用户名: 密码: 验证码:
煤层气水合物储运与提纯的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气俗称矿井瓦斯,CH4含量达95%以上,是优质的清洁燃料和化工原料,是一种新型洁净能源。我国煤层气已探明的储量约为30~35×1012 m3,居世界第三位;同时我国又是世界上最大的煤层气排放国家,煤层气年排放量约为8~10×109 m3,占全球排放量的1/4左右。2000年全国1000多座高瓦斯和瓦斯突出矿井中,仅有184座煤矿建立了煤层气井下抽放系统和地面输气系统,年抽放煤层气8.58×108 m3,全国平均井下煤层气抽放率仅为23%;2004年全国井下开发煤层气约16×108 m3,国有高瓦斯突出矿井平均煤层气的开发率仅为10%左右。由于CH4浓度偏低且缺乏有效的储运和提纯技术以及管理技术因素,大量抽放瓦斯被作为废气直接排入大气,既浪费了能源又对环境造成严重污染;另外,输气管道缺乏是制约我国煤层气发展的又一重要外部条件,在已有的和正在建设中的中小型煤层气试验开发井网范围内基本没有输气管道(除部分地区有地域性的输气管道外)。因此对煤层气不能进行有效提纯与经济储运,长期严重地制约着有关方面对其进一步投入开发和勘探的热情,不仅严重威胁煤矿安全生产,而且直接影响着煤层气工业产业链的形成,成为其进一步发展的瓶颈。实验发现煤层气中的CH4在0~10℃、3~8 MPa下与水能够生成固态气体水合物,这种固体水合物在1atm压力下具有较好的稳定性,分解时能释放出160~200体积的CH4,其巨大的储气能力和相对温和的储气条件备受重视,另外在安全性方面还有其优越性,使其成为对煤层气加工处理与储运的优选方式。因此,对煤层气水合反应过程及其水合物相关性质进行基础研究,为煤层气加工处理与储运提供理论指导和技术支持,具有重要的科学意义和应用价值,同时对促进我国温室气体的减排、履行国际义务具有积极作用。
     太原理工大学经过多年的深入研究分析,提出了采用气体水合物技术储运与提纯含氧煤层气的基本研究思想和理论,本论文通过大量实验,系统研究了煤层气水合物在不同条件下储运特性与气体成份变化的影响规律,较详细地推导了气体水合物生成与分解的反应-扩散物理模型,从理论数值计算方面研究了气体水合物颗粒生成与分解的机理与影响因素,并与其它储运工艺在工业生产中的技术经济进行评价。主要研究工作有以下几个方面:
     1.进行了喷雾方式纯水与表面活性剂溶液体系的煤层气水合物生成实验,分析了两种体系下气体水合物生成特性,表面活性剂不仅能够有效提高反应速度,同时能明显提高水合物的储气量;
     2.实验分析了不同浓度与压力下表面活性剂溶液的气体水合物生成特征,通过实验发现:不同压力对气体水合物的含气量影响不明显,含气量与反应速度随促进剂的浓度增大而升高,但浓度超过300 ppm后增幅急剧减小;
     3.利用反应-扩散模型建立了液滴生成气体水合物颗粒的物理模型,模型显示气体水合物形成受气体在气膜扩散、固体层扩散与生成反应速率控制,通过计算分析水滴颗粒半径减小可以显著降低反应时间,同时反应机理也逐渐由气体扩散向生成反应速率控制转变,升高压力或降低温度均能使反应时间缩短,此时气体扩散占反应主导地位,附着层气膜的扩散始终对总反应时间影响很小;
     4.促进剂十二烷基硫酸钠SDS与四氢呋喃THF均能不同程度促进含氧煤层气水合物的生成,但THF能有效降低反应压力,弱化气体水合物生成条件,并且THF溶液在对含氧煤层气中CH4与N2、O2的分离与提纯具有积极效果,因此,这类促进剂对混合气体水合物的影响研究规律是气体水合物提纯含氧煤层气技术应用发展的关键所在;
     5.通过反应-扩散气固反应过程理论并结合实验研究,揭示了气体水合物分解特性与机理,在低于0℃时,随温度的降低分解反应速率快速下降成为控制整个分解的主要因素,但升高体系压力可使扩散成为分解的主要控制因素,通过对总分解时间分析,压力对分解速率影响不及温度,在实际储运过程中气体水合物至少保持在-10℃以下;高于0℃时气体分解速度存在一个温度门槛值,对于煤层气水合物来说,该门槛值一般为60℃,低于该门槛值时,水合物分解速率敏感地依赖于温度,随温度升高增加明显,当高于门槛值温度后分解速率变化很小,这时总分解时间随温度变化不明显;
     6.通过对压缩天然气CNG、液化天然气LNG与天然气水合物NGH三种储运方式在生产、运输与投资综合成本对比发现:在250~700km的供气范围内,天然气水合物储运气体具有较低的综合成本,加之简单和灵活的生产工艺使得气体水合物储运煤层气具有很好的推广前景。
The coal-bed methane was also usually called coal-bed gas which main composition is CH4 that is the kind of high quality clean fuel, the industrial chemicals and new clean energy. Prospective reserves of coal-bed methane are 30~35×1012 m3 approximately in China that occupied one third of the world. At the same time China also is the biggest coal-bed methane discharge country that was about 194×108 m3 which composes about global discharge 1/3. Only 184 underground coal mines have established coal-bed methane gas drainage systems and ground gas transportation systems in 2000 among the 1,000 high gas and coal gas outburst mine which about 8.58×108 m3 coal-bed methane was drainage every year. The national average drainage rate of coal-bed methane was only 23%. The amount of National Underground development coal-bed methane was about 16×108 m3 and the average rate of the development coal-bed methane is only about 10% in 2004 among state-owned high gas outburst coal mine. Most gas discharge of coal mines during the mining process has the low CH4 concentration so it directly discharges as the waste gas as lack of effective treatment and use channels and the management of technical factors. It not only be a waste of energy, but also create serious environmental pollution. Moreover lacks of the gas line is restricts our country coal-bed methane development an important external condition, but the massive center small coal-bed methane field (100~5000×108 m3) in the quantity accounts for 57% and the reserves accounts for 18.3% which the geographical position dispersible that it is impossible to construct the pipe net system. Therefore the coal-bed methane cannot carry on the effective processing to withdraw with the economical storage and transport poses the serious threat to the coal mine safety in production also affects the coal-bed to be mad the industry directly the development. The hydrocarbon of coal-bed methane such as CH4 can form the gas hydrate with the water under 0~10℃, 3~8 MPa. The hydrate has the good stability under the atmospheric pressure when dissociation can release 180~200 volumes CH4. At the same time gas which form the hydrate such as N2 phase equilibrium condition and the hydrocarbon are clearly different. The hydrate formation has the selectivity, the gas storage ability and the relatively temperate gas storage condition causes it possibly to become the coal-bed methane processing, storage and transport optimal feasible way. Therefore the basic experimental researches of the coal-bed methane hydrate formation and its property have the vital scientific significance and the application value.
