用户名: 密码: 验证码:
浆料鼓泡塔内吸附性微粒增强气液传质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在气液系统中加入吸附性微粒能够强化气液传质,该浆料系统由于其对化工过程的强化作用已被广泛用于化工、石化和生化等领域中。本文就吸附性微粒对气液传质的增强作用作了实验和理论研究。
    本文采用内直径为30mm,高为600mm的鼓泡塔实验装置,在接近实验物系泡点温度下,对4A分子筛/异丙醇-水和4A分子筛/叔丁醇-水浆料系统进行了气液传质实验,考察了表观气速、固含率和粒径对气液传质的影响。
    考虑鼓泡塔内液相轴向返混及气液两相间的热量传递,建立了浆料鼓泡塔内气液传质和传热的数学模型,采用有限差分法、追赶法和龙格-库塔-吉尔法对模型方程进行了数值求解,对实验过程进行模拟,利用计算结果对鼓泡塔内微粒增强气液两相传质的影响进行分析。
    利用实验和模型计算结果,对影响传质的因素进行分析,将液侧总体积传质系数与浆料系统表观气速、固含率、粒径、表观粘度、表面张力和表观密度以及扩散系数等参数,进行关联,利用最小二乘法得到了浆料系统一定物性范围内可以适用的关于液侧总体积传质系数的关联式。
    在分析吸附性微粒对气液传质增强机理的基础上,应用渗透理论,考虑微粒的吸附性、加入微粒后液相物性的改变、微粒到气液界面的距离、在气液界面停留时间、粒径等因素建立了吸附性微粒增强气液传质的一维非稳态非均相模型,讨论了以上各因素气液传质的影响。计算结果表明:增强因子随微粒吸附容量的增大显著增加;微粒距离气液界面越远,微粒吸附能力对气液传质的增强越小;在相同粒径与微粒距离气液界面距离的条件下,增强因子随微粒在气液停留时间的增加而增加,但是当停留时间超过一定值后,随着停留时间的增加,增强因子下降;粒径增大,增强因子减小。由于浆料表观粘度的影响,在低固含率下,随着固含率的增大,增强因子增大。当在较高固含率下,随着固含率的增大,增强因子减小。
The adsorptive particles can enhance the gas-liquid mass transfer, the slurry system of adsorptive particles are widely used in petrol chemical, biochemical industries because of their intensification effect on the processes. This work studies the enhancement of adsorptive particles on the gas-liquid mass transfer.
    In this paper, Experiments are performed in a bubble column of 30 mm in inner diameter and 600 mm in height at bubble point and atmospheric pressure. The slurry system used are 4A molecular sieve/isopropanol-water and 4A molecular sieve /tert-butanol-water. The experiments investigate the influence of superficial velocities, solid contents and particle sizes.
    The mathematic model simultaneously considering heat and mass transfer is developed to describe the transport processes in slurry bubble column. The calculated results of model are used to analyze the influence of solid particles on gas-liquid mass transfer.
    Based on the results of experiments and model calculation, an overall volumetric liquid-side mass transfer coefficient can be correlated as a function of the following eight independent variables such as superficial gas velocities, solid contents, particle sizes, apparent surface tension, apparent viscosity, apparent density and diffusivity of slurry.
    In order to analyze the enhancement mechanism of adsorptive particles in slurry system, a heterogeneous, instationary one dimensional model is set up, based on the penetration theory of gas-liquid mass transfer and considered the factors of the absorbability, the physical properties after adding the particles, the distance apart from gas-liquid interface, the particle resistance time of staying in the gas-liquid interface, particle sizes, is developed to describe and discuss the effect of adsorptive particles on the gas-liquid mass transfer in slurry system. The calculated results show that the enhancement factor increases with the increase of absorbability of particles. Enhancement factor increases with the increase of particle residence time in the gas-liquid interface zone in the beginning and then decreases with the increase of residence time; the enhancement factor decreases with the increase of particle sizes. Considering the effect of apparent viscosity of slurry on gas-liquid mass transfer, the enhancement factors increases in lower solid contents and decreases with the solid
    
    
    contents in higher solid contents.
引文
[1]
    Saha, A. K., Absorption of carbon dioxide in alkanol amines in the presence of fine activated carbon particles, Can. J Chem. Eng., 1992, 70: 193-196
    
