用户名: 密码: 验证码:
低渗透砂岩油层微流动机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗透油层具有孔喉细小,孔隙结构复杂,比表面大,粘土矿物类型丰富等特点,这些特点致使流体在低渗透储层中流动会产生强烈的微流动效应。微流动效应使以达西公式为基础的渗流理论已经难以满足开发要求,因此亟待需要能够满足低渗透油气资源开发的渗流理论。
     低渗透油层孔隙结构特征,以及流体与流动通道之间的相互作用是研究低渗透储层微流动的关键因素。以Micro-CT图像为基础重构的孔隙模型最接近实际孔隙结构,但是低渗透砂岩岩心Micro-CT图像灰度呈单峰分布,为孔隙分割带来困难。根据Micro-CT的成像原理,分析认为低孔隙度、岩心组分以石英和长石为主、噪音是造成低渗透砂岩灰度图像呈单峰分布的主要原因。并在此基础上,形成了一套适用于低渗透砂岩岩心CT图像的预处理方法。
     以孔隙度为约束条件对实验岩心CT图像进行了孔隙分割和表征单元分析。定义了三维图像中的孤立孔隙空间并将其清除,减少了几何模型重构和数值模拟计算所需要的计算机存储空间和计算能力。采用Marching Cubes重构算法和Delaunay三角剖分算法能够对低渗透砂岩岩心孔隙进行几何重构,选取了STL和OFF文件作为数据接口,搭建了从孔隙几何模型到数值模拟的桥梁。
     油层矿物与水或原油作用可以形成边界层,边界层使流体在多孔介质中的粘度不为常数,它是与体相流体的性质、多孔介质性质及驱动压力梯度有关的一个函数,这也是低速非达西流出现的原因。通过微通道流动实验和理论分析,认为非润湿相流体存在边界滑移,且滑移长度随接触角的增大而增大,而对于润湿相流体润湿角与滑移长度之间没有明显的关系。
     粘土矿物产状对低渗透砂岩油层微流动具有明显的影响。分散质点式粘土矿物使流体流动时出现局部阻力,阻力的大小与喉道和高岭石尺寸之间的匹配关系有关。桥接式粘土矿物使流体流动时产生摩擦阻力和压差阻力,压差阻力的大小受粘土矿物的集合体的形状和大小控制。薄膜式粘土矿物增加了低渗透油层中微流动的沿程阻力。绿泥石集合体的大小、形状、分布以及绿泥石片之间的拓扑关系会影响流体在油层中的沿程阻力。
     界定了分子动力学模型,格子boltzmann模型和宏观连续模型(Navier-Stokes方程)的适用范围,认为Navier-Stokes方程能够描述油和水等液体在低渗透砂岩油层中的流动。基于Navier-Stokes方程,考虑了边界层和粘土矿物产状对低渗透砂岩油层微流动的影响,采用有限元法计算了孔隙几何模型三方向渗透率,模拟研究了边界流体相对厚度和粘度对低渗透砂岩油层有效流动能力的影响。
     以微流动机理为基础,结合孔隙结构特征,找出影响低渗透储层流体流动的主控因素,采用具有针对性的开采技术将成为高效开发低渗透油气资源的有效途径。
Low-permeability reservoirs display such characteristics as narrow pore throats, complex pore structure, large specific surface and rich clay minerals. These characteristics will result in strong micro flow effects when fluid flow in low-permeability reservoirs. Because of micro flow effects, it's difficult to describe flow in Low-permeability reservoirs using Darcy's Law. Thus, a new theory which can accomplish better descriptions is in urgent need.
     Pore structure characteristics, interaction between fluids and pore walls are key factors in studying micro flow in Low-permeability reservoirs. The pore model reconstructed from Micro-CT images is the most accurate model. However, the pore segmentation process is difficult, for low-permeability sandstone Micro-CT gray level image showed a unimodal distribution. After analyzed Micro-CT imaging principle, reasons of unimodal distribution are believed to be low porosity, main core components of quartz and feldspar as well as noises. On this basis, a new image preprocessing method has been presented.
     Pore segmentation and representative element volume analysis based on porosity were carried out. Isolated void space in the three-dimensional image was defined and clear, which can reduce computer storage and computational capabilities in reconstruction and simulation process. Pore models of low-permeability sandstone were reconstructed by Marching Cubes method algorithm and Delaunay triangulation algorithm. STL and OFF format were selected to be interface files for numerical simulation.