     The basic study principles and theories of the hydrate storage/transportation and concentration of coal-bed methane were introduced after years of in-depth study in Taiyuan University of Technology. The relevant laws of storage propriety and gas composition changes were studied under different conditions during the process of formation and decomposition experiment of coal-bed methane hydrate in the paper. A more detailed physical model of the hydrate formation and decomposition was derivate based on reaction-diffusion theory. From theories and numerical calculations the mechanism and influencing factors of hydrate particles formation and decomposition were analyzed. The technical and economic evaluation was conducted with other storage technology in industrial production in the last. Main research work in the following areas:
     1. Hydrate formation experiments was conducted at the pure water and surfactant solution in the form of spray system. From the analysis of the two systems the hydrate formation of surfactant can not only effectively improve the reaction rate, at the same time can also significantly improve the hydrate storage capability.
     2. Hydrate formation propriety of surfactant solution was analyzed in the different concentrations and pressure. From the experiments it can be found: the pressure was not obvious effects gas content of the gas hydrate, the gas content and the reaction rate increased with the concentration of additives, but after more than 300 ppm it increase dramatically reduced.
     3. Formation kinetics equation of the hydrate particles was established according to the reaction-diffusion of gas-solid reaction kinetics principle. From the analysis of formation reaction rate under certain pressure and different temperature it can be found: Both lower temperature and increased pressure can promote hydration reaction and shorten reaction time from which the changes of response mechanism from reaction to diffusion-controlled as these two factors was analyzed according to theoretical models. The mechanism of diffusion coefficient and reaction rate constant in different temperature and press influence to hydrate formation from drop is concluded and it provides a theoretical basis to the hydrate technology.
     4. Volumetric specific process of gas hydrate formation was in a spontaneous reaction so the whole process reflects the basic requirements under the reaction conditions and energy minimization. Through the volumetric specific experiment the suitable reaction condition can be determinate for it is a spontaneous course.
     5. The experiment of hydrate concentration process is carried out to coal-bed gas and 19% tetrahydrofuran (THF) solution at different initial pressure on hydrate formation reactor with spring nozzle. The respective gas concentration of coal-bed gas was monitored on-line with using gas chromatography in gas phase and hydrate phase on reactor during hydrate formation. The experimental results show that THF solution can effectively reduce the phase equilibria pressure of gas mixture hydrate formation. High initial pressure can accelerate the reaction rate but CH4 concentration range has decreased and the concentration difference of respective component between hydrate phase and gas phase also decreased. Therefore, the appropriate reducing reaction pressure has the positive effect to concentration of CH4 from the oxygen-containing coal-bed gas in the THF solution.
     6. Dissociation experiments was conducted on laboratory to synthesis hydrate at constant temperature in different press and dissociation kinetics equation of the hydrate particles was established according to the reaction- diffusion of gas-solid reaction kinetics principle. From the analysis of decomposition rate under certain pressure and different temperature it can be found: the decomposition rate changes significantly with temperature under 60℃. The pressure on the impact of hydrate dissociation is less than temperature. The mechanism of diffusion coefficient and reaction rate constant in different temperature and press influence to hydrate dissociation is concluded.
