用户名: 密码: 验证码:
抗禽流感天然产物筛选及八仙草化学成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高致病性禽流感(Highly Pathogenic Avian Influenza, HPAI)自1878年在意大利首次暴发以来,已在世界范围内发生了20多次,每次暴发都造成了严重的经济损失和社会恐慌。目前有效治疗高致病性禽流感病毒(Highly Pathogenic Avian Influenza Virus)的药物比较少。
     本课题选择A/Tiger/Harbin/01/2002株简称(HAB/01)H5N1病毒感染MDCK细胞为活性筛选模型,通过细胞病变法(Cytopathic Effect,CPE)作为初步筛选的活性评价方法,对40种中草药进行体外活性筛选。首次发现了几种抗H5N1病毒作用显著的中草药。首先发现八仙草(Galium aparine L)有较强的抗H5N1病毒作用。通过活性追踪发现,八仙草的抗H5N1病毒活性成分集中在正丁醇25%~50%乙醇洗脱部位,抗病毒作用呈明显的效量依赖关系。
     八仙草为茜草科拉拉藤属一年生草本,该植物资源丰富,目前国内还没有开展相关的化学成分研究和开发。本课题通过生物活性跟踪并结合化学导向的研究路线,对八仙草抗H5N1病毒活性部位进行系统分离,综合运用多种分离手段对有效部位进行系统的分离纯化。分离得到33个单体化合物。通过理化测定和采用ESI-MS、1H-NMR、13C-NMR、HMQC、HMBC、NOESY等波谱手段,鉴定了26个化合物。分别是:去乙酰车叶草酸(1),1-羟基-3-异戊烯基-2-萘甲酸甲酯-4-O-β-D-木糖苷(2),3-异戊烯基-2-萘酸甲酯-1,4-二-O-β-D-葡萄糖苷(3)1,3,6-三羟基-2-甲基蒽醌-3-O-α-鼠李糖(1→2)-O-β-D-葡萄糖苷(4),1, 3-二羟基蒽醌(5),7S,8R,8'R-(-)-落叶松脂醇-4,4'–二-O-β-D-葡萄糖苷(6)3′,4′,3,5,7-五羟基黄酮(7),3′,4′,5,7-四羟基黄酮(8),3′,5,7-三羟基黄酮(9),4′-甲氧基-5-羟基黄酮-7-O-α-鼠李糖(1→6)-β-D-葡萄糖苷(10),4′,5,7-三羟基黄酮-3-O-α-鼠李糖(1→2)-β-D-葡萄糖苷(11),4′-甲氧基-3′5,7-三羟基黄酮-3-O-α-鼠李糖(1→6)-β-D-葡萄糖苷(12),尿嘧啶(13),胞嘧啶(14),尿嘧啶核苷(15),胸腺嘧啶脱氧核苷(17),腺嘌呤核苷(18),对羟基苯甲酸(19),原儿茶酸(20),香草酸(21),咖啡酸(22),β-谷甾醇(23),β-胡萝卜苷(24),正十六烷酸(25),杜鹃花酸(26),其中(2)为新化合物。
     通过细胞病变法(Cytopathic Effect,CPE)对分离得到的部分化合物进行抗H5N1病毒活性评价,结果发现去乙酰车叶草酸(1)有明显的抗H5N1病毒活性,药物浓度为37.5μg/mL时,CPE结果为一个“+”,且有较好的剂量依赖关系。
Infections with influenza A viruses still pose a major threat to humans and several animal species. The occurrence of highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype capable to infect and kill humans highlights the urgent need for new and efficient countermeasures against this viral disease. In the dissertation, we demonstrate that the extract from the Galium aparine exerts a potent anti-influenza virus activity in MDCK cell cultures infected with H5N1 subtype.
     Galium aparine is a plant of the Rubiaceae family, distributed in the southern provinces of China. It is used in traditional Chinese folk medicine for the treatment of influenza. However, the investigations on the chemical constituents of plant have been few.
