用户名: 密码: 验证码:
光电液膜反应器处理染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,光电催化氧化作为一种新的水处理技术还停留在实验室小型研究阶段。虽然围绕增大TiO2膜电极的表面积,选择合适的电极基底材料以及设计高效的反应器已经做了大量的工作,但一直以来,反应器中光能的利用率问题往往被人们忽视。实验室研究所用的光电反应器几乎都是将光电极完全浸入反应液中,这样会引起以下几个问题:一是激发光的利用率低;二是传质效率不高;三是反应器能耗高、装置较为复杂。
     本文针对传统光电反应器激发光利用率低、传质效率不佳和反应器结构复杂等问题,设计了三种光电液膜反应器——转盘光电液膜反应器(RPEC)、斜板光电液膜反应器(GSPEC)和双转盘光电池液膜反应器(DRPC),通过转盘的转动或者废水的循环流动在光阳极表面形成几十微米厚的液膜,不但大大降低了激发光在到达光催化剂表面前,由于有机溶液自身的长程吸收而引起的光损失,而且强化了废水的传质效率,同时由于使用低功率的光源而大大降低了热散失,无需安装循环冷却水装置而简化了装置结构,提高了光催化效率、降低了运行能耗,并减少了设备制造成本。其主要工作如下:
     1.通过直接热氧化法、阳极氧化法和溶胶-凝胶法制备了TiO2/Ti电极,考察了三种方法制备的电极的光电响应性能;分别将三种电极组装成动态光阳极的转盘光电液膜反应器(RPEC),处理罗丹明B(RB)模拟染料废水,考察了其光催化活性及其影响因素。结果表明,550℃热处理2小时的溶胶-凝胶TiO2/Ti电极(SG-TiO2/Ti)的光电响应性能和光催化效率最佳。SG-TiO2/Ti电极的X-射线衍射(XRD)和场发射扫描电镜(FESEM)分析结果表明,TiO2纳米粒子在Ti基底上分布均匀,主要为锐钛矿,粒径约为50nm。SG-TiO2/Ti转盘光电液膜反应器处理RB的最佳条件为:偏压0.4V;pH2.5;0.5 g L-1 Na2SO4和转速90 rpm。降解20mg L-1RB溶液90分钟,色度及TOC去除率分别为97.2%和72.7%。SG-TiO2/Ti稳定性和平行性都很好。处理印染废水原水,同一片电极10次的平均脱色率为68.0±1.0 %;10片TiO2/Ti电极的平均脱色率为67.6±2.4 %。
     2. RPEC与传统光电反应器(CPEC)处理染料废水的对比结果表明,由于在转盘光电液膜反应器中,激发光只需透过几十微米的液膜即可照射到光阳极表面,避免了反应液自身对激发光的吸收而造成的光损失,大大提高了激发光的利用率;同时转盘的转动加强了溶液的传质,最终使得转盘光电液膜反应器处理20-150 mg L-1RB的单位电极面积的RB去除量提高到传统光电液膜反应器的1.03-6.75倍。提高的倍数随RB的浓度增加而增加,并与TiO2/Ti电极自身的光催化活性呈正相关关系。转盘光电液膜反应器还可有效处理实际印染废水原水和预处理水,提高其可生化性。降解150分钟,脱色率分别达到81%和77%;TOC去除率分别达到51%和21%;BOD5/COD比值分别由32.6%和34%升高到48.5%和42.1%。
     3.发展了静态光阳极的斜板光电液膜反应器(GSPEC),其处理RB的最佳条件为:偏压0.8V;pH2.5;2.0 g L-1 Na2SO4和废水流速7.7L h-1。降解20mg L-1RB溶液90分钟,色度和TOC去除率分别为97.3%和76.2%。经GC-MS分析表明,RB的光电催化降解途径主要是氧化过程,RB可被降解为小分子有机酸,直至矿化为CO2和H2O。处理50mg L-1活性艳红X-3B(RBR)时,120分钟的色度和TOC去除率分别为97.7%和85%;处理100mg L-1活性艳蓝X-BR(RBB)时,120分钟的色度和TOC去除率分别为69.5%和43.2%。同一片电极30次处理20 mg L-1 RB的平均脱色率为86.8±5.3%,标准偏差为2.5%。与CPEC处理染料废水的比较结果与RPEC的结果类似,由于在斜板光电液膜反应器中,通过废水的循环流动,同时强化了激发光的利用率和废水的传质效率,最终强化了降解效率。处理印染废水1(150分钟)和印染废水2(180分钟),脱色率均达到85%;TOC分别达到55%和51%。表明斜板光电液膜反应器能够有效地降解实际印染废水。
     4.通过添加NH4F对SG-TiO2/Ti掺杂,使光阳极的光响应波长由400nm扩展到440nm,但同时其紫外光响应的光催化活性有所下降。无论是TiO2/Ti电极还是掺杂TiO2/Ti电极,利用斜板光电液膜反应器(GSPEC)均可利用免费光源——太阳光作激发光源,有效地使染料溶液脱色,从而进一步降低光电催化水处理的能耗。
     5.在RPEC的基础上,本着进一步降低RPEC的能耗和提高效率的思想,提出了双转盘光电池液膜反应器(DRPC),即将Cu电极制备成转盘,与TiO2/Ti转盘电极固定在同一转轴上,利用Ti与N型半导体TiO2接触产生的肖特基势垒,将光生电子自发转移向Ti表面,然后转移至与之等电位的Cu电极表面,并在Cu电极表面被饱和溶解氧捕获经一步或多步生成H2O2,H2O2可进一步参与染料的氧化降解,从而实现TiO2/Ti和Cu双极氧化,由此达到进一步提高效率和降低能耗的目的。双转盘光电池液膜反应器对染料脱色具有普遍性,处理10种不同的染料30min,脱色率为16.9%-99.9%。处理印染废水2,135分钟的脱色率和TOC去除率分别达到90%和49%,表明它可快速、高效降解实际印染废水。