     7. From CNG, LNG and NGH in the production transport and investment comprehensive cost comparison it can be found: NGH have the most cost advantages in the transport distance of 250 to 700 km. This distance is also general inter-provincial transport of moderate to hydrate. The cost of the production with gas storage and transportation is higher than that of compressed natural gas. But due to compressed natural gas transport tanker prices are more expensive and transport of compressed natural gas is high-pressure gas it has poor security and more quality of the tank. So it greatly increases the cost of transport in the form of CNG. At the same time storage and transportation at the hydrate form much lower investment in liquefied form below.
引文
1. Sloan E.D. Clathrate Hydrates of Nature Gases [M], New York: Marcel Dekker, Inc, 1998.
    2. Cady G. H.,Composition of Gas Hydrate[J].Chem.Edu.,1983,60(11),915.
    3. Englezos P.,Boshnoi P.R.,Gibbs Free Energy Analysis for the Supersaturation Limits of Meathane in Liquid Water and the Hydrate-Gas-Liquid Water Phase Behavior[J]. Fluid Phase Equil., 1988, 42, 129.
    4. Christiansen R.L., Sloan E.D. Mechanisms and Kinetics of Hydrate Formation[C]. Int. Confer. on Nat. Gas Hydrate 1st. New York Academy of Science, 1994, 283
    5. John. J.L.考克斯,曾昭懿,吕德本译.天然气水合物(性质、资源与开采)[M].北京:石油工业出版社, 1988.
    6. Dharlna-WardanaM .W .C, Thermal Conductivity of the Ice Polymorphs and the Ice Clathrates, J .Phys. Chem., 1983, 87.4185
    7. Ng H. J., Robinson D. B., Hydrate Formation in Systems Containing Methane, Ethane, Propane, Carbon Dioxide or Hydrogen Sulfide in the Presence of Methanol [J]. Fluid Phase Equilibria, 1985,21: 145-155
    8. Robinson D. B., Ng H. J., Hydrate Formation and Inhibition in Gas or Gas Condensate Streams [J]. Journal of Canada Petroleum Technology, 1986, 25 (4): 26-30
    9. Song K. Y, Kobayashi R. Final Hydrate Stability Conditions of a Methane and Propane Mixture in the Presence of Pure Water and Aqueous Solutions of Methanol and Ethylene Glycol [J]. Fluid Phase Equilibria, 1989, 47:295-308
    10. Breland E., Englezos P., Equilibrium Hydrates Formation Data for Carbon Dioxide in Aqueous Glycerol Solutions [J]. Journal of Chemical & Engineering Data, 1996, 41 (l): 11-13
    11. Mei D.H, Liao J., Yang J .T., et al., Hydrate Formation of a Synthetic Nature Gas Mixture in Aqueous Solutions Containing Electrolyte, Methanol, and (Electrolyte+Methanol) [J]. Jounral of Chemical & Engineering Data, 1998, 43 (2): 17 8-182.
    12.廖健,梅东海,王璐现等.含盐和甲醇体系中气体水合物的相平衡研究-平衡生成条件的测定,石油学报, 1998, 14(3): 80-84
    13. Bishnoi P. R, Dholabhai P. D., Equilibrium Conditions for Hydrate Formation for a Ternary Mixture of Methane, Propane and Carbon Dioxide, and a Nature Gas Mixture in the Presence of Electrolytes and Methanol [J]. Fluid Phase Equilibria, 1999, 158-160,821-827
    14. Majumdar A,Mahmoodaghdam E., Boshinoi P. R., Equilibrium Hydrate Formation Conditions for Hydrogen Sulfide, Carbon Dioxide, and Ethane in Aqueous Solutions of Ethylene Glycol and Sodium Chloride [J]. Journal of Chemical & Engineering Data, 2000, 45 (1): 20-22
    15. Lederhos J .P., Long J .P., Sum A., etc., Effective Kinetic Inhibitors for Natural Gas Hydrates [J]. Chemical Engineering Science, 1996, 51(8): 1221-1229
    16. Uchida T, Ebinuma T., Ishizaki T., Dissociation Condition Measurements of Methane Hydrate in Confined Small Pores of Porous Glass [J]. Journal of Physical Chemistry B, 1999, 103: 3659-3662.