     In a search for the active constituents from the plant, the 60% ethanol extract of the plant was subjected to the systematical chemical investigation, leading to the isolation of thirty-three compounds by chromatography methods. And twenty-six structures were elucidated on the basis of physical and chemical evidences, and modern spectral analysis (including IR,UV,1H-NMR,13C-NMR,HMQC,HMBC,DEPT,EI-MS,et al.). Their structures were elucidated as deacetyl asperulosidic acid (1),2-carbometho-xy-3-prenyl-1,4-naphthohydroquinone-1-O-β-D-xylopyranoside (2), 2-carbomethoxy-3-prenyl-1,4-naphthohydroquinone-di-β-D-glucoside(3), 2-methyl- 1,3,6-trihydroxy-9,10-anthraquinone-O-α-rhamnosyl(1→2)-β-D-glucoside(4), xantho- purpurin (5), cleamastanin B (6), quercetin (7),luteolin (8) ,apigenin (9), linarin (10), kaempferol-3-O-3-L-rhamnopyranosyl(1→2)-O-β-D-glucopyranoside (11),tamarixeti- n-3-rutinoside (12), uracil (13), cytosine (14), uridin (15), cytidine (16), thymidine (17), adenine-riboside (18), p-hydroxybenzcic acid (19), protocatechuic acid (20), vanillic acid (21), caffeic acid (22) ,β-sitosterol (23),β-daucosterol (24), n-hexadecane (25). azelaic acid (26). Compound 2 was a new compound. The result of the research was meaningful to a widespread usage of the plant, it is also helpful for the development of a new medicine.
     At the effective dose of 37.5μg/mL, the compound 1 did not exhibit apparent harming effects on cell viability, metabolism or proliferation, which exerted a potent anti-influenza virus activity in MDCK cell cultures infected with H5N1 subtype.
引文
[1] Alexander DJ. A review of avian influenza in different bird species [J]. Vet Microbjol 2000, 74: 3-13.
    [2] http://whqlibdoc.who.int/hq/2005/WHO_CDS_CSR_GIP_2005.5.pdf
    [3] http://www.who.int/csr/disease/avian_influenza/country/cases_table_2010_03_16 /en/index.html.
    [4] Spackman E. A brief introduction to the avian influenza virus [J].Methods Mol Biol, 2008, 436:1-6.
    [5] John B, Mike B. Current and future antiviral therapy of severe seasonal and avian influenza [J]. Antiviral Research,2008,78: 91–102.
    [6] Flory E, Kunz M, Scheller C, et al. Influenza virus induced NF-kappaB depende- ent gene express is mediated by over expression of viral proteins and involves oxidative radicals and activation kappaB kinase [J]. J Biol Chem, 2000, 275(12): 8307-8314.
    [7] Stacey SC, Naomi DS, Neumann G, et al. Virus NS1 protein induces apoptosis in cultured cells [J]. J Virol, 2001,75(17): 7875-7881.
    [8]肖会敏,王四旺,王剑波等.流感病毒致病特点及抗流感病毒中药活性成分与部位研究进展[J].亚太传统医药, 2008,4(5): 15-17.
    [1]中国科学院中国植物志编辑委员会,中国植物志[M].北京,科学出版社,1999,416-418.
    [2]兰茂,滇南本草[M].昆明,云南人民出版社,1975,343-345.
    [3]马英丽,卢卫红,于晓敏,等.蓬子菜的化学成分研究[J].中草药, 2005, 36(10): 1464-1466.
    [4] Deliorman D, Calis I, Ergun F.Iridiods from Galium aparine[J]. Pharm.Biol, 2001,9(3):234-235.
    [5] Seabra RM, Silveira JA, Vasconcelcs MH, et al. Phenolic compounds from Galium aparine and G. broteroanum[J]. Plant.Med Phytother,1993,26(1):49-51.
    [6] Chaudhuri RK, Afifi-Yazar FU , Sticher O.The configuration of naturally occur ringridoid glycosides at C (6) and C (8) . Helv Chim Acta , 1979, 62:1603-1606.