    [2]
    Dumont, E. and Delmas. H., Mass transfer enhancement of gas absorption in oil-in-water systems: a review, Chemical Engineering and processing, 2003, 42(6): 419-438
    
    [3]
    Gomezplata, A. and Regan, T.M., Mass transfer. Ind. Eng. Chem., 1970,62(12): 17-26
    
    [4]
    Vinodkumar, R., Dhanuka. and Josef B. Stepanek., Simuataneous measurement of Interfacial area and mass transfer coefficient in three-phase fluidized beds, AIChE Journal, 1980, 26(6):1029-1038
    
    [5]
    Zhou, M., Xu C. J. and Yu, G. C., Adsorptive distillation—Novel hybrid separation process, Progress in Natural Science, 1995, 5(3): 291-298
    
    [6]
    Degarmo J. L., Parulekar V. N. and Pinjala V., Consider reactive distillation, Chemical Engineering Progress, 1992, 88(3): 43-50
    
    [7]
    Sada, E., Kumazawa, H. and Lee, C. H., Chemical absorption into concentrated slurry: adsorptions of carbon dioxide and sulfur dioxide into aqueous concentrated slurries of calcium hydroxide, Chemical Engineering Science, 1984, 39(1): 117-120
    
    [8]
    Kars, R.L., Best, R.J. and Drinkenburg, A.A.H., The adsorption of propane in slurries of active carbon in water,Chemical Engineering Journal, 1979,17(3): 201-210
    
    [9]
    Alper, E. and Deckwer, W.D., Comments on gas absorption with catalytic reaction. Chemical Engineering Science, 1981, 36:1097-1099
    
    [10]
    Alper, E. and Deckwer, W.D., Some aspects of gas absorption mechanism in slurry reactors, NATO ASI Series E, 1983, 73(2):199-224
    
    [11]
    Mehra, A., Gas absorption in reactive slurries: particle dissolution near gas-liquid interface, Chemical Engineering Science, 1996, 51(3): 461-477
    
    [12]
    Vinke, H., Hamersma, P. J., and Fortuin, J. M. H., Enhancement of the gas-adsorption rate in agitated slurry reactors by gas-adsorbing particles adhering to gas bubbles, Chemical Engineering Science, 1993, 48(12): 2197-2210
    
    [13]
    Holstvoogd, R.D., Ptasinski, K.J. and van Swaaij, W.P.M., Penetration model for gas absorption with reaction in a slurry containing fine insoluble particles. Chemical Engngineering Science, 1986,41(4):867-873
    
    [14]
    Holstvoogd, R. D., van Swaaij, W. P. M., and van Dierendonck, L. L., The adsorption of gases in aqueous activated carbon slurries enhanced by adsorbing or catalytic particles,
    
    
    Chemical Engineering Science, 1988, 43(8): 2181-2187
    
    [15]
    成弘等,吸附剂细粉增强气液两相传质(II)实验,化工学报,1999,50(6):772-777
    
    [16]
    Beennackers, A.A.C.M. and Van Swaaij, W.P.M., Slurry reactors, fundamentals and applications in Chemical Reactor Design and Technology. 1986, 463-538
    
    [17]
    Wimmers, O. J., and Fortuin, J. M. H., The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors—II. Determination of the enhancement in a bubbles-containing slurry reactor, Chemical Engineering Science, 1988, 43(2): 313-319
    
    [18]
    Tinge, J.T., Drinkenbrrg A.A.H., The enhancement of the physical absorption of gases in aqueous activated carbon slurries, Chemical Engineering Science, 1995, 50(6): 937-942
    
