用户名: 密码: 验证码:
生物质合成气的组分调控技术及深度净化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是一种清洁的可再生能源,合理利用可缓解当前常规能源短缺和环境污染带来的压力。在中意国际科技合作项目-“生物质富氧气化关键技术研究”(2009DFA61500)的资助下,从拓展生物质气化技术应用领域的角度出发,试制了鼓泡床冷模试验台,并在此基础上研制了处理量为50kg/h的流化床气化试验系统;试验研究了不同气化条件对气化效果的影响;根据影响因素与气化效果的对应关系,选择合适的气化工艺来调控气化气的组分分布;研制生物质气化净化装置,完善生物质气化净化技术,提出生物质气化深度净化工艺;最后,试验研究了机动车燃用生物质气化气的行驶与排放特性以及不同条件对生物质合成气合成甲醇的影响因素。
     本文首先分析了生物质气化技术的应用现状。发现生物质气化集中供气和发电应用中氢气组分不宜过高,过高会引起爆燃现象;制氢要求燃气中尽可能多的产生氢气;合成液体燃料则要求燃气中H2和CO具有合适的化学当量比。因此,如何有效控制生物质气化气的组分组成是目前生物质气化技术面临的重大问题之一。另外,生物质气化气中含有焦油、硫化物、氮化物等杂质,在应用过程中造成各种各样的问题,优化生物质气化净化工艺,开发和研制新型、高效净化装置,有效去除燃气中的杂质,是生物质气化气走向市场的另一个关键技术。
     鼓泡流化床气化系统设计与调试。由于流化床气化炉具有气固两相接触充分,传热传质强烈,床层温度均匀,易于放大等特性被认为是最具开发前景的生物质气化反应装置之一。为确定相关参数,试制了有机玻璃冷模试验装置,通过冷模试验确定不同粒径物料的最小流化速度和布风板阻力特性。在选定最大进料速率为50kg/h的前提下,根据相似准则数原则,设计了鼓泡流化床气化系统,通过冷态试验和热态调试的方式研究系统运行的可靠性和稳定性。试验结果表明:开孔率为1%的布风板具有合适的阻力特性,布风均匀;粒径为0.38mm石英砂的最小流化速度为0.21m/s,粒径为0.83mm木屑的最小流化速度为0.13m/s,石英砂和木屑混合物的最小流化速度为0.16m/s;热态试验结果表明:鼓泡流化床气化系统运行正常,产出气热值较高(6200-6500kJ/m3),可连续稳定运行3h以上。
     为了掌握生物质气化影响因素,试验研究了反应温度、物料特性、气化介质、气化设备结构等对气化效果的影响。试验结果表明:当量比和反应温度是影响气化效果的主要因素。富氧气化是一种有效的生产中热值燃气的气化方式。加入水蒸气对气化效果的影响是正反两个方面的,一方面,有效提高的气化气中H2的含量;另一方面,水蒸气的加入致使床内温度下降较快,不利于气化反应的进行。不同物料特性和炉型结构对气化产出气组分分布有较大的影响。富氧-水蒸气气化是一种比较接近制取合成气的气化工艺。
     根据不同影响因素对气化气组分分布的影响,提出了固定床高当量比生物质氧气气化制取中热值气化气和鼓泡流化床生物质氧气-水蒸气气化制取合成气试验研究。固定床生物质高当量比氧气气化试验表明:随着当量比从0.31增加到0.4,反应温度、碳转化率和气体产率均逐渐升高,而产出气热值逐渐降低,但保持在10MJ左右。通过提高当量比来提高反应温度的方法,可有效降低产出气中焦油的含量。反应温度达到1075℃时,是脱除焦油的一个重要温度参考点。流化床生物质氧气-水蒸气气化试验表明:用外部热源加热的方法提高反应温度,有效提高了H2和CO含量,H2/CO值变化较小。随着二次风比率的逐渐增加,H2和CO2含量逐渐升高,CO、CH4和CnHm含量逐渐降低,焦油含量从1210mg降低到38mg,脱焦效果明显。在试验范围内,当量比为0.34,S/B为1.7时,合成气中H2/CO达到最大值,为1.593。
     由于生物质合成气对净化要求较高,重点考察了焦油热裂解、物理脱氮、催化脱氯和脱硫技术,并提出深度净化工艺。试验结果表明:随着裂解温度的升高,焦油裂解气中H2的含量明显增加,CH4、C2H6、C2H4等脂肪烃的含量逐渐降低,而CO和CO2的含量呈振幅较小、趋势大致相反的波形变化,焦油裂解产气率明显增加,在1000℃时可达79.03%。经过硅胶过滤器后,合成气中NH3和HCN的含量分别为0.32ppm和0.17ppm。以LG-02脱硫剂脱硫后,合成气中H2S和CS2含量均为0,COS含量为46ppb。在试验的基础上,设计了生物质合成气深度净化工艺,为生物质基气化合成气的制备提供了技术支持。
     试验研究了机动车燃用生物质气化气的行驶与排放特性。结果表明:相同条件下,燃用生物质空气气化气行驶里程是富氧气化气的1/3,燃用生物质富氧气化气的行驶里程是天然气的1/3;其动力性、加速性能和最大速度与天然气有较大差距。燃料(气体成分)变化对机动车尾气中CO排放影响较小。过量空气系数λ对CO的排放量具有决定性作用。以生物质空气气化气作为发动机燃料时,HC排放量较低,以生物质富氧气化气作为发动机燃料时,HC排放量较高。使用生物质空气气化气和富氧气化气作为燃料时,NOx排放规律截然不同,说明燃料类型(组分变化)对NOx排放起决定性作用。使用两种不同组分生物质气化气作为车用燃料时,其尾气排放污染物量均远远低于汽油,是一种清洁、可再生的代用燃料。
     对比研究了配气(纯H2和纯CO)和生物质合成气作为原料气制取甲醇的影响因素。结果表明:在试验范围内,配气和生物质合成气合成甲醇的最佳温度分别为250℃和255℃。在反应温度和空速不变的情况下,随着反应压力升高,甲醇的时空收率和CO转化率均逐渐升高,CO2转化率逐渐降低。配气和生物质合成气的最大甲醇时空收率分别82%和47%。在反应温度和压力不变的情况下,随着时空速率升高,甲醇的时空收率逐渐升高,CO转化率逐渐降低,CO2转化率和液相产物中甲醇的选择性变化不明显。
Biomass is a kind of clean and renewable energy, rational utilization of which is aneffective method for relieving the pressures of conventional energy resources shortage andserious environment pollution. To expand the utilization of biomass gasification, Funded bySino-Italian cooperation program: Key technology research of Biomass oxygen richgasification (2009DFA61500), a cold bubbling fluidized bed, a fluidized bed gasificationsystem of which maximum capacity is50kg/h, the effect of different gasification conditionson results, regulating and controlling the gas compositions through selective appropriate craft,developing product gas decontamination plant, completing product gas cleaning technology,coming up with product gas deeply cleaning craft, performance and emission of vehiclefueled with product gas and the effect of different conditions on methanol were studied in thepresent paper.