     Because of Interactions between mineral and oil or water, boundary layer which changes fluid viscosity in low-permeability reservoirs has been produced. Fluid viscosity in low-permeability reservoirs is the function of bulk fluid, Porous media properties, and driving pressure gradient.
     Through the micro-channel flow experiments and theoretical analysis, boundary slip exists for non-wetting phase, and slip length increases with contact angle. However, the experiment did not show evidence that slip length has any relationship with contact angle for non-wetting phase.
     The occurrences of clay minerals have significant impacts on micro flow in low-permeability reservoirs. Dispersed particle occurrence can cause Local resistance which depends on the match relationship between Pore throat size and kaolinite size. Frictional resistance, controlled by size and shape of illite, and pressure resistance are produced by Bridge occurrence. Thin film occurrence can give rise to frictional drag which is affected by microstructures of chlorite such as size, shape, distribution, and topology.
     After discussed the scope of applications about molecular dynamics theory, Lattice Boltzmann Method, and Navier-Stokes Equations, it is believed Navier-Stokes Equations can describe liquid flow in low-permeability sandstone reservoirs. Considering the effects of boundary layer and clay minerals occurrences in low permeability sandstone reservoirs, the permeability of pore models in three directions is calculated on the basis of Navier-Stokes Equations with Finite Element Method. And then a numerical simulation study about the effects of boundary fluid relative thickness and viscosity in low-permeability reservoirs has been carried out
     After identifying the main influencing factors by using micro flow mechanism combined with pore structure characteristics, specific technologies can be used to develop low-permeability reservoirs with high efficiency.
引文
[1]胡文瑞.中国低渗透油气的现状与未来[C].中国低渗透(致密)油气勘探开发技术研讨会,北京,2009.
    [2]李道品等著.低渗透砂岩油藏开发[M].北京:石油工业出版社,中国油田开发丛书,1997.
    [3]徐运亭,徐启,郭永贵,等.低渗透油藏渗流机理研究及应用[M].北京:石油工业出版社,2006.
    [4]韩耀萍.国外低渗透油层改造技术.断块油气田[J].断块油气田,1994;1(2):54-60
    [5]计光华,计洪苗.微流动及其元器件[M].北京:高等教育出版社,2009.
    [6]吴柏志.低渗透油藏高效开发理论与应用[M].北京:石油工业出版社,2009.
    [7]林建忠,包福兵,张凯,等.微纳流动理论及应用[M].北京:科学出版社,2009.
    [8]卡尼亚达克斯,柏斯考克.中国科学院过程工程研究所多相反应重点实验室多相复杂系统与多尺度方法课题组译.微流动—基础与模拟[M].北京:化学工业出版社,2006.
    [9]蔡建超.低渗透油藏非达西渗流特性的分形研究[D].武汉:华中科技大学,2007:14-15.
    [10]何更生.油层物理(M).北京:石油工业出版社,1994.
    [11]Carman, P. C. Flow of Gases through Porous Media [M]. London:Butterworths,1956.
    [12]Civan Faruk. Leaky-Tube Permeability Model for Identification, Characterization, and Calibration of Reservoir Flow Units[C]. SPE84603, presented at the SPE Annual Technical Conference and Exhibition held in Denver, Colorado, U.S.A.,5-8 October 2003.
    [13]Civan Faruk. Reservoir formation damage:fundamentals, modeling, assessment, and mitigation[M].2nd Edition. Burlington:Gulf Professional Publishing,2007.
    [14]Bennion D. B., Thomas F. B. and T. Ma. Formation Damage Processes Reducing Productivity of Low Permeability Gas Reservoirs[C]. SPE60325, presented at the 2000 SPE Rocky Mountain Regional/ Low Permeability Reservoirs Symposium and Exhibition held in Denver, Colorado,12-15 March 2000.
    [15]李传亮,孔祥言,徐献芝,等.多孔介质的双重有效应力[J].自然杂志,1999,21(5):288-291.
    [16]Yasuhara H., Elsworth, D., and Polak, A. A mechanistic model for compaction of granular aggregates moderated by pressure solution [J]. Journal of Geophysical Research,2003,108 (B11).2530.