    [19]
    Alper, E. and ?ztürk., Effect of fine solid particles on gas-liquid mass transfer rate in a slurry reactor, Chem. Eng. Commun., 1986b, 46: 147-158
    
    [20]
    Kars, R. L., Best, R. J., and Drinkenburg, A. A. H., The adsorption of propane in slurries of active carbon in water, Chemical Engineering Journal, 1979, 17(3): 201-210
    
    [21]
    Tinge, J.T., Mencke,K. and Drinkenburg, A.A. H., The absorption of propane and ethane in slurries of activated carbon in water, I. Chemical Engineering Science1987,42: 1899-1907
    
    [22]
    Tinge, J.T., op’t Ende, H. C., Berendsen, H.J.C. and Drinkenburg, A. A.H., The absorption of propane and ethane in slurries of activated carbon in water II., Chemical Engineering Science, 1991, 46(1): 343-350
    
    [23]
    Quicker, G., Alper, E. and Deckwer, W. D., Gas absorption rates in a stirred cell with plane interface in the presence of fine particles. Can. J. Chem. Engng. 1989,67: 32-38
    
    [24]
    Quicker, G., Alper, E., and Deckwer, W. D., Effect of fine activated carbon particles on the rate of CO2 absorption, AIChE Journal, 1987, 33(5): 871-875
    
    [25]
    Ozlem, O., Effect of inert particles at low concentrations on gas-liquid mass transfer in mechanically agitated reactors, Chemical Engineering Science , 2000, 55(14): 2737-2740
    
    [26]
    Mehra, A., Pandit, A. and Sharma, M.M., Intensification of multiphase reactions through the use of a microphase—II. Experimental, Chemical Engineering Science, 43(4): 913-927
    
    [27]
    Alper, E., and ?ztürk, S., The effect of activated carbon loading on oxygen absorption into aqueous sodium suophide solutions in a slurry reactor. Chem. Engng J(Lausanne). 1986, 32(2): 127-130
    
    [28]
    Pal, S. K., Sharma, M.M. and Juvekar, V.A., Fast reactions in slurry reactors: catalyst particle size smaller than film thickness: oxidation of aqueous sodium sulphide solutions
    
    
    with activated carbon particles as catalyst at elevated temperatures, Chemical Engineering Science, 1982, 37(2):327-336
    
    [29]
    Chandrasekaran, K. and Sharma, M. M., Absorption of oxygen in aqueous solutions of sodium sulphide in the presence of activated carbon as catalyst, Chemical Engineering Science,1977, 32(6): 669-671
    
    [30]
    Lee, Y. Y. and Tsao, G, T., Oxygen absorption into glucose solution. Chemical Engineering Science, 1972, 27(8): 1601-1608
    
    [31]
    Sada, E., Kumazawa, H., and Lee, C. H., Chemical absorption in a bubble column loading concentrated slurry, Chemical Engineering Science, 1983, 38(12): 2047-2051
    
    [32]
    Ozkan, O., Effect of inert particles at low concentration on gas-liquid mass transfer in mechanically agitated reactors, Chemical Engineering Science, 2000, 55(14): 2737-2740
    
    [33]
    Alper, E., Effect of fine solid particles on gas-liquid mass transfer rate in a slurry reactor, Chemical Engineering Communication, 1986, 46(1-3): 147-158
    
    [34]
    Robinson, C.W. and Wilke, C.R., Simultaneous measurements of interfacial area and mass transfer coefficients for a well-mixed gas dispersion in aqueous electrolyt solutions, AICHE. J, 1974, 20(2): 285-294
    
    [35]
    Wimmers, O. J., and Fortuin, J. M. H., The use of adhesion of catalyst particles to gas bubbles to achieve enhancement of gas absorption in slurry reactors—I. Investigation of particle-to-bubble adhesion using the bubble pick-up method, Chemical Engineering Science, 1988, 43(2): 303-312
    