    17. Bufett B., Zatsepina O. Y, Formation of Gas Hydrate from Dissolved Gas in Natural Porous Media [J]. Marine Geology, 2000, 164: 69-77
    18. Ripmeester J .A .,Tse J .S ., Ratclife C .I., etc., A New Clathrate Hydrate Structure[J]. Nature, 1987, 325: 135-136
    19. Lederhos J. P., Mehta A. P., Nyberg G. B., etc., Structure H Clathrate Hydrate Equilibrium of Methane and Adamantine [J]. AIChE Journal, 1992,38(7): 1045-1048
    20. Mehta A .P. Makogon T .Y, Burruss R .C. etc, A Composite Phase Diagram of Structure H Hydrates Using Schreinemakers' Geometric Approach [J]. Fluid Phase Equilibria, 1996, 121: 141-165
    21. Mehta A. P, Sloan E. D., Structure H Hydrate Phase Equilibria of Parafins, Naphthenes and Olefins with Methane [J]. Journal of Chemical & Engineering Data, 1994, 39(5): 887-888
    22. Udachin K. A, Ratclife C. I, Ripmeester J. A. Hydrate Structure and Composition from Single Crystal X-Ray Diffraction: Examples of Structure I, II and H hydrate [C]. Proceeding of 4th International Conference on Gas Hydrates. Yokohama, Japan , 2002: 604-607
    23. Khokhar A. A., Sloan E. D., Gas Storage in Structure H Hydrates [J]. Fluid Phase Equilibria, 1998, 150-151: 383-392
    24. ?stergaard K.K, Tohidi B., Danesh A., etc., Equilibrium Data and Thermodynamic Modeling of Isopentane and 2, 2-dimethylpentane Hydrates [J]. Fluid Phase Equilibiria, 2000, 169(1): 101-115
    25. Uchida T., Takagi A, Mae S, etc. Dissociation Mechanisms of CO2 Molecules in Water Containing CO2 Hydrates [J]. Energy Conversion and Management, 1997, 38: 307-312
    26. Nakano S., Moritoki M., Ohgaki K, High-Pressure Phase Equilibrium and Raman Microprobe Spectroscopic Studies on the CO2 Hydrate System [J]. Journal of Chemical & Engineering Data, 1998, 43(5): 807-810
    27. Brewer P.G., Orr F.M., Friederich G., etc., Gas Hydrate Formation in the Deep Sea: in Situ Experiments with Controlled Release of Methane, Natural Gas, and Carbon Dioxide [J].Energy & Fuels, 1998, 12(l): 183-188
    28. Fan S .S., Guo T.M, Hydrate Formation of CO2-Rich Binary and Quaternary Gas Mixtures in Aqueous Sodium Chloride Solutions [J].Journal of Chemical & Engineering Data, 1999, 44(4): 829-832
    29. Teng H, Yamasaki A. Hydrate Formation on Surfaces of Buoyant Liquid CO2 Dorps in a Counterflow Water Tunnel [J]. Energy & Fuels, 1999, 13(3): 624-628
    30. Tabe Y, Hirai S, Okazaki K. Massive CO2 clathrate hydrate growth at a high-polar-energy surface [J]. Journal of Crystal Growth, 2000, 220: 180-184
    31. Seo Y T., Lee H., Yoon J. H., Hydrate Phase Equilibria of the Carbon Dioxide, Methane, and Water System [J]. Jounral of Chemical & Engineering Data, 2001, 46(2): 381-384.
    32. Vander Waals J .H, Plateeuw J.C, Clathrate Solutions [J]. Adv. Chem. Phys., 1959, 2(l), 1-57.
    33. Parrish W.R., Prausnitz J.M., Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures [J]. Ind. Eng. Chem. Des, 1972, 11(1): 26-35
    34. John V T, Papadopoulos K.D., Holder G. D., A Generalized Model for Predicting Equilibirum Conditions for Gas Hydrates [J]. AIChE Journal, 1985, 31(2): 252-259
    35. Englezos P., Bishnoi P. R., Prediction of Gas Hydrate Formation Conditions in Aqueous Electrolyte Solutions [J]. AIChE Journal, 1988, 34(10): 1718-1721
    36. Barkan E.S., Sheinin D. A., A General Technique for the Calculation of Formation Conditions of Natural Gas Hydrates [J]. Fluid Phase Equilibria, 1993, 86: 111-136
    37. Clarke M., Bishnoi P. R, Prediction of Hydrate Formation Conditions in Aqueous Electrolytes Solutions in the Presence Methanol [C]. Proceeding of 4th International Conference on Gas Hydrates. Yokohama, Japan , 2002: 406-411
    38. Zuo Y X., Fürst W., Use of an electrolyte equation of state for the calculation of vapor–liquid equilibria and mean activity coefficients in mixed solvent electrolyte systems [J]. Fluid Phase Equilibria, 1998, 150-151: 111-136
    39. Javanmardi J, Moshfeghian M, Maddox R.N., Simple Method for Predicting Gas Hydrate Formation Conditions in Aqueous Mixed Electrolyte Solutions [J]. Energy & Fuels, 1998, 12: 219-222
    40. Nasrifar K., Moshfeghian M., Maddox R.N., Prediction of Equilibirum Conditions for Gas Hydrate Formation in the Mixtures of Both Electrolytes and Alcohol [J]. Fluid Phase Equilibria, 1998, 146: 1-13
    41. Liao J., Mei D. H., Yang J. T., etc., Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions Containing Electrolytes and (Electrolytes +Methanol) [J]. Ind. Eng. Chem. Res., 1999, 38(4): 1700-1705
    42. Zuo J. Z., Zhang D., Ng H. J., Representation of Hydrate Phrase Equilibria in Aqueous Solutions of Methanol and Electrolytes Using an Equation of State [J]. Energy & Fuels, 2000, 14 (1): 19-24
    43. Mehta A. P., Sloan E. D., A Thermodynamic Model for Structure一H Hydrates [J]. AIChE Journal, 1994, 40(2): 312-320
    44. Mehta A .P, Sloan E .D. Improved Thermodynamic Parameters for Prediction of Structure H Hydrate Equilibria [J]. AIChE Journal, 1996, 42(7): 2036-2046
    45. Madsen J., Pedersen K. S., Modeling of Structure H Hydrates Using a Langmuir Adsorption Model [J]. Ind. Eng. Chem. Res., 2000, 39(4): 111-114.