     The application and research status of biomass gasification technologies were firstlyinvestigated in the thesis. It is founded that there are some problems in biomass gasificationfor application, such as CO content is too high while CH4content is too low in biomassgasification for fuel gas; H2content is too high to detonation in the engine in biomassgasification power plant; H2selectivity is too low in biomass gasification for hydrogen;H2/CO volume ratio is too low in biomass gasification to methanol. All in all, how to regulateand control the compositions of product gas is one of the most important problems in biomassgasification technology. Moreover, there are some kinds of impurities in product gas, such assolids, tar, NOx, NH3, HCN, HCL, SOx, H2S, C2S and so on, to which lead some kinds ofproblems in application. Therefore, optimizing product gas cleaning crafts and developingnew effectively cleaning devices to strip the impurities is a key technology for product gasapplication.
     Due to advantages of excellent gas-solid mixing, uniform bed temperature, intensivemass and heat transfer and easy scale-up, fluidized bed gasifier is thought as one of the mostpromising reactors. It is necessary to design and produce a fluidized bed gasification systemto solve the problems about which are talked above. In order to get the parameters of fluidizedbed, a cold model was trial-produced with organic glass firstly and series of cold experimentswere carried out to measure the minimum fluidized velocity on different diameters of solidsand get the pressure drop of distributor. Then combining the results of cold experiment withselecting feed rate50kg/h, the parameters of bubbling fluidized bed system are calculated.Ruled by similarity principal, a bubbling fluidized bed system is produced. Aimed at testingthe reliability and stability of the system, cold test and hot debugging were carried out. Theresults as follows: the aperture ratio of distributor is1%, which gets adaptable pressure dropand distributes well; the minimum velocity of quartz sand (0.38mm), sawdust (0.83mm), themixture of quartz sand quartz sand sawdust is0.21m/s,0.13m/s,0.16m/s, respectively; through 3h running, it is indicated that the bubbling fluidized bed system is reliable and stable; the lowheating value of product gas is between6200kJ/m3and6500kJ/m3.
     Design experiment for mastering the effect of different conditions on biomassgasification, which mainly investigates the react temperature, the characters of feedings,gasification agent, the structure of reactors and so on. It is founded that equivalence ratio andreact temperature is a key factor on gasification result; biomass oxygen rich gasification is aeffective way to produce medium heating value product gas; the effect of using steam ongasification is pros and cons, on the one hand, it is obvious to increase the H2content, on theother hand, it makes the react temperature decrease which is disadvantage to gasification; thecharacters of feedings and structure of reactors are both important factors on product gascomposition; compared with other gasification agent, steam-oxygen rich biomass gasificationis a reliable way to make up syngas.
     Based on the effect of different factors on product gas composition, the fixed bed gasifierhigh equivalence ratio biomass oxygen gasification for medium heating value product gas andthe bubbling fluidized bed oxygen-steam gasification for syngas were designed. The fixed bedexperimental results show that the react temperature, carbon conversion and gas yield allincrease, while the low heating value decrease, with the equivalence ratio increase from0.31to0.4; via increase equivalence ratio to increase react temperature is a effective way todecrease the tar content,1075℃is an important point on tar desorption. The fluidized bedexperimental results show that both H2and CO content increase, while H2/CO ratio is changelittle with the input of external heat; H2and CO2content increase, while CO, CH4and CnHmdecrease, and tar content decrease from1210mg to38mg, with the increase of secondary flowrate; when the equivalence ratio is0.34, the steam to biomass ratio is1.7, the H2/CO ratio ofproduct gas is1.593, which is the maximum one in the trial stretch.
     Because of the high cleaning demand of biomass syngas for methanol, the tar cracking,physical denitrification, chemical dechlorination and desulfuration are investigated mainly inthis chapter. The experimental results indicate that H2content in tar cracking gases increasesquickly, while CH4、C2H6、C2H4content decreases slowly, CO and CO2content changes littlebut getting the opposite trend, the yield rate of tar cracking increase sharply and cracking rateis79.03%at1000℃,with the cracking temperature increas;using silica gel as filter materialto denitrification, the NH3and HCN content is0.32ppm and0.17ppm in the product gas,respectively; using LG-02as catalyst to desulfuration, the H2S and CS2content is0,the COScontent is46ppb in the product gas; based on the experimental results, a product gas deeplycleaning craft is designed, which supplies technical support for biomass gasified syngas.
     Performance and emission of vehicle fueled with gasified biomass gas is carried out toinvestigate the dynamic property and emission features. The product gases derived from airand oxygen rich biomass gasification were used as the vehicle fuel for testing the runningperformance and its emission behavior. The results were as following: under the same roadcondition and for the same vehicle, the kilometers of travel with air gasification producer gas as fuel were one third of that with oxygen rich gasification producer gas as fuel, and thekilometers of travel with oxygen rich gasification producer gas as fuel were one third of thatwith CNG as fuel; the producer gas composition had little influence on the carbon monoxideemission in the exhaust gas, but the excess air ratio had crucial impact on the carbonmonoxide emission; with air gasification producer gas as fuel, the content of the hydrocarbonsin the exhaust gas was lower, and it was higher when being with oxygen rich gasificationproducer gas as fuel, for both fuel gases, the content of the hydrocarbons had the sametendency of increasing along with the increasing of the RPM of the engine; the producer gascomposition had definite influence on the NOxemission in the exhaust gas, meanwhile, thetemperature was the dominating factor of the thermal NOxemission. The results showed thatthe biomass gasification producer gas could be a kind of clean and renewable substitute fuel.