    [36]
    Py, X., Roizard, C., and Bergault, I., et al,Physical and chemical mass transfer enhancement at a gas-liquid interface due to fine catalyst particles,International Journal of Multiphase Flow, 1996,22 (Supplement 1):102
    
    [37]
    Doraiswamy, L.K. and Sharma, M.M., Heterogenous Reactions,1987, 2
    
    [38]
    Ptasinski, K.J., Beenackers, A.A.C.M. and Van Swaaij, W.P.M and Holstvoogd, R.D., Hydrogen recovery from gas mixtures using metal hydrides suspended in slurry, in Advanced Gasification. 1986, 8:229-238
    
    [39]
    Ramchandran, C. A., and Sharma, M. M., Adsorption with fast reaction in a slurry containing sparingly soluble fine particles, Chemical Engineering Science, 1969, 24: 1681-1686
    
    [40]
    Scala, F., Gas absorption with instantaneous irreversible chemical reaction in a slurry containing sparingly soluble fine reactant particles, Industrial and Engineering Chemistry Research, 2002, 41(21): 5187-5195
    
    [41]
    Uchida, S., Miyachi, M., and Ariga, O., Penetration model of gas absorption into slurry
    
    
    accompanied by an instantaneous irreversible chemical reaction, Can. J. Chem. Engng, 1981, 59: 560-562
    
    [42]
    Uchida, S., Koide, K., and Shindo, M., Gas absorption with fast reaction into a slurry containing fine particles, Chemical Engineering Science, 1975, 30(5-6): 644-646
    
    [43]
    Uchida, S., and wen, C. Y., Rate of gas absorption into a slurry accompanied by instantaneous reaction, Chemical Engineering Science, 1977, 32(11): 1277-1281
    
    [44]
    Sada, E., Kumazawa, H. and Butt, M. A., Single gas absorption with reaction in a slurry containing fine particles, Chemical Engineering Science, 1977, 32(10): 1165-1170
    
    [45]
    Sada, E., Kumazawa, H. and Butt, M. A., Adsorption of sulfur dioxide into aqueous slurries of sparingly soluble fine particles, Chemical Engineering Science, 1980, 35(4): 771-777
    
    [46]
    Sada, E., Kumazawa, H., and Lee, C. H., Chemical absorption into concentrated slurry: adsorptions of carbon dioxide and sulfur dioxide into aqueous concentrated slurries of calcium hydroxide, Chemical Engineering Science, 1984, 39(1): 117-120
    
    [47]
    Hixson, A. W., and Baum, S. J., Dissolution of finely ground limestone particles in acidic solutions. Ind. Eng. Chem., 1941, 33: 478
    
    [48]
    Sada, E., and et al., Removal of dilute SO2 by aqueous slurries of Mg(OH)2 particles, Chemical Engineering Science, 1977, 32(11): 972
    
    [49]
    Sada, E., Kumazawa, H., and Butt, M. A., Simultaneous absorption with reaction in a slurry containing fine particles, Chemical Engineering Science, 1977, 32(12): 1499-1503
    
    [50]
    Sada, E, Kumazawa, H., and Butt, M. A., Single and simultaneous absorption of lean SO2 and NO2 into aqueous slurries of Ca(OH)2 or Mg(OH)2 particles, Chemical Engineering Science, 1979, 12(2): 111-117
    
    [51]
    Sada, E., Kumazawa, H., and Butt, M. A., Absorption of SO2 in aqueous slurries of sparingly soluble fine particles, Chemical Engineering Science, 1980, 19(2): 131-138
    
    [52]
    Laohavidhitra, C., Absorption of SO2 by calcium hydroxide solution in a wetted wall column: effect of magnesium hydroxide, magnesium carbonate and magnesium sulfite additives, Chemical Engineering Science, 1982, 38(10): 1982
    