    [17]Suri Ajay and Sharma Mukul M. Strategies for sizing Particles in Drilling and Completion Fluid[J]. SPE Journal,2004,9 (1) 1:3-23.
    [18]徐同台,赵敏,熊友明,等.保护油气层技术[M].第二版.北京:石油工业出版社,2003.
    [19]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院院报,2006,30(2):22-25.
    [20]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986.
    [21]Liu Xuefeng, Sun Jianmen, Wang Haitao. Reconstruction of 3-D digital cores using a hybrid method[J]. APPLIED GEOPHYSICS,2009,6 (2):105112.
    [22]赵秀才.数字岩心及孔隙网络模型重构方法研究[D].东营:中国石油大学,2009.
    [23]C. L. Y., Yeong, Torquato S.. Reconstructing random media. Ⅱ. Three-dimensional media from two-dimensional cuts[J]. PHYSICAL REVIEW E,1998,58 (1):224-233.
    [24]?ren Pal-Eric and Bakke Stig. Process Based Reconstruction of Sandstones and Prediction of Transport Properties[J]. Transport in Porous Media,2002,46 (2-3):311-343.
    [25]Bakke Stig and ?ren Pal-Eric.3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks[J].SPE Journal,1997,2:136-149.
    [26]李留仁,赵艳艳,李忠兴,等.多孔介质微观孔隙结构分形特征及分形系数的意义[J].石油大学学报(自然科学版),2004,28(3):105-107.
    [27]马新仿,张士诚,郎兆新.储层岩石孔隙结构的分形研究[J].岩石力学与工程学报,2003,12(9):46-48.
    [28]YuBM, Li JH. Some fractal characters of porous media [J]. Fractals,2001,9 (3):365-372.
    [29]蔡建超.基于分形理论的低渗油藏若干输运特性研究[D].武汉:华中科技大学,2010.
    [30]袁越锦,杨彬彬,焦阳,等.多孔介质干燥过程分形孔道网络模型与模拟:Ⅰ.模型建立[J].中国农业大学学报,2007,12(3):65-69.
    [31]宫英振,牛海霞,董正茂,等.分形多孔介质孔道网络模型的构建[J].农业机械学报,2009,40(11):109-114.
    [32]Joshi M. A class of stochastic models for porous media [D]. University of Kansas, Kansas:1974.
    [33]姚军,赵秀才,衣艳静,等.数字岩心技术现状及展望[J].油气地质与采收率,2005,12(6):52-54.
    [34]Hazlett R. D. Statistical Characterization and Stochastic Modeling of Pore Networks in Relation to Fluid Flow [J]. Mathematical Geology,1997,29(6):801-822.
    [35]鞠杨,杨永明,宋振铎,等.岩石孔隙结构的统计模型[J].中国科学E辑:技术科学,2008,38(7):1026-1041.
    [36]袁越锦,杨彬彬,焦阳,等.多孔介质干燥过程分形孔道网络模型与模拟:Ⅱ.数值模拟与试验验证[J].中国农业大学学报,2007,14(2):55-60.
    [37]Wu Kejian, Van Dijke M. I. J., G. D. Couples, et al.3D Stochastic Modelling of Heterogeneous Porous Media-Applications to Reservoir Rocks [J]. Transport in Porous Media,2006,65:443-467.
    [38]Perrier Edith, Bird Nigel, Rieu Michel. Generalizing the fractal model of soil structure:the pore-solid fractal approach [J]. Geoderma,1999,88(3-4):137-164.
    [39]Lehmann P., Stahli M., Papritz A.. A Fractal Approach to Model Soil Structure and to Calculate Thermal Conductivity of Soils [J]. Transport in Porous Media,2003,52:313-332.
    [40]?ren P.E., Bakke S., Rueslatten H.G.. Digital Core Laboratory:Rock And Flow Properties Derived From Computer[C]. SCA2006. presented at the International Symposium of the Society of Core Analysts held in Trondheim, Norway 12-16 September,2006.
    [41]Al-Kharusi Anwar S., and Blunt Martin J.. Multiphase flow predictions from carbonate pore space images using extracted network models [J]. Water Resources Research,2008,44:1-14.
    [42]Okabe Hiroshi, Blunt Martin J.. Prediction of permeability for porous media reconstructed using multiple-point statistics[J]. Physical Review E,2004,70:066135.