    [7] Kenichiro I, Yoshinori S, Hidekazau N, et al. Biosynthesis of anthquinonrs and related compounds in Galium mollugo cell suspension cultures [J]. Phytochemtry, 1984, 23(2): 307-311
    [8] Hideji I, Kazuhiko M, Koichi T. Studies on a Novel anthrquinone and its glycoside isolated from Rubia cordifolia and R. akane [J]. Chem Pharm Bull, 1983, 31(7): 2353-2358.
    [9]张振凌,周艳,黄显峰.茜草炭止血成分的研究[J].中成药,2007,29(12): 1803-1805.
    [10] Gamal A.A.El, Takeya K, H, Itokawa, et.al . Lignan bis-glucosides from Galium Sinaicum[J]. Phytochemistry. 1997, 45(3):597-600.
    [11]王宇杰,孙启时.金钱草的化学成分研究[J].中国药物化学杂志, 2005, 15(6): 357-359.
    [12]吴新安,赵毅民.金莲花化学成分研究[J].中草药, 2005, 36(3):344-345.
    [13]胡峻,石任兵,张援虎,等.荆芥穗化学成分研究[J].北京中医药大学学报, 2006, 29(1): 38-40.
    [14]石钺,石任兵,刘斌等.银翘散抗流感病毒有效部位群中黄酮类成分研究[J].中国中药杂志, 2001,26(5): 320-323.
    [15] YuanW, Li S, Ownby S, et al. Flavonoids, coumarins and triterpenes from the aerial parts of Cnidoscolus texanus [J]. Planta Med, 2007, 73 (12): 1304-1308.
    [16] El-Sayed NH, Abu Dooh AM, El-Khrisy SAM et al. Flavonoids of Cassia italica Phytochemistry, 1992, 31(6):2187-2189.
    [17]史雪凤,唐旭利,李国强,等.中国南海高领类尖柳珊瑚Muricedes collaris化学成分研究[J].中国海洋药物杂志, 2009, 28(2): 18-21.
    [18]严小红,郭跃伟,宋国强,等.中国南海曲针绣球海绵Iotrochoto sinustyla化学成分的研究[J].天然产物研究与开发, 2003, 15(4): 296-298
    [19]郑晓柯,毕跃峰,冯卫生,等.卷柏化学成分研究[J].药学学报,2004,39(4):266-268.
    [20]郑俊霞,王乃利,陈海峰,等.翠云草中酚性成分的分离与鉴定[J].中国药物化学杂志,2007, 79(10): 302-305.
    [21]赵燕燕,崔承彬,孙启时,等.洋紫荆化学成分研究[J].中国药物化学杂志, 2005, 15(5): 302-304.
    [22]郑丹,张晓琦,王英,等.滇桂艾纳香地上部分的化学成分[J].中国天然药物, 2007,5(6): 421-424.
    [23]康胜利,刘明生,张俊清,等.见血封喉树叶化学成分研究[J].海南医学院学报2009, 15(10): 1191-1192.
    [1]郭元吉,流行性感冒病毒及其实验技术,北京:中国三峡出版社,1998,249
    [2]傅继华,病毒学实用实验技术,济南:山东科学技术出版社,2001,362.
    [3]吴立军.天然药物化学[M].北京,人民卫生出版社,2005.228
    [4] Ma S, He Z, Deng XL In Vitro Evaluation of Secoiridoid Glucosides from the Fruits of Ligustrum lucidum as Antivival Agents Chem Pharm Bull, 2001, 49 (11):1471-1473.
    [5] Wei L, Sandbulte MR, Thomas PG, et al. NF-κB negatively regulates interferon induced gene expression and anti-influenza activity[J].J Biol Chem, 2006,281(17): 11678-11684.
    [6] Flory E, Kunz M, Scheller C, et al. Influenza virus induced NF-kappaB depende- nt gene express is mediated by over expression of viral proteins and involves oxidative radicals and activation kappaB kinase [J]. J Biol Chem, 2000, 275(12):8307-8314.