    [53]
    Sada, E., Kumazawa, H., and Nishimu, H., Absorption of SO2 into aqueous double slurries containing limestone and magnesium hydroxide, AIChE Journal, 1983, 29(1): 60-65
    
    [54]
    Bronikowska, W. P., and Rudzinski, K. J., Adsorption of SO2 in aqueous systems, Chemical Engineering Science, 1991, 46(9): 2281
    
    [55]
    Sada, E., Kumazawa, H., Hashizume, I., Further consideration on chemical absorption
    
    
    mechanism by aqueous slurries of sparingly soluble fine particle, Chemical Engineering Science, 1981, 36(4): 639-642
    
    [56]
    Joosten, G.E.H., Schilder, J.G.M. and Janssen,J., The influence of suspended solid material on the gas-liquid mass transfer in stirred gas-liquid contactors. Chemical Engineering Science, 1977,32(5): 563-566
    
    [57]
    Lindner, D., Werner, M., and Schumpe, A., Hydrogen transfer in slurries of carbon supported catalyst (HPO process), AIChE Journal, 1988, 34(10): 1691-1697
    
    [58]
    Ozt?rk, S. S., and Schumpe, A., The influence of suspended solids on oxygen transfer to organic liquids in a bubble column, Chemical Engineering Science,1987,42(7): 1781-1785
    
    [59]
    Nigam, K. D. P., and Schumpe, A., Gas-liquid mass transfer in a bubble column with suspended particles, AIChE Journal, 1987, 33(2): 328-330
    
    [60]
    Wilkinson, P. M., Physical aspects and scale-up of high pressure bubble columns, Ph.D. thesis, Groningen University, Groningen, 1991
    
    [61]
    Sada, E., et al., Gas holdup and mass transfer characteristics in a three phase bubble column, Industrial & Engineering Chemistry, Process Design and Development, 1986, 25(2): 472-476
    
    [62]
    Schmitz, M., Steiff, A., and Weinspach, P. M., Gas-liquid interfacial area per unit volume and volumetric mass transfer coefficient in stirred slurry reactors, Chem. Engng Technol., 1987, 10(3): 204-215 
    
    [63]
    Kojima, H., et al., Volumetric liquid phase mass transfer coefficient in gas sparged three phase stirred vessel, Journal of Chemical Engineering of Japan, 1987, 20(1): 104-106
    
    [64]
    Schumpe, A., Saxena, A. K., and Fang, L. K., Gas-liquid mass transfer in a slurry bubble column, Chemical Engineering Science, 1987, 42(7): 1787-1796
    
    [65]
    Shumpe, A., Saxena, A. K., and Nigam, K. D. P., Gas-liquid mass transfer in a bubble column with suspended non-wettable solids, AIChE Journal, 1987, 33(11): 1916-1920 
    
    [66]
    Koide, K., et al., gas holdup and volumetric liquid-phase mass transfer coefficient in solid-suspended bubble columns, Journal of Chemical Engineering of Japan, 1984, 17(5): 459-466
    
    [67]
    Kato, Y. et al., The behavior of suspended solid particles and liquid in bubble columns, J. Chem. Engng Japan, 1972, 5: 112-118
    
    [68]
    Oguz, H., Brehm, A. and Deckwer, W. D., Gas-liquid mass transfer in stirred slurry reactors, in recent trends in chemical reaction engineering (vol. II), Wiley-Eastern, New Delhi, 1987: 484-501
    
    
    
    
    [69]
    Ostergaard, K., and Fosbol, P., Chemical Engineering Science, 1972,3: 105-112
    
    [70]
    Pandit, A. B., and Joshi, J. B., Mass and heat transfer characteristics of three phase sparged reactors, Chemical Engineering Research & Design, 1986, 64(2): 125-157
    
    [71]
    Albal, R. S., Shah, Y. T. and Schumpe, A., Mass transfer in multiphase agitated contactors, Chemical Engineering Journal, 1983, 27(2): 61-80
    
