6): 985-991
    [116]张超强,杨颖uu,土莱等.款胁迫对小麦幼苗叶片Hz0:产生和抗氧化酶活性的影响[J].西北师范大学学报(自然科学版),2007, 43(1): 71-75
    [117]张敏,土校常,严蔚东,梁永超等.款胁迫下转Bt基因棉的K,Na+转运及SOD活性的变化[J].土壤学报,2005, 42(3): 460-467
    [118]张楠楠,徐香玲.植物抗款机理的研究[J].哈尔滨师范大学自然科学学报,2005, 21(1): 65-69
    [119]张树清,土艳玲.氮素形态对蔬菜营养液pH及磷锌铁吸收的研究[J].甘肃农业科技,2001, (7): 33-34
    [120]张亚IJIJ,沈其荣,段英华.不同氮素营养对水稻的生理效应[J].南京农业大学学报,2004, 27(2): 130-135
    [121]张英鹏,林咸永,章永松,李刚,杨运娟.不同氮素形态对菠菜生长及体内抗氧化酶活性的影响[J].浙江大学学报(农业与生命科学版),2006, 32(2): 139-144
    [122]张英鹏,咸永,章永松,都韶婷.氮素形态对菠菜硝酸th及草酸含量的影响[J].园艺学报,2005, 32(4): 648-652
    [123]赵建容,樊卫国.氮素形态对川梨培养介质pH及根系牛民发育的影响[J].山地农业牛物学报,2005, 24(2): 128一130
    [124]赵平,孙谷寿,彭少林.植物氮素营养的牛理牛态学研究[J].生态科学,1998, 17(2): 36-42
    [125]赵越,马风鸣,王丽艳等.不同氮源对甜菜蔗糖合成酶的影响[J].黑龙江农业科学,2001, (2): 11-12
    [126]郑伟财,兵团棉花种植现状问题及对策研究[J].兵团经济研究.2008, 5: 12
    [127]春琴,杨志福.石灰性土壤上不同形态氮素对春小麦利用氮、磷的影响[J].土壤通报,1993, (4) : 169-171
    [128]邹琦主编.植物牛理学实验指导[M].北京:中国农业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700