     Design match experiments for mastering the effect of synthesis (H2and CO) and syngason synthetic methanol. The experiment results show that the optimum temperature ofsynthesis and syngas for methanol is250℃and255℃, respectively; under the sametemperature and for the same space velocity, the space-time yield of methanol and conversionof CO increase, while the conversion of CO2decrease, with the increase of react pressure; themaximum space-time yield of synthesis and syngas is82%and47%, respectively; under thesame temperature and for the same react pressure, the space-time yield of methanol increase,while the conversion of CO decrease, the conversion of CO2and the selectivity of methanol inliquid-phase production change little, with the increase of space velocity increase.
引文
1.鲍振博,靳登超,刘玉乐.2011.生物质气化中焦油的产生及处理方法.农机化研究,8:172-176.
    2.蔡进,李涛,孙启文,等.2008.气固流化床固体浓度分布的冷模研究.过程工程学报,8(5):839-844.
    3.岑可法,姚强,骆仲泱,等.2008.燃烧理论与污染控制.北京:机械工业出版社.
    4.常杰,吕鹏梅,王铁军,等.2003.生物质催化制氢机理研究.21世纪太阳能新技术,774-777.
    5.常杰,吕鹏梅.2007.生物质催化气化制氢研究及其技术经济分析.第八届全国氢能学术会议.
    6.陈冠益,方梦祥,骆仲泱,等.1998.稻壳与石英砂及煤粒的流化与混合特性研究.热能动力工程,13(77):321-324.
    7.陈冠益,等.2006.生物质气化技术研究现状与发展.煤气与热力,26(7),20-21.
    8.陈平.2006a.生物质流化床气化机理与工业应用研究.中国科学技术大学.
    9.陈平,谢军,阴秀丽,等.2006b.木屑在鼓泡流化床和循环流化床中气化特性的对比研究.燃料化学学报,34(4):417-421.
    10.陈平,阴秀丽,周肇秋,等.2007.MW级生物质气化发电站运行特性分析.太阳能学报,28(4):389-393.
    11.陈祎,段佳,林鹏,等.2008.氧量对典型生物质燃烧特性的影响.中国电机工程学报,28(2):43-48.
    12.程至远,解建光.2000.内燃机排放与净化.北京:北京理工大学出版社.
    13.崔永章,孙玉泉,吴云昌.2002.秸秆燃气净化技术.农村能源,1:25-27.
    14.冯波,刘皓,袁建伟,等.1996a.鼓泡流化床煤燃烧中燃料氮转化的研究(I)影响因素.煤炭转化,19(1):82-87.
    15.冯波,刘皓,袁建伟,等.1996b.鼓泡流化床煤燃烧中燃料氮转化的研究(Ⅱ)机理解释.煤炭转化,19(2):25-29.
    20.冯元琦.1994.联醇生产.北京:化学工业出版社.
    21.关宇,郭烈锦,张西民,等.2006.生物质模型化合物在超临界水中的气化.化工学报,57(6):1426-1431.
    22.郭飞强,董玉平,董磊.2011.主动配气下生物质气化焦油热裂解特性试验.农业机械学报,42(7):135-138.
    23.郭建维,宋晓锐,崔英德.2001.流化床反应器中生物质的催化裂解气化研究.燃料化学报,29(4):319-322.
    24.郭庆杰,张凯,张继宇,等.1999.生物质和惰性颗粒二组分混合物的最小流化速度.煤炭转化,22(1):92-96.
    25.郭秀兰,赵月春,黄鹤.2004.生物质催化气化合成甲醇.能源工程,1:28-31.
    26.韩振波,鲍亦龄,吴文渊,等.1995.生物质与媒体混合系统的临界流化速度.节能技术,6:10-13.
    27.贺业光.2009.秸秆与煤混合燃烧及氮氧化物析出特性研究.沈阳航空工业学院.
    28.何珍,吴创之,赵增立.2006.1MW循环流化床生物质气化发电系统的碳循环.太阳能学报,27(3):230-236.
    29.侯斌,吕子安,李晓辉.2001.生物质热解产物中焦油的催化裂解.燃料化学学报,29(1):70-75.
    30.胡建军,李在峰,徐广印.2004.秸秆燃气净化装置的研制.河南农业大学学报,38(1):105-110.
    31.黄立成,马隆龙,周肇秋,等.2008.隔板式内循环流化床的流动特性研究.太阳能学报,29(7):900-904.
    32.冀承猛,郭烈锦,吕友军,等.2007.木质素在超临界水中气化制氢的实验研究.太阳能学报,28(9):961-966.
    33.蒋剑春,应浩,戴伟娣,等.2004.生物质流态化催化气化技术工程化研究.太阳能学报,25(5):678-684.
    34.蒋剑春,沈兆邦.2003.生物质热解动力学的研究.林产化学与工业,23(4):1-6.
    35.姜圣阶.1978.合成氨工学.第二版.北京:石油化学工业出版社.
    36.金亮,童瑞明,周劲松.2010.生物质燃气焦油产率及其净化.农业工程学报,26(增2):259-263.
    37.金涌,祝京旭,汪展文,等.2001.流态化工程原理.北京:清华大学出版社,57-66.
    38.靳志宏.2007.浅谈CFB锅炉布风板阻力的重要性.河北煤炭,5:40-41.
    39.李刚.2005.生物质气化过程中氮污染物形成机理研究.天津大学.
    40.李继红,雷廷宙,宋华民.2005. GC/MS法分析生物质焦油的化学组成.河南科学,23(1):41-43.
    41.李书灿.1989.流化床多孔布风板的实验研究.工业炉,1:13-16.
    42.李永玲,吴占松.2009.催化裂化条件对处理生物质热解焦油的影响.清华大学学报(自然科学版),49(2):24-27.
    43.铃木勉.2000.生物质的能量转化及催化剂技术.触媒,42(7):521-525.
    44.刘宝亮,蒋剑春,岳金方.2007.细颗粒木屑在鼓泡流化床中流化速度的研究.可再生能源,25(4):38-39.
    45.刘建禹,陈荣耀.1992.生物质直接燃烧过程中的理化分析.北京:中国科学技术出版社.
    46.刘竞,马晓茜.2008.微藻气化发电生命周期评价及碳循环分析.太阳能学报,29(11):1414-1418.
    47.鲁皓,付严,常杰.2005.生物质合成气一步法合成二甲醚的在线分析系统.分析测试学报,24(3):41-44.
    48.骆仲泱,张晓东,周劲松.2004.生物质热解焦油的热裂解与催化裂解.高效化学工程学报,18(2):162-167.