    [72]
    Bouaifi, M., et al., A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns, Chemical Engineering and Processing, 2001, 40(2): 97-111
    
    [73]
    Nagaraj, N., and Gray, D. J., Interfacial area and coalescence frequency in gas-slurry stirred reactors, AIChE Journal, 1987, 33(9): 1563-1566
    
    [74]
    Quicker, G., Alper, E., and Deckwer, W. D., Effect of fine activated carbon particles on the rate of CO2 absorption, AIChE Journal, 1987, 33(5): 871-875
    
    [75]
    Quicker, G., Schumpe, A., and Deckwer, W. D., Gas-liquid interfacial areas in a bubble column with suspended solids, Chemical Engineering Science, 1984, 39(1): 179-183
    
    [76]
    Sharma, M. M., and Mashelkar, R. A., Adsorption with reaction in bubble columns, Instn Chem. Engrs Symp. Sep., 1968, 28: 10-21
    
    [77]
    Beenackers, A.A.C.M. and Van Swaaij, W.P.M., Mass transfer in gas-liquid slurry reactors, Chemical Engineering Science, 1993, 48(18):3109-3139
    
    [78]
    Sch?nau, H., Zum Einfluss suspendierter feststoffe aufdie hydrodynamischen eigenschaften eines blasens?ulen reactors, Ph. D. Thesis, Thchnical Univerity, Aachen, 1981
    
    [79]
    Quicker, G., Alper, E. and Deckwer, W. D., Gas absorption rates in a stirred cell with plane interface in the presence of fine particles, Canadian Journal of Chemical Engineering, 1989, 67(1): 32-38
    
    [80]
    Sada, E., Kumazawa, H. and Lee, H., Gas-liquid Mass characteristics in a bubble column with suspended sparingly soluble fine particles, Ind. Eng. Chem. Process Des. Dev, 1985,24:255-261
    
    [81]
    Godbole, S. P., Schumpe, A. and Shah, Y. H., Effect of solid wettability on gas-liquid mass transfer in a slurry bubble column, Chemical Engineering Science, 1990, 45(12): 3593-3595
    
    [82]
    Kawase, Y., and Moo-Young, M., Liquid-phase mass transfer coefficient in slurry bubble column reactors: theory and experimental data in simulated fermentation media, Chem. Engng Commun, 1990, 96: 177-192
    
    [83]
    Sano, Y., Yamaguchi, N. and Adachi, T., Mass Transfer coefficients for suspended particles in agitated vessels and bubble columns. J.Chem. Engng. Japan , 1974,
    
    
    7:255-261
    
    [84]
    Gogoi, N.C. and Dutta, N.N., Empirical approach to solid-liquid mass transfer in a three-phase sparged reactor, Fuel Processing Technology, 1996, 48(2):145-157
    
    [85]
    Jadhav, S. V. and Pangarkar, V. G., Particle-liquid mass transfer in three sparged reactors:, Canadian Journal of Chemical Engineering, 1988, 66(4): 572-578
    
    [86]
    Jadhav, S. V. and Pangarkar, V. G., Particle-liquid mass transfer in three phase sparged reactors: scale-up effects, Chemical Engineering Science, 1991, 46(4): 919-927
    
    [87]
    Marrone, G. M. and Kirwan, D. J., Mass transfer to suspended particles in gas-liquid agitated systems, AIChE Journal, 1986, 32(3): 523-525
    
    [88]
    Sada, E., Kumazawa, H. and Lee, H., Gas-liquid Mass characteristics in a bubble column with suspended sparingly soluble fine particles, Ind. Eng. Chem. Process Des. Dev, 1985, 24:255-261
    
    [89]
    蔡旺锋, 浆料体系中细颗粒增强气液传质研究, 博士学位论文, 天津大学, 2003
    
    [90]
    Holstvoogd, R. D., van Swaaij, W. P. M. and van Dierendonck, L. L., The absorption of gases in aqueous activated carbon slurries enhanced by adsorbing or catalytic particles, Chemical Engineering Science, 1988, 43(8): 2181-2187
    