    [7]张晓玲,杨桥,代俊,等.黑色素及谷胱甘肽通过抑制NF-κB途径的激活可有效抑制H5N1禽流感病毒感染[J].中国生物化学与分子生物学报.2009,25(4): 364-372.
    [8]李春阳,李林,李宇航,等.环烯醚萜苷对大鼠脑梗死后NF-κB与凋亡调节因子Bcl-2 /Bax表达变化的影响[J].中国药理学通报,2006 ,22 (1) : 19-22.
    [9]李?斌.长尾粗叶木化学成分及其生物活性的研究(北京中医药大学博士论文).北京:北京中医药大学,2006.
    [10]石钺,石任兵,陆蕴如,等.反相高效液相色谱法测定银翘散抗流感病毒有效部位群中醉鱼草苷的含量[J].中国中药杂志,2001,26 (7): 469-471.
    [11]胡永婷,张映,王茂林.黄酮类化合物对禽流感病毒的抑制作用[J].激光生物学报, 2007,16 (5):632-635.
    [12]安益强,袁海建,施峰,等.HPLC法测定板蓝根颗粒中叶松脂醇-吡喃糖苷[J].中草药, 2009,40 (11): 1752-1754.
    [1]甘孟侯.禽流感[M].北京:北京农业大学出版社,1995:3-5.
    [2] Connor RJ, Kawaoka Y, Webster RG, et al. Receptor specifity in human,avian,and equine H2 andH3 Influenza virus isolates[J]. Virology, 1994,205(L):17-23.
    [3] Guan Y, Yi Guan, Kennedy F. Molecular characterization of H9N2 influenza viruses: Were they the donors of the“internal”genes of H5N1viruses in Hong Kong, PNAS, 1999, 96(16): 9363-9367.
    [4] Bender C, Hall H, Huang J,et al. Characterization of the Surface Proteins of Influenza A (H5N1) Viruses Isolated from Humans in 1997–1998[J]. Virology, 1999,254(1):115-123.
    [5]http://www.who.int/csr/disease/avian_influenza/country/cases_table_2010_03_16 /en/index.htmLl
    [6] Flory E, Kunz M, Scheller C, et al. Influenza virus induced NF-kappaB dependent gene express is mediated by over expression of viral proteins and involves oxidative radicaLs and activation kappaB kinase [J]. J Biol Chem, 2000, 275(12): 8307-8314.
    [7] Tumpey TM, Lu XH, Morken T, et al. Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A ( H5N1) virus isolated from human[J]. J Virol, 2000, 74(13): 6105-6116.
    [8] Stacey SC, Naomi DS, Neumann G, et al. Virus NS1 protein induces Apoptosis in Cultured Cells [J]. J Virol, 2001,75(17):7875-7881.
    [9] Colman PM, Laver WG,Varghese JN, Structure of the catalytic and antigenic sitesin influenza virus neuraminidase [J].Nature, 1983, 303:41-44.
    [10] Webster RG, Laver WG, Air GM , et al. Molecular mechanisms of variation in influenza viruses[J]. Nature, 1982, 296:115-121.
    [11] Meindl P, Bodo P, Schulman H, Tuppy H. Virology, Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid[J].1974, 58(2):457-463.
    [12] Itzstein VM, Wu WY, Kok GB, et al. Rational design of potent sialidase-based inhibitors of influenza virus replication [J].Nature, 1993, 363: 418-423.
    [13] Gubareva LV, McCullers JA, Bethell RC, et a1. Characterization of influenza A /Hong Kong/156 /97 (H5N1) virus in a mouse model and protective effect of zanamivir on H5N1 infection in mice [J]. J Infect Dis, 1998, 178 (6):1592-1596
    [14] Leneva IA, GoLoubeva O, Fenton RJ, et al. Efficacy of zanamivir against avian influenza A viruses that possess genes encoding H5N1 internal proteins and are pathogenic in mammals [J]. Antimicrob Agents chemotherary, 2001, 45:1216-1224
    [15] Miller JL. Inhaled zanamivir approved for influenza treatment[J]. Am J Health Syst Pharm, 1999,56: 1696-1696.