    49.吕鹏梅,常杰,熊祖鸿,等.2002.生物质废弃物催化气化制取富氢燃料气.煤炭转化,25(3):32-36.
    50.吕鹏梅,常杰,熊祖鸿等.2003a.生物质在流化床中的空气-水蒸气气化研究.燃料化学学报,32(4):305-310.
    51.吕鹏梅,熊祖鸿,王铁军,等.2003b.生物质流化床气化制取富氢燃气的研究.太阳能学报,24(6):758-764.
    52.吕鹏梅,熊祖鸿,常杰,等.2003c.生物质催化气化制取富氢燃气的研究.环境科学进展,4(12):1-4.
    53.吕鹏梅,常杰,付严,等.2004.生物质流化床催化气化制取富氢燃气.太阳能学报,25(6):769-775.
    54.吕友军,郭烈锦,郝小红,等.2004.锯木屑在超临界水中气化制氢过程的主要影响因素.化工学报,55(12):2060-2066.
    56.吕友军,冀承猛,郭烈锦.2005.农业生物质在超临界水中气化制氢的实验研究.西安交通大学学报,39(3):238-242.
    57.吕友军,张西民,冀承猛.2006.玉米芯在超临界水中气化制氢实验研究.太阳能学报,27(4):335-339.
    58.吕友军,郭烈锦,张西民,等.2009a.生物质超临界水流化床气化制氢系统与方法研究.工程热物理学报,30(9):1521-1524.
    59.吕友军,金辉,郭烈锦,等.2009b.生物质在超临界水流化床系统中部分氧化气化制氢.西安交通大学学报,43(1):5-9.
    60.吕友军,金辉,郭烈锦,等.2009c.原生生物质在超临界水流化床系统中气化制氢.西安交通大学学报,43(2):111-115.
    61.马隆龙,吴创之,孙立,等.2003.生物质其化技术及其应用.北京:化学工业出版社.
    62.毛燕东.2008.固定床中生物质气化过程研究.天津大学.
    63.孟凡彬,杨天华,刘建坤,等.2008.秸秆成型燃料气化气作为车载燃料的试验研究.可再生能源,8(6):8-51.
    64.孟凡生,阴秀丽,蔡建渝,等.2007.我国低热值燃气内燃机的研究现状.内燃机,3:46-49.
    65.孟凡生,阴秀丽,蔡建渝,等.2008.燃用生物质气化气的内燃机特性分析.农业工程学报,24(8):104-108.
    66.彭辉,张济宇.1996.单组分球形颗粒最小流化速度的简便计算.化学工业与工程,1:31-34.
    67.秦有方,陈士尧,王文波.1997.车辆内燃机原理.北京:北京理工大学出版社.
    68.任辉,张荣,王锦凤,等.2003.废弃生物质在超临界水中转化制氢过程的研究.燃料化学学报,31(6):595-599.
    69.任秀蓉,张宗友,常丽萍.2007.气体净化中的硫化氢脱除技术研究.洁净煤技术,13(6):70-73.
    70.任永志,崔亨哲,郭军,等.2006.生物质气化发电机组中内燃机的运行特性分析.可再生能源,2:19-22.
    71.宋维端,肖任坚,房鼎业.1991.甲醇工学.北京:化学工业出版社.
    72.宋新朝,王志锋,孙东凯,等.2005.生物质与煤混合颗粒流化特性的试验研究.煤炭转化,28(1):74-77.
    73.苏德仁,周肇秋,谢建军,等.2011.生物质流化床富氧-水蒸气气化制备合成气研究.农业机械学报,42(3):100-104.
    74.孙琦,张玉龙,马艳,等.1997.CO2/H2和(CO/CO2)+H2低压合成甲醇催化剂过程的本质.高等学校化学学报,18(7):1131-1135.
    75.孙晓波,锥廷亮,许庆利.2006.秸秆气合成燃料甲醇.化学工业与工程,23(3):232-235.
    76.孙晓轩.2007.生物质气化合成甲醇二甲醚技术现状及展望.中外能源,4:29-36.
    77.孙洋,杨天华,刘耀鑫,等.2009.气化介质对生物质多子L床料流化床气化产气特性的影响.燃料化学学报,37(1):119-123.
    78.孙云娟,蒋剑春.2006.生物质气化过程中焦油的去除方法综述.生物质化学工程,40(2):31-35.
    79.万仁新.1995.生物质能工程.北京:中国农业出版社.
    80.王磊,沈胜强,师新广,等.2007.生物质气化过程中燃料氮迁移影响因素实验研究.太阳能学报,28(12):1365-1369.
    81.王素兰,张全国,李继红.2006.生物质焦油及其馏分的成分分析.太阳能学报,27(7):647-651.
    82.王铁军,常杰,祝京旭.2003a.生物质合成燃料二甲醚的技术.化工进展,22(11):1156-1159.
    83.王铁军,常杰,吴创之.2003b.生物质气化焦油催化裂解特性.太阳能学报,24(3):376-379.
    84.王铁军,常杰,吴创之.2003c.生物质焦油裂解催化剂制备及其催化裂解性能.煤炭转化,26(1):89-93.
    85.王铁军,常杰,祝京旭,等.2004.生物质气化重整合成二甲醚.燃料化学学报,32(3):297-300.
    86.王铁军,常杰,吕鹏梅,等.2005.生物质热化学转化合成二甲醚.过程工程学报,5(3):277-280.
    87.汪俊锋,常杰,阴秀丽,等.2005生物质气催化合成甲醇的研究.燃料化学学报,33(1):58-61.
    88.吴创之,阴秀丽,徐冰燕,等.1997.生物质富氧气化特性的研究.太阳能学报,18(3):237-242.
    89.吴创之,吴正舜,郑舜鹏,等.2003a.1MW木粉气化发电系统的运行测试研究.太阳能学报,24(4):531-535.
    90.吴创之.2003b..生物质气化发电技术讲座.生物质燃气净化技术,4:55-56.
    91.吴创之,周肇秋,马隆龙,等.2009.生物质气化发电项目经济性分析.太阳能学报,30(3):368-373.
    92.吴桂英,杜爱月,张锴,等.2011.生物质及其与惰性颗粒双组分体系的流化特性.生物质化学工程,45(1):15-20.