    [91]
    Bruining W.J. Joosten, G.E.H. Beenackers A.A.C.M. Enhancement of gas-liquid mass transfer by a dispersed second liquid phase, Chemical Engineering Science, 1986,41(7): 1873-1877
    
    [92]
    Mehra A., Intensification of multiphase reactions through the use of a microphase-I. Theoretical, Chemical Engineering Science, 1988, 43(4): 899-912
    
    [93]
    Little, R.J., Versteeg G.F., Van Swaaij, W.P.M. Physical absorption of CO2 and propane into toluene/water emulsions, AICHE J., 1994, 40(10):1629-1638
    
    [94]
    Nagy E., Moser A., Three-phase mass transfer: Improved pseudo-homogeneous model, AICHE J., 1995, 41(1):23-34
    
    [95]
    Karve, S., Juvekar, V.A., Gas absorption into slurries containing fine catalyst particles. Chemical Engineering Science, 1990,45(3): 587-596
    
    [96]
    Vinke, H., The effect of catalyst particle to bubble adhesion on the mass transfer in agitated slurry reactors. Ph.D. Thesis. 1992,Municipal University of Amersterdam.
    
    [97]
    Brilman, D.W.F., van Swaaij, W.P.M., & Versteeg G.F., Heterogeneous mass transfer models for gas absorption in multiphase systems, Chemical Engineering Science,2000, 55(15):2793-2812
    
    [98]
    Brilman, D.W.F., van Swaaij, W.P.M., & Versteeg G.F., A one-dimensional instationary heterogeneous mass transfer model for gas absorption in multiphase systems. Chemical
    
    
    Engineering & Processing, 1998,37(6): 471-488
    
    [99]
    Mehra, A., Heterogeneous modeling of gas absorption in emulsions, Ind. Eng. Chem. Res. 1999, 38:2460-2468
    
    [100]
    Yagi, H., Hikita, H., A slurry accompanied by chemical reaction with solute from sparingly soluble particles, 1987, 36(3):169-176
    
    [101]
    Lin, C., Zhou, M., and Xu, C. J., Axisymmetrical two-dimensional heterogeneous mass transfer model for the absorption of gas into liquid-liquid dispersions, Chemical Engineering Science, 1999, 54(3): 389-399
    
    [102]
    Deckwer W.D., Burckhart R. and Zoll G., Mixing and Mass Transfer in Tall Bubble Columns, Chemical Engineering Science, 1974, 29: 2177-2188
    
    [103]
    Deckwer W.D., Nguyen-Tien, K. and Kelkar., B.G., Applicability of axial dispersion model to analyze mass transfer measurements in bubble columns, AICHE. J, 1983, 6(29): 915-921
    
    [104]
    Garcia-Ochoa, J., Khalfet, S. and Poncin, S., Hydrodynamics and mass transfer in a suspended solid bubble column with polydispersed high density particles, Chemical Engineering Science, 1997, 52(21-22):3827-3834
    
    [105]
    Alper, E., Wichtendahl, B. and Deckwer, W. D., Gas absorption mechanism in catalytic slurry reactions, Chemical Engineering Science, 1980, 35(1-2): 217-222
    
    [106]
    Ozt?rk, S. S., and Schumpe, A., Organic liquids in a bubble column: holdups and mass transfer coefficients, AICHE J, 1987,33(9): 1473-1480
    
    [107]
    Sotelo, J.L., Benitez, F.J., and Beltran-Heredia, J., Gas hold up and mass transfer coefficients in bubble columns. 1. Porous glass-plate diffusers. International Chemical Engineering, 1994, 34(1): 82-90
    