    [43]Talukdar M.S., loannidis M., Howard J.. Network Modeling as a Tool for Petrophysical Measurements in Chalk[C]. Proceedings of the 6th Nordic Symposium on Petrophysics,15-16 May 2001, Trondheim, Norway.
    [44]李洪艳,曹建荣,谈文婷,等.图像分割技术综述[J].山东建筑大学学报,2010,25(1):85-89.
    [45]黄长专,王彪,杨忠.图像分割方法研究[J].计算机技术与发展,2009,19(6):76-79.
    [46]Lin C. L., Miller J.D.. Network Analysis of Filter Cake Pore Structure by High Resolution X-Ray Microtomography[C]. presented at 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, April 14-17,1999.
    [47]Knackstedt M. A., Arns C. H., Sheppard A. P.. Pore Scale Analysis of Electrical Resistively in Complex Core Material[C]. SCA2007-33, prepared for presentation at the International Symposium of the Society of Core Analysts held in Calgary, Canada,10-12 September,2007.
    [48]Okabe Hiroshi, Blunt Martin J.. Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics [J]. Water Resources Research,2007,43:W12S02.
    [49]Talabi Olumide, AlSayari Saif, Iglauer Stefan, et al. Pore-scale simulation of NMR response [J]. Journal of Petroleum Science and Engineering,2009,67:168-178.
    [50]Vogel H.-J., Tolke J., Schulz V.P.. Comparison of a Lattice-Boltzmann Model, a Full-Morphology Model, and a Pore Network Model for Determining Capillary Pressure-Saturation Relationships[J]. Vadose Zone Journal,2005,4:380-388.
    [51]吴其芬,陈伟芳,黄琳,等.稀薄气体动力学[M].长沙:国防科技大学出版社,2004.
    [52]Bird G A. Molecular Gas Dynamics and the Direct simulation of Gas flows[M]. Oxford:Clarendon Press,1994:1-4.
    [53]杨建,康毅力,李前贵,等.致密砂岩气藏微观结构及渗流特征[J].力学进展,2008,35(2):229-234.
    [9]Civan F. A Triple-Mechanism Fractal Model with Hydraulic Dispersion for Gas Permeation in Tight Reservoirs[C]. SPE74368.2002.
    [10]朱光亚,刘先贵,杨正明,等.低渗气藏气体渗流特征机理研究[C].中国石油学会第一届油气田开发技术大会论文集-2005年中国油气田开发科技进展与难采储量开采技术研讨会,2006.
    [11]陈代殉.渗流气体滑脱现象与渗透率变化的关系[J].力学学报,2002;34(1):96-100.
    [57]陈代珣,王章瑞,高家碧.气体滑脱现象的综合特征参数研究[J].天然气工业,2003,23(4):65-67.
    [58]葛家理.现代油藏渗流力学原理[M].北京:石油工业出版社,1994.
    [59]陈代殉,干章瑞,高家碧.多孔介质中低速气体的非线性渗流[J].西南石油学院学报,2002,24(5):40-42.
    [60]李前贵,康毅力,罗平亚.致密砂岩气藏多尺度效应及生产机理[J].天然气工业,2006,26(2)111-113.
    [61]李前贵,康毅力,罗平亚.致密砂岩气藏的时间尺度和空间尺度分析[C].程林松、单文文等主编,资源、环境与渗流力学—第八届渗流力学学术讨论会论文集,北京:中国科学技术出版社,2005.
    [62]李前贵.致密砂岩气藏多尺度传递过程及应用研究[D].成都:西南石油大学,2006.
    [63]罗哲潭,.油气储集层的孔隙结构[M].北京:科学出版社,1986.
    [64]孙德军,秦丰华,尹协远.微管道气体流动[J].机械强度,2001,23(4):460-464.
    [65]XU ShaoLiang YUE XiangAn HOU JiRui. Experimental investigation on flow characteristics of deionized water in microtubes[J]. Chinese Science Bulletin,2007,52 (6):849-854.
    [66]王斐,岳湘安,王雯靓,等.润湿性对模拟原油微尺度流动和渗流的影响[J].石油学报,2010,31(2):302-305.