    46. Chen G J., Guo T M. Thermodynamic modeling of hydrate formation based on new concepts [J]. Fluid Phase Equilibria, 1996, 122: 43-65.
    47. Mathew A., Mehran P. D., Bishnoi P. R., A Method to Predict Equilibrium Conditions of Gas Hydrate Formation in Porous Media [J] Ind. Eng. Chem. Res., 1999, 38: 2485-2490
    48. Vysniauskas A., Bishnoi P. R,A Kinetic Study of Methane Hydrate Formation [J]. Chemical Engineering Science, 1983, 38(7): 1061-1072
    49. Vysniauskas A., Bishnoi P. R., Kinetics of Ethane Hydrate Formation [J]. Chemical Engineering Science, 1985, 40(2): 29 9-303
    50. Dorstewitz F., D. Mewes. The Influence of Heat Transfer on the Formation of Hydrate Layers in Pipes [J]. International Journal of Heat and Mass Transfer, 1994, 37(14): 2131-2137.
    51. Martin B. an Experimental Study of the Nucleation and Growth of Gas Hydrates [D]. Kemiteknik Technical University of Denmark, 1997.
    52. Bollavaram A., Growth Kinetics of Single Crystal s 1l Hydrates; Elimination of Mass and Heat Transfer Effects [C]. Proceeding of 3rd International Conference on Gas Hydrates. Salt Lake City, USA, 1999
    53. Hammerschmidt E G., Formation of gas Hydrates in natural gas transmission lines [J]. Ind. Eng. Chem., 1934, 26(8): 851-855
    54. Freer, E.M., E. D. Sloan, Jr., An Engineering Approach to Kinetic Inhibitor Design using Molecular Dynamics Simulations [C]. the 3rd International Hydrate Conference, Salt Lake City, July, 1999.
    55. Englezos, P., P.R. Bishnoi, Gibbs Free Energy Analysis for the Supersaturation Limits of Methane in Liquid Water and the Hydrate-gas-liquid Water Phase Behavior [J]. Fluid Phase Equilibria, 1988b, 42: 129-140.
    56. Lievois, J.S., R. Perkins, R.J. Martin, R. Kobayashi, Development of an Automated, High Pressure Heat Flux Calorimeter and Its Application to Measure the Heat of Dissociation and Hydrate Numbers of Methane Hydrate [J]. Fluid Phase Equilibria, 1990, 59(1): 73-97.
    57. Freer, E.M., M.S. Selim, E.D. Sloan, Jr., Methane Hydrate Film Growth Kinetics [J]. Fluid Phase Equilibria, 2001, 185(1-2): 65-75.
    58. Prinder K.L. A Kinetic Study of the Formation of the Tetrahydrofuran Gas Hydrate [J]. Can. J. Chem. Eng., 1965, 5: 271-274.
    59. Graauw J.D., Rutten J.J. The mechanism and the rate of hydrate formation [C].Proc. 3rd Int. Symp. on Fresh Water from the Sea, Athens: Amaroussion, 1970 3: P103-116.
    60. Englezos P., A Model for the Formation Kinetics of Gas Hydrates from Methane, Ethane, and Their Mixtures [D]. U. Calgary, 1986.
    61. Englezos P., Kalogerakis N., Dholabhai P.D., Bishnoi P.R. Kinetics of formation of methane and ethane gas hydrates [J]. Chem. Eng. Sci., 1987a, 42(11): 2647-2658.
    62. Mattew A Clarke , P R Bishnoi. Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate formation using in2situ particle size analysis [J]. Chem Eng Sci, 2004, 60: 695-709.
    63. Selim M S, Sloan E D. Heat and mass transfer during the dissociation of hydrates in porous media [J]. AICHE J, 1989, 35(6): 1049-1052.
    64. Kamath V A, Holder G D. Dissociation heat transfer characteristics of methane hydrates [J]. AICHE J, 1987, 33(2): 347-350.
    65. Kim H C, Bishnoi P R, Heidemann R A. Kinetics of methane hydrate decomposition [J]. Chem Eng Sci, 1987, 42(7): 347-350.
    66. Mattew A Clarke, P R Bishnoi. Determination of the intrinsic rate of ethane gas hydrate decomposition [J]. Chem Eng Sci, 2000, 55: 4869-4883.
    67. Mattew A Clarke, P R Bishnoi. Determination of the intrinsic rate constant and activation energy of CO2 gas hydrate decomposition using in situ particle size analysis [J]. Chem Eng Sci, 2004, 59: 2983-2993.
    68.陈国邦,余建平,黄志秀等.天然气液化技术及其应用[J].深冷技术, 1995, (5) :1~7
    69.陈进富,陆绍信.吸附法储存天然气汽车燃料技术的研究[J].天然气工业, 1999, 19(4): 81-84.