    93.吴正舜,吴创之,马隆隆,等.2003a.1MW木粉气化发电系统的运行特性分析.太阳能学报,24(3):390-393.
    94.吴正舜,吴创之,郑舜鹏,等.2003b.4MW级生物质气化发电示范工程的设计研究.新能源及工艺,3:14-17.
    95.吴正舜,等.2010.生物质气化过程中焦油形成机理的研究.太阳能学报,31(2):233-236.
    96.武海英,等.2008.裂解气相色谱——质谱法研究生物质焦油热解特性.河北建筑工程学院学报,26(4),84-85.
    97.武海英,等.2009.质谱法分析生物质焦油的热裂解成分.石油与天然气化工,38(1),73-74.
    98.小林由则,加幡达雄,前田隆之,等.2001.生物质气化制造甲醇体系的开发.三菱重工季报,38(2):108-111.
    99.徐鑫,陈雷,张晓东.2009.生物质焦油模型化合物催化转化实验研究.燃料化学学报,37(2):248-251.
    100.许玉,蒋剑春,应浩,等.2009.3000kW生物质锥形流化床气化发电系统工程设计及应用.生物质化学工程,43(6):1-6.
    101.杨宽利,王其成,张锴,等.2008.石油化工高等学校学报.,21(3):5-8.
    102.阴秀丽,吴创之,郑舜鹏,等.2000.中型生物质气化发电系统设计及运行分析.太阳能学报,21(3):307-312.
    103.阴秀丽,常杰,汪俊锋,等.2003.由生物质气化方法制取甲醇燃.煤炭转化,26(4):26-30.
    104.阴秀丽,常杰,汪俊锋,等.2004.生物质气化制甲醇的关键技术和可行性分析.煤炭转化,27(3):17-22.
    105.阴秀丽,常杰,汪俊锋,等.2005.生物质合成气合成甲醇.太阳能学报,26(4):518-522.
    106.原晓华,马隆龙,陈平,等.2005.生物质在隔板式内循环流化床中的气化.太阳能学报,26(6):743-746.
    107.张丽娟,叶泽月,李涛,等.2009.鼓泡床反应器中气泡尺寸和速率分布的实验研究.华东理工大学学报(自然科学版),35(3):333-338.
    108.张全国,等.2002.农作物秸秆类生物质焦油燃料利用特性的实验研究.热科学与技术,1(2):155-158.
    109.张荣乐,李国辉,周敬来.2000.生物质基合成气的净化.煤炭转化,23(3):85-88.
    110.张希良,陈荣,何建坤.2004.中国生物质气化发电技术的商业化分析.太阳能学报,25(4):557-560.
    111.张喜通,谭天伟,常杰,等.2005.生物质合成气调变方式对其合成甲醇的影响.过程工程学报,5(5):535-539.
    112.张喜通,常杰,王铁军,等.2006.Cu-Zn-Al-Li催化生物质合成气合成甲醇.过程工程学报,6(1):104-107.
    113.张晓东.2003.生物质热解气化及热解焦油催化裂解机理研究.杭州:浙江大学热能工程研究所.
    114.张晓东,骆仲泱,周劲松.2004.焦油催化裂化催化剂积炭失活的实验研究.燃料化学学报,32(5):542-546.
    115.张晓东,周劲松,骆仲泱.2005.催化裂化生物质焦油构成变化.燃料化学学报,33(5):582-585.
    116.张亚男,肖军,沈来宏.2009.串行流化床稻秸气化合成甲醇的模拟.中国电机工程学报,29(32):103-111.
    117.张颖,邹东雷,周游.1994.双组分颗粒系统的最小流化速度.内蒙古工业大学学报,2(13):35-41.
    118.赵先国,常杰,吕鹏梅,等.2005.生物质流化床富氧气化的实验研究.燃料化学学报,33(2):199-204.
    119.赵先国,常杰,吕鹏梅等.2006.生物质富氧—水蒸气气化制氢特性研究.太阳能学报,27(7):677-681.
    120.郑舜鹏,吴创之,阴秀丽,等.2000.1MW循环流化床谷壳气化发电装置的运行及经济性分析.太阳能学报,21(2):140-144.
    121.周劲松,王铁柱,骆仲泱,等.2003.生物质焦油的催化裂解研究.燃料化学学报,31(2):144-148.
    122.周祖光.2006.汽车尾气的产生机理与净化技术.中国环境科学学会学术年会优秀论文集,2441-2444.
    123.朱灵峰,范彩铃,梁庚白,等.2004a.生物质合成气制甲醇的研究.郑州大学学报(理学版),36(3):76-79.
    124.朱灵峰,张百良,梁庾白,等.2004b.秸秆类生物质催化合成甲醇的实验研究.可再生能源,(4):12-15.
    125.朱灵峰,杜磊,张杰,等.2006.生物质合成甲醇的影响因素研究.河南农业大学学报,40(6):653-656.
    126.朱灵峰,杜磊,王永豪.2007.秸秆燃气合成甲醇的热力学试验研究.河南农业大学学报,41(6):707-710.
    127. Ali Kaupp. State of the art for small scale gas producer-engine systems.The Biomass EnergyFoundation Press
    128.Antal Jr.2000.Biomass gasification in supercritical water.I&Ec Research,11:4040.
    129. A.V.Bridgwater, A.J.Toft, J.G.Brammer.2002.A techno-economic comparison of power production bybiomass fast pyrolysis with gasification and combustion.Renewable and sustainable energy review,6:181-248.
    130. A.VBridgwater.2003.Renewable fuels and chemicals by thermal Processing of biomass. ChemicalEngineering Journal,91:87-102.
    131. A.Williams, M.Pourkashanian, J.M.Jones.2001. Combustion of pulverized coal and biomass.Progressin energy and combustion science,27:587-610.
    132. Aznar M.P., Cabalerro M.A., Gil J.1997a.Hydrogen by biomass Gasification with Steam-O2Mixturesand Steam Reforming and Co-shift Catalytic Beds Downstream of the Gasifier,Making a Business fromBiomass in Energy,Environment Chemicals,Fibers and Materials.Proceedings of3rd Biomass Conferenceof the Americas,Montreal,Quebec,Canada,1:24-29.
    133. AZNAR M P, CORELLA J, GIL J, et al.1997b.Biomass Gasification with Steam and OxygenMixtures at Pilot Scale and with Catalytic Gas Upgrading Part I: Performance of the Gasifier.InDevelopments in Thermochemical Biomass Conversion.London: Blackie,1194-1208.