    [67]凌智勇,丁建宁,杨继昌,等.微流动的研究现状及影响因素[J].江苏大学学报(自然科学版),2002,23(6):1-5.
    [68]Sabry Mohamad-Nabil. Scale Effects on Fluid Flow and Heat Transfer in Microchannels[J]. IEEE Transactions on Components and Packaging Technologies,2000,23 (3):562-567.
    [69]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998.
    [70]Kandlikar S G, Schmitt D, Carrano D, et al. Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels[J]. Physics of Fluids,2005,17 (10):100606.
    [71]Taylor J B, Carrano A L, Kandlikar S G. Characterization of the effect of surface roughness and texture on fluid flow-past, present, and future [J]. International Journal of Thermal Sciences,2006,45 (10): 962-968.
    [72]Schmitt D, Kandlikar S G. Effects of repeating microstructures on pressure drop in rectangular minichannels[C]. Proceedings of the third international conference on microchannels and minichannels, June 13-15,2005, Toronto, Ontario, Canada.
    [73]Makiranta J, Kallio P, Lekkala J. A Novel Modeling Method of Surface Roughness in a Microfluidic Channel[C].46th Conference on Simulation and Modeling.13-14 October,2005, Trondheim, Norway.
    [74]Duan Zhipeng, Muzychka Y S. Effects of Corrugated Roughness on Developed Laminar Flow in Microtubes[J]. Journal of Fluids Engineering,2008,130 (3):031102.
    [75]Hu Yandong, Werner C, Li Dongqing. Influence of Three-Dimensional Roughness on Pressure-Driven Flow Through Microchannels[J]. Journal of Fluids Engineering,2003,125 (5):871-879.
    [76]Xiong Renqiang, Chung J N. Investigation of laminar flow in microtubes with random rough surfaces[J]. Microfluid Nanofluid,2010,8 (1):11-20.
    [77]Gamrat G, Favre-Marinet M, Person S L, et al. An experimental study and modelling of roughness effects on laminar flow in microchannels[J]. Journal of Fluid Mechanics,2008,594:399-423.
    [78]Cheng N S. Application of Ergun equation to computation of critical shear velocity subject to seepage[J]. Journal of Irrigation and Drainage Engineering,2003,129 (4):278-283.
    [79]Chhabra R P. Bubbles, Drops, and Particles in Non-Newtonian Fluids[M], Second Edition. Boca Raton:CRC Press,2007.
    [80]Guimard P, McNerny D, Saw E, et al. Correlation of Surface Roughness and Pressure Drop for Flow Through Packed Beds[OL]. http://rothfus.cheme.cmu.edu/tlab/pbeds/projects/t4_s04c/t4 s04.pdf. 2011.05.09
    [81]DiLeo M, Hung J, Shchelokova A, et al. The Effect of Surface Roughness in Packed Beds[OL]. http://rothfus.cheme.cmu.edu/tlab/pbeds/projects/t7 sO5b/t7 s05b.pdf.,2011.05.09
    [82]Baudry J, Charlaix E. Experimental Evidenc_for a Large Slip Effect at a Nonwetting Fluid-Solid Inte(?)face[J]. Langmuir,2001,17 (17):5232-5236.
    [83]Zhu Yingxi, Granick S. No-Slip Boundary Condition Switches to Partial Slip When Fluid Contains Surfactant[J]. Langmuir,2002,18 (26):10058-10063.
    [84]Choi Chang-Hwan, Johan K, Westin A, et al. Apparent slip flows in hydrophilic and hydrophobic microchannels[J]. Physics of Fluids,2003,15 (10):2897-2902.
    [85]霍素斌,于志家,李艳峰,等.超疏水表面微通道内水的流动特性[J].化工学报,2007,58(11):272]-2726.
    [86]狄勤丰,沈琛,王掌洪,等.纳米吸附法降低岩石微孔道水流阻力的实验研究[J].石油学报,2009,30(1):125-128.
    [87]Hervet H, Leger L. Flow with slip at the wall:from simple to complex fluids[J]. C. R. Physique,2003, 4 (2):241-249.
    [88]Bonaccurso E, Kappl M, Butt H J. Hydrodynamic Force Measurements:Boundary Slip of Water on Hydrophilic Surfaces and Electrokinetic Effects[J]. Physical Review Letters,2002,88 (7):076103.