    [108]
    姜淑兰,张威,异丙醇的制取与利用,黎明化工,1998,4:16-18
    
    [109]
    宋志宾,吕伟峰,异丙醇的应用及发展前景,精细与专用化学品,2000,22:12-13
    
    [110]
    化工百科全书编辑委员会,化工百科全书,北京,化学工业出版社,1993,3:544
    Engineering Science, 1997, 21(52)
    
    [111]
    李宏伟, 吸附蒸馏分离醇水共沸物的研究, 硕士学位论文, 天津大学,2003
    
    [112]
    上海试剂五厂,分子筛制备与应用,上海:上海人民出版社,1976:102
    
    [113]
    中国科学院大连化学物理研究分子筛组,沸石分子筛,北京:科学出版社,1978:40-47
    
    [114]
    Barnea, E., and Mizrahi, J., A generalized approach to the fluid dynamics of particulate systems em dash 1. general correlation for fluidization and sedimentation in solid multiparticle systems, Chemical Engineering Journal, 1973, 5(2): 171-189
    
    
    
    
    [115]
    Vand, V., Fluid dynamics particulate systems, J. Phys. Colloid Chem., 1948, 52:277-300
    
    [116]
    Nicodemo, L., Nicolais, L., and Landel, R. F., Shear rate dependent viscosity of suspensions in Newtonian and non-newtonian liquids, Chemical Engineering Science, 1974, 29(3): 729-735
    
    [117]
    Thomas, D. J., Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, J. Colloid Sci., 1965, 20, 267-277
    
    [118]
    Happle J., Viscous flow in multiparticle systems, J Appl Phys, 1957, 28:1288-1300
    
    [119]
    Ishii M, Zuber N., Drag coefficient and relative velocity in bubbly, Droplet or particulate flows, A.I.C.H.E. J,1979, 25(5): 843-855
    
    [120]
    Wimmers, O.J., de Sauvage Notting, H.J.J., and Fortuin, J.M.H. The effect of the size of catalyst particles adhering to gas bubble on the enhancement of gas absorption in slurry reactors, Chemical Engineering Science, 1998, 43(8), 2155-2159
    
    [121]
    张缨,固体微粒对气液传质的影响,硕士学位论文,天津大学,1996
    
    [122]
    金克新,赵传钧,马沛生,化工热力学,天津:天津科学技术出版社1990
    
    [123]
    Schumpe, A. and Deckwer, W, D., Viscous medea in tower bioreactors: hydrodynamic characteristics and mass transfer properties, Bioprocess Engng, 1987, 2:79-94
    
    [124]
    Alper, E., Gas absorption mechanisms in catalytic slurry reactors, in Recent Trends in Chemical Reaction Engineering, 1987, 2: 130-140
    
    [125]
    王绍亭,陈涛,动量、热量与质量传递, 天津:天津科学技术出版社,1986
    
    [126]
    周爱月,化工数学,北京化学工业出版社,1993
    
    [127]
    Nagy E., Moser A., Three-phase mass transfer: one-dimensional heterogeneous model, Chemical Engineering Science, 1995, 50(5):827-836
    
    [128]
    Hoolstoogd, R.D., The absorption of hydrogen in metal hydride slurries, the influence of small solid particles on the gas-liquid mass transfer rate. 1988, Ph.D. thesis, University of Twente, Enschede.
    
    [129]
    黄锐,王旭,忠明编,纳米塑料-聚合物/纳米无机物符合材料研制、应用与进展,北京:中国轻工业出版社,2002:94-116
    
    [130]
    化学工程手册编辑委员会,化学工程手册-吸附及离子交换,北京:化学工业出版社,1985:4-8
    
    [131]
    Mehra, A., Gas absorption in slurries of finite capacity microphases, Chem.Eng.Sci. 1990,45 (6): 1525-1538
    
    [132]
    Nguyen-Tien, K., et al., Gas-liquid mass transfer in fluidized particles beds, AIChE Journal, 1985, 31(2): 194-201
    

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700