    134. Baker E G, Mudge L K, Wilcox W A.1982. Catalysis of gas phase reactions in steam gasification ofbiomass. Fundam Thermochem Biomass Convers,863-874.
    135. Baker E G, Brown M D.1984a.Catalytic steam gasification of bagasse for the production ofmethanol.Energy Biomass Wastes,8:651-674.
    136. Baker E G, Lyiek Mudge, Don H. Mitchell.1984b.Oxygen/steam gasification of wood in a fixed-bedgasifierInd Eng Chem Process Des Dev,23(4):725-728.
    137. BEENACKERS A A C M, MANIATIS K.1996.Gasification Technologies for Heat and Power fromBiomass.In: Proceedings of Biomass for Energy and Environment. Nineth European bioenergy,1:1228-1259.
    138. BENTZEN J D, HUMMELSHOJ R M, ELMEGAARD B, et al.2000.Low Tar and High EfficientGasification Concept.In:Proceedings of the Conference ECOS.University of Twente, Nederlands,97-108.
    139. Boerrigter, H., Uil, H. den, Calis, H.-P.2003. Green diesel from biomass via Fischer-Tropsch synthesis:new insights in gas cleaning and process design, in: Pyrolysis and Gasification of Biomass and Waste,Bridgewater, A.V.(ed.), CPL press, Newbury, United Kingdom,371-383.
    140. BRANDT P, HENRIKSEN U.1996.Decomposition of Tar in Pyrolysis Gas by Partial Oxidation andThermal Craking. In Proceedings of the Ninth European Bio-energy Conference, Kopenhagen,6:1336-1340.
    141. BRANDT P, HENRIKSEN U.1998.Decomposition of Tar in Pyrolysis Gas by Partial Oxidation andThermal Cracking. Part2.In: Kopetz H, editor. Proceedings of the International Conference:10th EuropeanConference and Technology Exhibition, Würzburg,1616-1619.
    142. BRANDT P, ULRIK HENRIKSEN.2000.Decomposition of Tar in Gas from Updraft Gasifier byThermal Cracking. In: Proceedings of the First World Conference on Biomass for Energy and Industry,Seville, Spain,572-579.
    143. BRIDGWATER A V.1995.The Technical and Economic Feasibility of Biomass Gasification for PowerGeneration.Fuel,74:631-653.
    144. Buljit Buragohain, Pinakeswar Mahanta, Vijayanand S.Moholkar.2010.Biomass gasification fordecentralized power generation:The Indian perspective.Enewable and Sustainable EnergyReviews,14:73–92.
    145. Chen Ping, Xie Jun, Yin Xiuli, et al.2006.Comparison of sawdust gasification in bubbling fluidizedbed gasifier and circulating fluidized bed gasifier. Journal of fuel chemistry and technology,34(4):417-421.
    146. Chuangzhi Wu,Xiuli Yin,Longlong Ma,etal.2009.Operational characteristics of a1.2-MW biomassgasification and power generation plant.Biotechnology Advances,27:588-592.
    147.COLL R, SALVADO J, FARRIOL X, et al.2001.Reforming Model Compounds of BiomassGasification Tars: Conversion at Different Operating Conditions and Tendency towards CokeFormation.Fuel Process Technol,74:19-31.
    148. COLOMBA D B.2002.Modeling Intra-and Extra-Particle Processes of Wood Fast Pyrolysis. AICHEJ,48:2386-2397.
    149. Courson C, Udron L, Petit C.2002.Hydrogen production from biomass gasification on nickel catalyststest for dry reforming of methane.Catalysis Today,76(1):75-86.
    150. Cummer Keith R, Broown Robert C.2002.Ancillary equipment for biomass gasification.Biomass andBioenergy,23:113-128.
    151.C.Z. Wu, H.Huang,S.P. Zheng,etal.2002.An economic analysis of biomass gasification and powergeneration in China.Bioresource Technology,83:65–70.
    152. Dayton D.2002. A review of the literature on catalytic biomass tar report destruction.NERL, Milestonecompletion report.
    153. DEMIRBA A.2002.Gaseous Products from Biomass by Pyrolysis and Gasification: Effects of Catalyston Hydrogen Yield.Energ Convers Manage,43:897-909.
    154. Franco C, Pinto F, Gulyurtlu I, Cabrita I.2003.The study of reactions influencing the biomass steamgasification process. Fuel,82(7):835-842.
    155.Garcia L,Salvador M.L.,Arauzo J.,et al.2001.CO2as a gasifying agent for gas production from pinesawdust at temperatures using a Ni/Al coprecipitated catalyst.Fuel Processing Technology,69:157.
    156. Gil J, Aznar MP, Caballero MA.1997.Biomass gasification in fluidized bed at pilot scale with steamoxygen mixtures. Product distribution for very different operating conditions. Energy fuels,11(6):1109-1118.
    157. Gil J, Corella J, Aznar M.1999.Biomass gasification in atmospheric and bubbling fluidized bed: effectof the type of gasifying agent on the product distribution.Biomass and Bioenergy,17:389-403.
    158. Ginowa, T.Inoue, S.1999.Hydrogen production from biomass by catalytic gasification in hotcompressed water.Renewable Energy,16:1114.
    159. Gordillo G, Annamalai K.2010. Adiabatic fixed bed gasification of dairy biomass with air and steam.Fuel,89(2):384-391.
    160. Goyal H B, Seal D, Saxena R C.2008.Bio-fuels from thermochemical conversion of renewableresources:a review.Renewable and Sustainable Energy Reviews,12(2):504-517.
    161. H.Boerrigter, H.P.Calis, D.J.Slort.2004. Gas Cleaning for Integrated Biomass Gasification andFischer-Tropsch Systems.
    162. HEPOLA J, MCCARTY J, KRISHNAN G, et al.1999.Elucidationof Behavior of Sulfur onNickel-Based Hot Gas Cleaning Catalysts.Appl Catal B: Environ,20:191-203.
    163. HONG G T, SPRITZER M H.(2004).Supercritical water oxidation. http:∥www. doe.gov/.
    164. HOUBEN M P.2004.Analysis of Tar Removal in a Partial Oxidation Burner.Netherlands: EindhovenUniversity of Technology.
    165. HOUBEN M P, De LANGE H C, VAN STEENHOVEN A A.2005. Tar Reduction Through PartialCombustion of Fuel Gas.Fuel,84:817-824.