    [16] Honda T, Masuda T, Yoshida S, et al. Bioorg Med Chem lett, Synthesis and anti-influenza virus activity of 4-guanidino-7-substituted Neu5Ac2en derivatives[J]. 2002 , 12(15):1921-1924.
    [17] Bamford MJ, PicheL JC, Husman W, et al. Synthesis of 6-,7- and 8-carbon sugar analogues of potent anti-influenza 2,3-didehydro-N-acetylneuraminic acid derivatives[J]. J Chem Soc Perkin Trans I,1995, 9:1181-1187.
    [18] Masuda T, Shibuya S, Arai M, et al. Synthesis and anti-influenza evaluation of orally active bicyclic ether derivatives related to anamivir [J]. Bioorg Med Chem lett 2003, 13(4):669-673.
    [19] Sollis SL , Smith PW, Howes PD. et al. Novel inhibitors of influenza sialidase related to GG167 Synthesis of 4-amino and guanidine-4H-pyran-2-carboxylic acid-6-propylamides; selective inhibitors of influenza a virus sialidase[J].Bioog Med Chem Lett, 1996, 6(15):1805-1808.
    [20] Smith PW, Sollis SL, Howes PD, et al. Dihydropyrancarbox-amides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 1. discovery,dynthesis, biological activity, and structure-activity reLationships of -Guanidino- and 4-Amino-4H-pyran-6-carboxamides [J].J Med Chem,1998,41(6):787-797.
    [21] Wyatt PG, Coomber BA , Enans DN, et al. Sialidase inhibitors related to zanamivir. Further SAR studies of 4-amino-4-H-pyran-2-carboxylic acid-6-propylamides.[J]. Bioorg Med Chem Lett,2001,11(5):669-673.
    [22] Murakami M, Ikeda K, Archiwa K. Chemoenzymatic synthesis of neuraminic ac- id analogs structurally varied at C-5 and C-9 as potential inhibit inhibitors of the sialidase from influenza virus[J]. Carbohydr Res,1996,280(1):101-110.
    [23] Ikeda K, Sano K, Ito M, et al. Synthesis of -deoxy-2,3-didehyd-ro-N-acetyLneu- raminic acid anaLogues modified at the C-4 and C-9 positions and their ehaviour towards sialidase from influenza virus and pig livermembrane[J].Carbohydr Res 2001, 332(1):31-41.
    [24] Howes PD, Smith PW. SiaLidase inhibitors related to GG167:synthesis of anal- ogues via an inverse demand hetero Diels Alder reaction[J].Tetrahedron Lett, 1996, 37(36):6595-6598.
    [25] Smith PW, Starkey ID, Howes PD, et al. Synthesis and influenza virus sialidase inhibitory activity of analogues of 4-guanidino-Neu5Ac2en(GG167) with modif- ied 5-substituents[J]. Eur J Med Chem, 1996, 31(2):143-150.
    [26] Andrews DM, Cherry PC, Humber DC, et al. Synthesis and Influenza virus sialdase inhibitory activity of anaLogues of 4-Guanidino-Neu5A-c2en(Zanamivir) modified in the glycerol sidechain[J]. Eur J Med Chem,1999, 34(7-8):563-574.
    [27] Kim CU, Lew W, Williams MA, et al. Influenza neuraminidase inhibitors posse-ssing a novel hydrophobic interaction in the enzyme active site design, synthesis, and structural anaLysis of carbocyclic sialic acid analogues with potent anti-influenza activity [J]. J Am Chem Soc,1997, 119(4):681-690.
    [28] Kim CU , Lew W, Williams MA , et al. Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors[J]. J Med chem, 1998, 41(14):2451-2460.
    [29] Atigadda VR , Brouillette WJ, Duarte F, et al. Potent inhibition of influenza sialidase by a benzoic acid containing a 2-pyrrolidinone substituent[J]. J Med Chem, 1999, 42(13):2332-2343.
    [30] Brouillette WJ, Atigadda VR , Luo M, et al. Design of benzoic acid inhibitors of influenza neuraminidase containing a cyclic substitution for the N-acetyl group- Ing [J]. Bioog Med Chem,1999,9(14):2487-2497.