    [89]吴承伟,马国军,周平.流体流动的边界滑移问题研究进展[J].力学进展,2008,38(3):265-282.
    [90]王馨,张向军,孟永钢,等.微纳米间隙受限液体边界滑移与表面润湿性试验[J].清华大学学报(自然科学版),2008,48(8):1302-1305.
    [91]龚磊,吴健康,王蕾,等.微通道周期流动电位势及电粘性效应[J].应用数学和力学,2008,29(6):649-656.
    [92]龚磊.微流控系统流动—电场—离子运动多物理场耦合现象研究[D].武汉:华中科技大学博士论文,2008.
    [93]Ren C L, Li Dongqing. Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels[J]. Journal of Colloid and Interface Science,2004,274 (1):319-330.
    [94]李卓,唐桂华,陶文铨.微通道中极性流体流动特性的研究[J].西安交通大学学报,2007,41(3):274-278.
    [95]Ren Liqing, Li Dongqing, Qu Weilin. Electro-Viscous Effects on Liquid Flow in Microchannels[J]. Journal of Colloid and Interface Science,2001,233 (1):12-22.
    [96]杨灵信,郭文军,徐艳伟,等.聚硅纳米材料降压增注技术在文东油田的应用[J].江汉石油学院学报,2003,25(S1):105-106.
    [97]Liu Y J, Zheng H W, Huang G X, et al. Production enhancement in gas-condensate reservoirs by altering wettability to gas wetness:field application[C]. SPE 112750,2008.
    [98]军贤,张宁生,吴新民.电化学采油及其作用机理综述[J].石油勘探与开发,1998,25(2):57-58.
    [99]刘波,张红梅,第宇辉,等.直流电场采油在岔河集油田的应用研究[J].新疆石油学院学报,2000,12(3):28-31.
    [100]范凤英.直流电场采油矿场试验[J].油气地质与采收率,2003,10(3):78-80.
    [101]姚军,赵秀才.数字岩心及孔隙级渗流模拟理论[M].北京:石油工业出版社,2010.
    [102]孙宏琦,施维颖,巨永锋.利用中值滤波进行图像处理[J].长安大学学报(自然科学版),2003,23(2),104-106.
    [103]飞思科技产品研发中心MATLAB6.5辅助图像处理[M].北京:电子工业出版社,2003.
    [104]颜兵,王金鹤,赵静.基于均值滤波和小波变换的图像去噪技术研究[J].计算机技术与发展,2011,21(2):51-53.
    [105]Dmitriy Silin. Petrophysical studies of unconventional gas reservoirs using high-resolution rock imaging[C]. RPSEA Unconventional Gas Project Review Meeting, Denver, CO April 15,2009.
    [106]苏娜.低渗气藏微观孔隙结构三维重构研究[D].成都:西南石油大学,2011.
    [107]Nobuyuki Otsu. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics,9 (1):62-66.
    [108]赵秀才,姚军,房克荣.合理分割岩心微观结构图像的新方法[J].中国石油大学学报(自然科学版),2009,33(1):64-67.
    [109]潘春雨,卢志刚,秦嘉.基于区域阈值的图像分割方法研究[J].火力与指挥控制,2011,36(1),118-121.
    [110]刘学峰.基于数字岩心的岩石声电特性微观数值模拟研究[D].东营:中国石油大学(华东),2010.
    [111]聂璇.基于工业CT切片数据的STL建模方法研究与实现[D].重庆:重庆大学,2007.
    [112]李海生Delaunay三角剖分理论及可视化应用研究[M].哈尔滨:哈尔滨工业大学出版社,2009.
    [113]STL (file format). http://en.wikipedia.org/wiki/STL (file format).,2012.03.02.
    [114]Philip Shilane, Patrick Min, Michael Kazhda, et al. The Princeton Shape Benchmark. Shape Modeling International, Genova, Italy, June 2004.
    [115]张国庆Dividing Cubes和Shear-Warp三维重构算法研究与应用[D].哈尔滨:哈尔滨工程大学2008.
    []]6]孙伟Marching cubes算法研究现状[D].济南:山东大学,2007.
    [117]李晶,阮兴云,徐志荣,等.三维图像显示中的表面绘制与体绘制[J].中国医学装备,2009,6(3):1-3.