    70. Miller B, Strong E R Jr. Hydrate storage of natural gas. Am. Gas Assoc. Mon., 1946, 28: 63-67.
    71. Sasson R., MacDonald I. Scientists unlocking gas hydrate [J]. Science news, 1997.
    72. Gudmundsson J S, Marit Mork, Oscar F. Graff. Hydrate Non-Pipeline Technology[C]. Proceeding of 4th International Conference on Gas Hydrates. Yokohama, Japan, 2002: 997-1002.
    73. Gudmundsson, J.S. Method and equipment for production of gas hydrate (in Norwegian) [P]. Norwegian patent. Pat. 1990, no. 172080.
    74. Hutchinson A. J. L. System for forming and storing hydrocarbon hydrates [P]. US patent. Pat. 1946, no. 2356407.
    75. Takaokietal. Use of hydrate pellets of transportation of natural gas. In: Advantage of pellet form of natural gas hydrate in sea transportation. Proceeding of 4th International Conference on Gas Hydrates. Yokohama, Japan, 2002: 982-986
    76. Takeya Setal. In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate. J Phys Chem A, 2001; 105(42): 9756-9759.
    77. Sasson R, MacDonald I. Scientists unlocking gas hydrate. Science news ,1997
    78. Makogon Y F. Hydrates of Natural Gas [M]. Tulsa Oklahomap: Penn Well Books , 1981.
    79. Nikitin, B.A., Nature, 140, 643 (1937).
    80. Davidson, D.W.,“Clathrate Hydrates,”inWater: A Comprehensive Treatise, Plenum Press, New York, 2, Chap. 3, 115 (1973).
    81. Ballard A L, Sloan E D J r1 Hydrate separation process for close boiling compounds. Proceeding of 4th International Conference on Gas Hydrates. Yokohama, Japan , 2002: 1007-1011.
    82. Okano T, Yamasaki A, Kiyono F, Fujii M, Yanagisawa Y. A Novel Separation Process of Hydro chlorofluorocarbons (HCFCs) and Hydro fluorocarbons (HFCs) by Using Clathrate Hydrate Formation[C]. Proceeding of 4th International Conference on Gas Hydrates. Yokohama, Japan , 2002: 1012-1015.
    83. Yamamoto, Y., Komai, T., Kawamura, T., Yoon, J.-H., Kang, S.-P., Okita, S., Studies on Separation and Purification of Guest Component. Proc.4th International Conference on Gas Hydrates, Yokohama, Japan, 2002: 428-432.
    84. Kang, S.-P., Lee, H., Recovery of CO2 from Flue Gas Using Gas Hydrate: Thermodynamic Verification through Phase Equilibrium Measurements. Environ. Sci. Technol., 2000, 34(20): 4397-4400.
    85. Happel J, Hnatow M A, Meyer H. The Study of Separation of Nitrogen from Methane by Hydrate Formation Using a Novel Apparatus [J]. Annals of the New York Academy of Sciences, 1994, 715: 412-424.
    86.冯英明,陈光进,王可.水合物法分离H2+CH4体系的非平衡级模拟[J].化工学报, 2005, 25(2): 197-202.
    87. Chen G J, Guo T M. A new approach to gas hydrate modeling [J] Chemical Engineering Journal, 1998, 71(2): 145-151.
    88.张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社, 2002.
    89.张群,冯三利,杨锡禄.试论我国煤层气的基本储层特点及开发策略[J].煤炭学报, 2001, 26(3): 230-235
    90.叶建平等,中国煤层气资源[M],中国矿业大学出版社,1998
    91.孙茂远,黄盛初等,煤层气开发与利用手册[M],北京:煤炭工业出版社,1998
    92.苏现波,陈江峰,孙俊民等,煤层气地质学与勘探开发[M],科学出版社,2001
    93.申宝宏,刘见中,张泓.我国煤矿瓦斯治理的技术对策[J].煤炭学报, 2007, 32(7):673-679.
    94.陶明信,高波,李晶莹.煤层气:新兴的能源资源及其灾害于环境问题[J].矿物岩石地球化学通报, 1999, 18(3) : 182-188.
    95.范维唐,卢鉴章,申宝宏,等.煤矿灾害防治技术及对策研究[R ].北京:中国工程院, 2006.
    96.高炯.煤矿瓦斯发电技术[J].中国煤层气, 2006, 3(1): 44-46.
    97.郑爽,王佑安,王震宇,陈国新.中国煤矿抽放瓦斯和利用[J].煤矿安全, 2003, 34(9): 4-6.
    98.鲜保安,崔思华,蓝海峰,李安启.中国煤层气开发关键技术及综合利用[J].天然气工业, 2004, 24(5): 104-106.
    99.天津大学.高表面活性炭变压吸附分离甲烷/氮气混合物的方法:中国, 02117916.
    6[P]. 2003-01-04.
    100. Zhou Li, Guo Wencai, Zhou Yaping. A feasibility study of separating CH4/N2 by adsorption [J]. Chinese J Chem Eng, 2002, 10(5): 558-561.
    101.辜敏,鲜学福,张代均,等.变压吸附技术分离CH4/N2气体混合物[J].煤炭学报, 2002, 27(2): 140-143.