    [31] Yamamoto T, Kmazawa H, Inami K, et al. Syntheses of sialic acid isomers with inhibitory activity against neuraminidase[J]. Tetrahedron Lett,1992,33(39):5791- 5794.
    [32] Chand P, Kotian PL, Dehghani A, et al. Systematic structure-based design and stereoselective synthesis of novel multisubstituted cyclopentane derivatives with potent antiinfluenza ativity. J Med Chem,2001, 44(25):4379-4392.
    [33] Wang GT, Chen Y, Wang S, et al. Design, synthesis, and structural analysis of influenza neuraminidase inhibitors containing pyrrolidine cores[J].J Med Chem, 2001, 44(8):1192-1201.
    [34] Sidwell RW, Smee DF, Huffman JH, et al. In vivo influenza virus-inhibitory effects of the cyclopentane neuraminidase inhibitor RWJ-270201[J]. Antimicrob Agents Chemother, 2001, 45(3):749-757.
    [35] Govorkova EA, Leneva IA, Goloubeva OG, et a1. Comparison of efficacies of RWJ-270201 zanamivir, and oseltamivir against H5N1, H9N2, and other avian influenza viruses[J]. Antimicrob Agents Chemother, 2001, 45(10):2723-2732.
    [36] Kati WM, Montgomery D, Maring C, et al. NoveLα- andβ-amino acid inhabi- tors of influenza virus neuraminidase[J]. Antimicrob Agents Chemother, 2001, 45(9): 2563-2570.
    [37] Platiss D, Smith BJ, Huyton T, et al. Structure-guided design of a novel class of benzyl-sulfonate inhibitors for influenza virus neuraminidase[J]. J Bio chem, 2006, 399(2):215-223.
    [38]张杰,王强,徐文方,等.吡咯烷类神经氨酸酶抑制剂的设计、合成与初步活性研究[J].中国药学杂志, 2008, 43(4): 314-318.
    [39] Tang YJ, Zaitseva F, Lamb RA, et al. The Gate of the influenza virus M2 poton channel is formed by a single tryptophan residue. J BioL Chem, 2002, 277(42): 39880-39886.
    [40] Tataridis D,Fytas G,Kolocouris A, et al.Influence of an addition 2-amino substit- uent of the 1-amioethyl pharmacophore group on the potency of rimsntsdine against influenza virus A[J]. Bioorg Med Chem Lett,2007,17(5):692-676.
    [41] Kimberlin DW, Coen DW, Briron KK, et al. Molecular mechanism of antiviraL resistence. Antiviral Res, 1995, 26 (4): 369
    [42] Gabe Y, Urano Y, Kikuchi K, et al . Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore rational design of potentially useful bioimaging fluorescence probe [J]. J Am Chem Soc, 2004 , 126(10):3357-3367.
    [43]张晓玲,杨桥,代俊,等.黑色素及谷胱甘肽通过抑制NF-κB途径的激活可有效抑制H5N1禽流感病毒感染[J] .中国生物化学与分子生物学报2009, 25 (4): 364-372.
    [44] Furuta Y, Takahashi K, Kuno-Maekawa M, et al. Mechanism of action of T-705 against influenza virus [J]. Antimicrob Agents Chemother, 2005, 49(3): 81?986.
    [45]赵晓虹,梁剑平,祝艳华,等.金丝桃素蛋白络合物体外抗H5N1亚型禽流感病毒的活性研究[J].中兽医医药杂志, 2006, 25(3): 13-15.
    [46]祝艳华,梁剑平,赵晓虹,等.金丝桃素蛋白络合物在鸡体内对H9N2亚型禽流感病毒杀灭效果的研究[J].中兽医医药杂志, 2006, 25(3): 5-8.
    [47]王曙阳,梁剑平,陈积红,等.金丝桃素体外抗口蹄疫病毒与宿主细胞吸附作用研究[J].中兽医医药杂志, 2009, 25 (1): 5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700