    [118]张晔.基于改进的MC与MT方法的三维重建的研究与实规[D].沈阳:东北大学,2008.
    [119]严小波.基于三维分割的Marching cubes算法重构研究[D].哈尔滨:哈尔滨工程大学,2008.
    [120]Berg. M.D., Otfried Cheong, Marc Van Kreveld邓俊辉译.计算几何—算法与应用(第三版)[M].北京:清华大学出版社,2009.
    [121]李丽.三维空间Delaunay三角剖分算法的研究及应用[D].大连:大连海事大学,2010.
    [122]颜林.约束Delaunay三角网生成算法及应用研究[D].北京:北京化工大学,2010.
    [123]张花艳.基于Delaullay三角剖分与场表示的曲面重[D].郑州:郑州大学,2011.
    [124]朱心熊.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [125]Tsai V. J. D. Delaunay Triangulations in TIN Creation:an Overview and a Linear-time Algorithm. Int. J. of GIS,1993,7 (6):501-524.
    [126]武晓波,王世新,肖春生Delaunay三角网的生成算法研究[J].测绘学报,1999,28(1):28-34.
    [127]张珍铭.基于Delaunay三角化的三维散乱点云曲面重塑算法研究[D].南京:南京航空航天大学,2006.
    [128]Lewis B. A. and Robinson J. S. Triangulation of Planar Regions with Applications [J]. The Computer Journal,1978,21 (4):324-332.
    [129]Lee D. T. and Schachter B. J. Two Algorithms for Constructing a Delaunay Triangulation[J], Int. J. of Computer and Information Sciences,1980,9 (3):219-242.
    [130]The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,4.0 edition,2012.
    [131]Laurent Rineau and Mariette Yvinec.3D Surface Mesh Generation. In CGAL User and Reference Manual. CGAL Editoria1 Board,4.0 edition,2012.
    [132]Fang Qianqian, Boas David A. Tetrahedral mesh generation from volumetric binary and gray-scale images[C]. Proceedings of the Sixth IEEE international conference on Symposium on Biomedical Imaging:From Nano to Macro, June 28-July 01,2009, Boston, Massachusetts, USA.
    [133]洪将涵.针对资料视觉化所设计之简单及快速的种子集建构系统[D].台北:台湾科技大学,2005.
    [134]彭珏,康毅力,游利军,等.低渗透砂岩油层矿物/流体界面结构模型及表征[J].西安石油大学学报,2007,22(S1):58-61.
    []35]彭珏.低渗透砂岩油层矿物/流体界面结构研究[D].成都:西南石油大学,2008.
    [136]Jada A., Salou M., Siffert B. Effects of bitumen polar fractions on the stability of bitumen aqueous dispersions[J]. Pet. Sci. Technol.2001,19(1/2):119-127.
    [137]王平全,熊汉桥.粘士表面结合水定量分析及水合机制研究[M].北京:石油工业出版社,2002
    [138]Deniel Hillel著,华孟,叶和才译.土壤和水[M].北京:农业出版社,1982.
    [139]B.и.奥西波大著,李生林,张之一译.粘土类土和岩石的强度与变形性能的本质[M].北京:地质出版社,1985.
    [140]张正斌,刘莲生著.海洋物理化学[M].北京:科学出版社,1989.
    [141]W.斯塔姆,J.J.摩尔根著,汤鸿霄等译.水化学[M].北京:科学出版社,1987.
    [142]R.A.霍恩著.厦门大学海洋系海洋化学教研室译.海洋化学(水的结构与水圈的化学)[M].北京:科学出版社,1976.
    [143]俞杨烽,康毅力,游利军.水膜厚度变化—特低渗透砂岩储层盐敏性的新机理[J].重庆大学学报,2011,34(4):67-71.
    [144]王淀佐,胡岳华.氢氧化物表面沉淀在石英浮选中的作用[J].中南矿冶学院学报,1990,21(3):248-253.
    [145]孙传尧,印万忠著.硅酸盐矿物浮选原理[M].北京:科学出版社,2001:74-124.
    [146]Arnarson T. S.and Keil R.G. Mechanisms of pore water organic matter adsorption to montmorillonite[J]. Marine Chemistry,2000,71:309-320.
    [147]Cram P.J. Wettability studies with non-hydrocarbon constituents of crude oil[R]. Petroleum recovery research inst. Research Report RR-17. Dec1972.