    102.辜敏,鲜学福.抽放煤层气变压吸附过程的数学模拟[J].煤炭学报,2001, 26(3): 140-143.
    103.杨明莉.煤层甲烷变压吸附浓缩的研究[D].重庆:重庆大学, 2004.
    104.赵建忠,石定贤,赵阳升.煤层气水合物定容生成实验研究[J].化学工程, 2007, 35(03): 68-70.
    105. Yasuhiko H. M. Recent advances in hydrate-based technologies for natural gas storage-a review [J].化工学报, 2003, 54(Suppl): 1-17.
    106.刘道平,周文铸,黄文件,等.天然气水合物制备过程强化方式的探讨.天然气工业, 2004, 24 (5) :130-133.
    107. Kozo Yoshikawa, Yuichi Kondo, Takahiro Kimura, et al. Production method for hydrate and device for proceeding the same[P]. United States Patent: 524753, 2000.
    108.周公度.结构和物性:化学原理的应用[M].北京:高等教育出版社, 2000:97-104.
    109.陈敬中.现代晶体化学:理论与方法[M].北京:高等教育出版社,2001.8.
    110.孙志高,樊栓狮,郭开华,等.天然气水合物形成条件的实验研究与理论预测[J].西安交通大学学报,2002,36(1):16-19.
    111.章春笋,樊栓狮,郭彦坤,等.不同类型表面活性剂对天然气水合物形成过程的影响.天然气工业, 2003, 23(1): 91-95.
    112. Nimalan Gnanendran, Robert Amin. Modeling hydrate formation kinetics of a hydrate promoter–water–natural gas system in a semi-batch [J]. Chemical Engineering Science, 2004,59: 3849-3863.
    113. Xiaohui Han, Shengjie Wang,Xiaoyan Chen,et al. Surfactant Accelerates Gas Hydrate Formation[A], Proc of the 4th Int Conf on Gas Hydrates[C], Yokohama, 2002: 1036-1039.
    114. Zhong Y, Rogers R.E. Surfactant effects on gas hydrate formation [J]. Chemical Engineering Science, 2000, 55: 4175-4187.
    115. Jager M D, Sloan E D. The effect of pressure on methane hydration in pure water and sodium chloride solutions [J]. Fluid Phase Equilibria, 2001, 185(1/2): 89-99.
    116. Dimo Kashchiev, Abbas Firoozabadi. Nucleation of gas hydrates [J]. Journal of Crystal Growth 2002, 243: 476–489.
    117. Sun, C.Y., Chen, G.G., Guo, T.M., 2001, The Status of the Kinetics of Hydrate Nucleation. ACTA, 22(4): 82-86(in Chinese)[孙长宇,陈光进,郭天民, 2001,石油学报, 22(4): 82-86]
    118. Chen, G.G., Guo, T.M., 1998, A New Approach to gas hydrate modeling. Chem. Eng. J. 71: 145-151
    119. Ma, C.F., Chen, G.G., Guo, T.M., 2002, Kinetics of Hydrate Formation Using Gas Bubble Suspended in Water. SCIENCE IN CHINA(Series B), 45(2): 208-215
    120. Peng, B.Z., Luo, H., Sun, C.Y., Ma, Q.L., Zhou, W., Chen, G.G., 2007, Study on Growth Kinetics of Methane Hydrate Film, ACTA CHIMICA SINICA, 65(2): 95-99(in Chinese )[彭宝仔,罗虎,孙长宇,马庆兰,周伟,陈光进, 2007,化学学报, 65(2): 95-99]
    121. Shunji H., Shinji O., Jiro K., Shiro M., 2005. Gas–solid reaction model for a shrinking spherical particle with unreacted shrinking core. Chem. Eng. Sci., 60: 4971– 4980
    122. Chen, X.Y., He, X.S., He, X.X., Wang, S.J., Liu F.R., 2004, Study on Kinetics of Natural Gas Hydrate Formation, JOURNAL OF XI′AN JIAOTONG UNIVERSITY, 38(1): 85-88(in Chinese )[陈孝彦,何小社,何晓霞,王胜杰,刘芙蓉, 2004,西安交通大学学报, 38(1): 85-88]
    123. Xu, H.Q., 1993, Gas–solid reaction Engineering, Atomic Press, Beijing. (in Chinese )[许贺卿, 1993,气固反应工程,北京:原子能出版社.]
    124. Cussler, E. L. 2000, Diffusion Mass Transfer in Fluid System (2nd), Cambridge University Press, London.
    125.黄犊子,水合物及其在多孔介质中导热性能的研究[D],中国科学技术大学,2005.1
    126. Lefebvre, A.H., 1989. Atomization and Sprays. Hemisphere, New York.
    127.刘克万,辜敏,鲜学福.变压吸附浓缩甲烷/氮气中甲烷的研究进展[J].现代化工, 2007, 27(12): 15-18.
    128.中国科学院. 2006高技术发展报告[M].北京:科学出版社, 2006.114~116.
    129.樊栓狮,程宏远,陈光进等,水合物法分离技术研究[J].现代化工, 1999, 19(2): 10-14.