    165. IWAKI H, SHUFENG YE.2004.Wastepaper Gasification with CO2or Steam Using Catalysts ofMolten Carbonates. Appl CatalA: Gen,270:237-243.
    166. Janqswang W, Klimanek A, Gupta AK.2006. Enhanced yield of hydrogen from wastes using hightemperature steam gasification.Journal of Energy Resources Technology,128:179-185.
    167. JAVIER Gil, MIGUEL A Caballero, JUAN A Martin, et al.1999.Biomass gasification with air in afluidized bed: effect of the in-bed use of dolomite under different operation conditions. Ind Eng Chem Res,38(11):4226-4235.
    168.Jennen T,Hiller R,Koneke D,Weinspach P-M.1999.Modeling of gasification of wood in a circulatingfluidized bed.Chemical Engineering Technology,22(10):822-826.
    169.J.G.Brammer, A.V.Bridgwater.2002.The influence of feedstock drying on the performance andeconomics of a biomass gasifier engine CHP system.Biomass and bioenergy,22:271-281.
    170.JIN G, IWAKI H, ARAI N, et al.2005.Study on the Gasification of Wastepaper/Carbon DioxideCatalyzed by Molten Carbonate Salts.Energy,30:1192-1203.
    171. JOHANSON N W, SPRITZER M H, HONG G T, etal.(2006).Supercritical water partial oxidation.http:∥www.doe.gov/.
    172. Jose corella et al.1998.Biomass gasification with air in fluidized bed: reforming of the gascomposition with commercial steam reforming eatalysts Ind Eng Chem Res,37:4617---4626.
    173.Kentaro Umeki, Kouichi Yamamoto, Tomoaki Namioka,et al.2010.High temperature steam-onlygasification of woody biomass. Applied Energy,87:791–798.
    174. Kinoshita, C.M., Wang. Y., Zhou J,1995.Effect of reformer conditions on catalytic reforming ofbiomass gasification tars.I&EC Research,34:2949-2954.
    175. Kinya Sakanishi, Toshiaki Hanaoka, Kotetsu Matsunaga.2008. Removal of H2S and COS derivedfrom woody biomass gasification using garbonaceous materials.
    176.Klier K, Chatikavanij V, Herman R G, et al.1982.Catalytic Synthesis of Methanol from CO/H2IV. TheEffects of Carbon Dioxide.J.Catal,74:343-360.
    177. K.Maniatis.2002. Progress in biomass gasification: An overview. EC report.
    178. Kumar A, Eskridge K, Jones DD, Hanna MA.2009. Steam-air fluidized bed gasification of distillersgrains: effects of steam to biomass ratio, equivalence ratio and gasification temperature. BioresouresTechnology,100(6):2062-2068.
    179. Lemasle, Chrysostome.1985. Syngas production from wood by oxygen gasification underpressure.Ind Ceram,795:434-437.
    180. Lemasle J M.1983. Methanol from wood. Process Biomass,151-157.
    181.Ligang Wei,Shaoping Xu,Li Zhang.2007.Steam gasification of biomass for hydrogen-rich gas in afree-fall reactor.International Journal of Hydrogen Energy,32(1):24-31.
    182. Lu X, Sakoda A.2000.Decomposition of cellulose by continuous near—critical waterreactions.Chinese J.Chem.Eng,8(4):321.
    183. Lv Pengmei, Chang jie, Xiong Zuhong,et al.2003a.Biomass air-steam gasification in a fluidized bed toproduce hydrogen rich gas. Energy&Fuels,17(3):677-682.
    184. Lv Pengmei, Chang jie, Fu Yan,et al.2003b.An experimental investigation of hydrogen productionfrom biomass. Journal of Processing Engineering,3(5):464-470.
    185. Lv PM, Chang J, et al.2004.Hydrogen-rich gas production from biomass catalytic gasification,Energy&Fuels,1(18):228.
    186. MARINO F, CERRELLA E.1998.Hydrogen from Steam Reforming of Ethanol. Characterization andPerformance of Copper-Nickel Supported Catalysts. Int J Hydrogen Energ,23:1095-1102.
    187. M.Hemati, K.Spieker, C.Laguerie et al.1990.Experimental study of sawdust and coal particle mixingin sand or catalyst fluidized beds. The Canadian journal of chemical engineering,68:768-772.
    188.Michiel J A Tijmensen, AndréP C Faaij, Carlo NHamelinck,et al.2002.Exploration of the possibilitiesfor production of Fischer-Tropsch liquids and power via biomass gasification[J]. Biomass&Bioenergy,23:129-152.
    189. M.K.Karmakar, A.B.Datta.2010. Generation of hydrogen rich gas through fluidized bed gasificationof biomass. Bioresource Technology,1-7.
    190. Mlne T A, Evans R J.1998.Biomass gasification “tar”: their nature, formation and conversion.NERL,Technical report.
    191. Mohamed Gabraa, Rainer Backmanb.2001. Evaluation of cyclone gasifier performance forgasification of sugar cane residue-Part2: gasfication of cane trash. Biomass and Bioenergy,21:371-380.
    192. Mohammad Asadullah, Shin-ichi Ito, Kimio Kunimori, etal.2002. Biomass gasification to hydrogenand syngas at low temperature: Novel catalytic system using fluidized bed reactor. Journal of catalysis,208:255-259.
    193. M.P.Aznar,F.A. Gracia-Gorria,J.Corella.1992a. Minimum and maximum velocities for fluidization formixtures of agricultural and forest residues with a second fluidized solid(Ⅰ). Preliminary data and resultswith sand-sawdust mixtures. International chemical engineering,32(1):95-102.
    194. M.P.Aznar,F.A. Gracia-Gorria,J.Corella.1992b. Minimum and maximum velocities for fluidization formixtures of agricultural and forest residues with a second fluidized solid(Ⅱ).experimental results fordifferent mixtures. International chemical engineering,32(1):103-113.
    195. Mudge L K, Baker E G, Mitchell D H, etal.1983. Catalytic steam gasification of biomass for methanoland methane production.Energy Biomass Wastes,7:365-411.
    196. M.Z.Abdullah, Z.Husain, S.L.Yin Pong et al.2003.Analysis of cold flow fluidization test results forvarious biomass fuels.Biomass and Bioenergy,24:487-494.