    [148]Amott E. Observations Relsting to the wettability of pock[J]. Trans.AIME,1959,216:156-162.
    [149]Buckley J.S., Liu Y and Xie X. Asphaltenes and crude oil wetting-the effect of oil composition[C]. SPE 35366, presented at the SPE/DOE Improved Oil Recovery Svmposium held in Tulsa, Apr 21-24, 1996.
    [150]Rashid S.H. Al-Maamari and Buckley J.S. Asphaltene precipitation and alteration of wetting:can wettability change during Oilproduction[C]. SPE 59292, presented at the 2000 SPE/DOE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, Apr 3-5,2000.
    [151]龚磊,吴健康.微通道液体流动双电层阻力效应[J].应用数学和力学,2006,27(10):1219-1225.
    [152]俞杨烽.特低渗透砂岩油层矿物/流体界面结构环境响应研究[D].成都:西南石油大学,2010.
    [153]杨正明.低渗透油藏渗流机理及其应用[D].廊坊:中国科学院渗流流体力学研究所,2004.
    [154]杨春梅,李洪奇,陆大卫,等.油田开发过程中的动电现象研究[D].地球物理学进展,2005,20(4):1140-1144.
    [155]刘德新,岳湘安,侯吉瑞,等.固体颗粒表面吸附水层厚度实验研究[J].矿物学报,2005,25(1):15-19.
    [156]徐绍良,岳湘安,侯吉瑞,等.边界层流体对低渗透油藏渗流特性的影响[J].西安石油大学学报(自然科学版),2007,22(2):26-28.
    [157]赵家军.超疏水表面微通道中滑移流动的实验研究与数值模拟[D].大连:大连理工大学,2006.
    [158]王玉亮.固液界面纳米气泡与基底相互作用研究及滑移长度测量[D].哈尔滨:哈尔滨工业大学,2009.
    [159]Finnemore E. John and Franzini Joseph B钱翼稷,周玉文译.流体力学及工程应用[M].北京:机械工业出版社,2005.
    [160]Ou Jia, Perot B., Rothstein J. P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids,2004,16 (12):4635-4643.
    [161]Choi Chang-Hwan, Westin K. J. A. and Breuer K. S. Apparent slip flowr in hydrophilic and hydrophobic microchannels[J]. Physics of Fluids,2003,15 (10):2897-2502.
    [162]康毅力.川西致密含气砂岩粘土矿物与底层损害研究[D].成都:西南石油大学,1998.
    [163]王行信,周书欣.砂岩储层粘土矿物与油层保护[M].北京:地质出版社,1992.
    [164]Mala Gh. Mohiuddin and Li Dongqing. Flow characteristics of water in microtubes[J]. International Journal of Heat and Fluid Flow,1999,20 (2):142-148.
    [165]Gamrat G., Favre-Marinet M., Le Person S., et al. An experimental study and modelling of roughness effects on laminar flow in microchannels. J Fluid Mech,2008,594:399-423.
    [166]Qu Weilin, Mala Gh. Mohiuddin, Li Dongqing. Pressure-driven water flows in trapezoidal silicon microchannels[J]. International Journal of Heat and Mass Transfer,2000,43 (3):353-364.
    [167]Koo Junemo and Kleinstreuer Clement. Liquid flow in microchannels:experimental observations and computational analyses of microfluidics effects[J]. J. Micromech. Microeng.,2003,13(5):568-579.
    [168]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [169]郭照立,郑楚光.格子Boltzmann方法的原理与应用[M].北京:科学出版社,2008.
    [170]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M].北京:科学出版社,2009.
    [171]陈媛.CSP器件的无损检测方法[J].环境技术,2010,28(3):29-31.
    [172]周敬.图像分割中阈值法的研究[J].机电技术,2010,33(1):39-41.
    [173]张顺康,侯健,李振泉,等.利用图像处理技术实现聚合物驱微观渗流图像的自动分割[J].石油大学学报(自然科学版),2005,29(3):75-78.
    [174]王晓东MEMS光刻仿真的三维重建与可视化研究[D].合肥:中国科技大学,2007.
    [175]李俊刚.改变岩石润湿性提高原油采收率机理研究[D].大庆:大庆石油学院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700