    130.马昌峰,陈光进,张世喜,等.一种从含氢气体分离浓缩氢的新技术-水合物分离技术[J].化工学报, 2001, 52(12): 1113-1116.
    131. Praveen Linga, Rajnish Kumar, Peter Englezos. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures [J]. Chemical Engineering Science, 2007(62): 4268-4276.
    132. Rovetto L. J, Bowler K. E, Stadterman L. L, Dec S. F, Koh C. A, Sloan E.D. Dissociation studies of CH4-C2H6 and CH4-CO2 binary gas hydrates [J]. Fluid Phase Equilibria, 2007(261): 407-413.
    133. Hideo Tajima, Akihiro Yamasaki, Fumio Kiyono. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation [J]. Energy,2004(29): 1713-1729.
    134.唐良广,李小森,冯自平.水合物法从烟气中分离CO2的原理和实验系统[J].动力工程, 2005, 25(sup): 648-652.
    135. Chen G J, Guo T M. Thermodynamic modeling of hydrate formation based on new concept [J]. Fluid phase Equilibria. 1996, 122 (122): 43-65.
    136.孙长宇,陈光进. (氮气+四氢呋喃+水)体系水合物的生长动力学[J].石油学报(石油加工), 2005, 21(4): 99-105.
    137.赵建忠,赵阳升,石定贤.喷雾法合成气体水合物的实验研究[J].辽宁工程技术大学学报, 2006, 25(2): 286-289.
    138. Kim, H. C., Bishnoi, P. R., Heidemann, R. A., Rizvi, S. S. H. 1987. Kinetics of Methane Hydrate Decomposition[J]. Chem. Eng. Sci., 42(7): 1645—1653.
    139. Matthew, A. C., Bishnoi, P. R., 2001. Measuring and Modeling the Rate of Decomposition of Gas Hydrates Formed from Mixtures of Methane and Ethane[J]. Chem. Eng. Sci., 56(16): 4715-4724.
    140.孙长宇,陈光进,郭天民.甲烷水合物恒温恒压分解过程研究[J].地球化学, 2003, 32(2): 112-116.
    141.颜克凤,李小森,陈朝阳,等.用分子动力学模拟甲烷水合物热激法分解[J].物理学报, 2007, 56(8): 4994-5002
    142. Satoshi Takeya, Takao Ebinuma, Tsutomu Uchida. Self-preservation effect and dissociation rates of CH4 hydrate [J]. Journal of Crystal Growth, 2002, (237-239): 379-382.
    143. Giavarini, C.; Maccioni, F. Self-Preservation at Low Pressures of Methane Hydrates with Various Gas Contents [J]. Ind. Eng. Chem. Res, 2004; 43(20): 6616-6621.
    144.疋田賢次郎他、「メタンハイドレートペレットの自己保存性試験」[C],日本航海学会論文集, 2002, 107: 13-19.
    145. Circone, S.; Stern, L. A.; Kirby, S. H. The Role of Water in Gas Hydrate Dissociation [J]. J. Phys. Chem. B. 2004, 108(18): 5747-5755.
    146. Stern, L. A.; Circone, S.; Kirby, S. H.; Durham, W. B. Preservation of MethaneHydrate at 1 Atm [J]. Energy & Fuels, 2001, 15(2): 499-501.
    147. Stern, L. A.; Circone, S.; Kirby, S. H.; Durham, W. B. Anomalous Preservation of Methane Hydrate at 1 atm [J]. J. Phys. Chem. B 2001, 105(9): 1756-1762.
    148. J.S Gudmundsson,., M Parlaktuna And A.A Khokhar,. Storing Natural Gas as Frozen Hydrate[C]. SPE Production and Facilities, 1994: 69-73.
    149.税碧恒.天然气水合物储存技术应用研究与发展[J].天然气工业, 2000, 20(02): 93-97.
    150.樊栓狮,华贲.天然气水合物储运技术研究进展[J].天然气工业, 2005, 25(11): 100-03.
    151.樊栓狮等.天然气水合物储存与运输技术[M].北京:化学工业出版社, 2005.
    152. Javanmardi J, Nasrifar Kh, Najibi S.H, Moshfeghian M. Economic evaluation of natural gas hydrate as an alternative for natural gas transportation [J]. Applied Thermal Engineering, 2005(25): 1708-1723.
    153.张文玲,李海国,王胜杰,刘芙蓉.水合物储运天然气技术的研究进展[J].天然气工业, 2000, 20(3): 95-98.
    154. Khokhar A.A, Gudmundsson J.S, Sloan E.D. Gas storage in structure H hydrates [J]. Fluid Phase Equilibria, 1998, 150-151: 383-392.
    155.王正烈,周亚平.物理化学[M].北京:高等教育出版社, 2001.12.
    156.崔朝阳,沈建东,刘芙蓉.天然气水合物(NGH)储运天然气技术与常规储运技术的对比分析[J].科学技术与工程, 2004, 11: 925-929.
    157.杨俊杰,陈志斌.城镇CNG与LNG供气方案的经济分析[J].煤气与热力, 2003, 23(1): 28-32.
    158.蒋孝兵,谢海英.煤层气利用新方案[J].天然气工业, 2006, 26(10): 144-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700