    197. NAIR S A, YAN K, PEMEN A J M, et al.2004a.A High-Temperature Pulsed Corona Plasma Systemfor Fuel Gas Cleaning. J Electrostat,61:117-127.
    198. NAIR S A.2004b.Corona Plasma for Tar Removal. Denmark: The Dissertation of EindhovenUniversity of Technology,149.
    199. NAIR S A, YAN K, SAFITRI A, et al.2005. Streamer Corona Plasma for Fuel gas Cleaning:Comparison of Energization Techniques. J Electrostat,63:1105-11.
    200. Narvaez I, Orio A, Aznar MP.1996.Biomass gasification with air in an atmospheric bubbling fluidizedbed. Effect of six operational variables on the quality of the produced raw gas. Ind Eng Chem Res,35(7):2110-2120.
    201. Ohtaguchi Kazahisa.1999. Ongoing biomass energy projects.Kagaku Kogaku,63(3):144-146.
    202. Palmer Eric R.1984.Gasification of wood for methanol production.Energy Agric,3(4):363-375.
    203. Pan Y G, Velo E, Roca X, et al.2000. Fluidized bed co-gasification of residual biomass/poor coalblends for fuel gas production. Fuel,79(11):1317-1326.
    204.PEMEN A J M,VAN PAASEN S V B,Yan K,et al.2002.Conditioning of Biomass Derived Fuel GasUsing Plasma Techniques.In:12th European Conference on Biomass for Energy, Industry and ClimateProtection, Amsterdam, Netherlands,844-852.
    205.Philips V D, Kinoshita C M, Neill D R, etal.1990. Thermochemical production for methanol frombiomass in Hawaii. Applied Energy,35(3):75-167.
    206. RANZI E, FARAVELLI P G, SOGARO A.1995. Low-Temperature Combustion: AutomaticGeneration of Primary Oxidation Reactions and Lumping Procedures. Combustion and flame,102:179-192.
    207.Rapagná S,Provendier H,Petit C.2002.Development of catalysts suitable for hydrogen or syn-gasproduction from biomass gasification.Biomass and Bioenergy,22:377-388.
    208. ROMAN A, MICHAEL E.2004. Solar Gasification of Biomass: a Molten Salt Pyrolysis Study.J SolEnerg Eng,126:850-857.
    209.ROUSH R A, HUTCHERSON R K, INGRAM M W, et al.1996.Effects of Pulse Risetime and PulseWidth on the Destruction of Toluene and NOx in a Coaxial Pulsed Corona Reactor.In: IEEE22nd IntPower Modulator Symposium, Piscataway,NJ, USA,78,79-84.
    210. SCHUSTER G, LOFFLERG.2001. Biomass steam gasification—an extensive parametric modelingstudy. Bioresource Technol,77(1):71-79.
    211. Siedlecki M, Nieuwstraten R, Simeone E, de Jong W.2009. Effect of magnesite as bed material in a100kWth steam-oxygen blown circulating fluidized-bed biomass gasifier on gas composition and tarformation. Energy Fuels,23(11):5643-5654.
    212. Skoulou V, Zabaio tou A.2005.Investigation of agricultural and animal wastes in Greece and theirallocation to potential application for energy production. Renewable and Sustainable Energy Reviews,12:1-22.
    213. S.Rapagna, N.Jand, P.U.Foscolo.1998.Catalytic Gasification of Biomass to Produce Hydrogen RichGas, Hydrogen Energy,23(7):551-557.
    214. S. Rapagnàa, N. Janda, A. Kiennemann.2000.Steam-gasification of biomass in a fluidised-bed ofolivine particles.Biomass and Bioenergy,19(3):187-197.
    215. SUTTON D, KELLEHER B, ROSS JRH.2001. Review of Literature on Catalysts for BiomassGasification. Fuel Process Technology,73:155-173.
    216. Thomas B. Reed and Agua Das.1998. Handbook of Biomass Downdraft Gasifier Engine Systems.The Biomass Energy Foundation Press.
    217.TOMISHIGE K, ASADULLAH M, KUNIMORI K.2004.Syngas Production by Biomass GasificationUsing Rh/CeO2/SiO2Catalysts and Fluidized Bed Reactor.Catal Today,89:389-403.
    218. TOMISHIGE K, ASADULLAH M, KUNIMORI K.2005. Novel Catalyst with High Resistance toSulfur for Hot Gas Cleaning at Low Temperature by Partial Oxidation of Tar Derived from Biomass. CatalyCommun,6:37-40.
    219. Turn S, Kinoshita C,Zhang Z,et al.1998.An experimental investigation of hydrogen production frombiomass gasification.Int.J.Hydrogen Energy,23(8):641-648.
    220. Umeki K, Yamamoto K, Namioka T.2010.High temperature steam-only gasification of woody biomass.Applied Energy,87(3):791-798.
    221. VAN HEESCH E J M, ZACHARIAS P, VAN PAASEN S V B.1998.Hot Biogas Conditioning UsingPulsed Corona. IEEE Conference Record of Power Modulator Symposium, Ranch Mirage, CA,24-27.
    222. VAN DER DRIFT A, VAN DOORN J, VERMEULEN J W.2001.Ten residual biomass fuels forcirculating fluidized bed gasification. Biomass and Bioenergy,20(1):45-56.
    223.WATANABE M, INOMATA H, OSADA M, et al.2003.Catalytic effects of NaOH and ZrO2for partialoxida-tive gasification of n-hexadecane and lignin in super-critical water. Fuel,82(5):545-552.
    224. Xiangmei Meng, Wiebren de Jong, Ningjie Fu, et al.2011. Biomass gasification in a100kWthsteam-oxygen blown circulating fluidized bed gasifier: Effects of operational conditions on product gasdistribution and tar formation. Biomass and bioenergy,35:2910-2924.
    225. Xiu Li Yin, Chuang Zhi Wu, Shun Peng Zheng, etal.2002. Design and operation of a CFB gasificationand power generation system for rice husk. Biomass and Bioenergy,23:181-187
    226. ZHANG R, BROWN R C, SUBY A, et al.2004.Catalytic Destruction of Tar in Biomass Derivedproducer Gas. Energy Conversion Manage,45:995-1014.
    227. Zhao Xianguo, Chang Jie, Lv Pengmei, et al.2005.Biomass gasification under O2-rich gas in afluidized bed reactor. Journal of Fuel Chemistry and Technology,33(2):199-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700