     6. DRPC、RPEC和GSPEC的比较结果表明,DRPC比RPEC和GSPEC更高效,而且更低耗,更适合用于处理高浓度染料溶液。
     7.采用幂指数方程法建立了RB废水的转盘光电催化多因素降解动力学模型为: Ct = C0 exp (-0.06040I0.5383Q0.6670E0.8766R0.4666C0-0.6065 t)该模型能较好地描述RPEC催化降解RB废水的拟一级反应过程。本文研制的三种液膜反应器处理RB的表观动力学常数的大小顺序为DRPC>RPEC>GSPEC,与单位电极面积对RB的去除量的大小顺序一致。
     实验结果表明,本文研制的三种液膜反应器,通过光阳极的转动或废水的循环流动,使得部分光阳极暴露在空气中,同时强化了传质和激发光的利用率,比全浸式光阳极的传统光电反应器的处理效率大大提高,而且降低了能耗。本论文的研究结果对于将光催化技术推向实际废水的处理应用有着重要的参考意义。
As a new wastewater treatment technology, photoelectrocatalysis has only been studied in laboratory at present. Although a lot of work has been done relating to enlarge TiO2 thin film electrode areas, select suitable electrode substrate, and design high efficiency PC reactor, however, the low utilization efficiency of irradiation light source has been ignored in photoelectrocatalytic (PEC) process. The photo-anode employed in PEC reactors in laboratory is always immerged completely into solution, which results in the following disadvantages: first, irradiation light utilization efficiency is low; second, transfer speed is low; third, reactor setup is high energy-consuming and complex.
     In order to improve the utilization efficiency of light source, enhance the transfer speed and simplify the reactor structure, we developed three types of thin-film PC reactors—rotating disk thin-film PEC reactor (RPEC), gradient sheet thin-film PEC reactor (GSPEC) and dual rotating disks cell thin-film reactor (DRPC), in which utilization efficiency of light source and transfer speed was enhanced by the rotation of disk or flow of wastewater, and the reactor setup was simplified without circuiting cooling water. In this way, the overall PC degradation rate was enhanced and the cost was reduced. The detailed work is described below:
     1. Rotating disk thin-film PEC reactor (RPEC) with dynamic photoanode was developed. The photoanode——TiO2/Ti electrode was prepared by different methods including direct heat-oxidation, anodic-oxidation and sol-gel method. The photo-response character of the three types TiO2/Ti electrodes was investigated. These three types TiO2/Ti electrodes were installed into the RPEC, respectively, and applied to treat Rhodamine B (RB) simulated dye wastewater. In this system, their photocatalytic activity and influence factors were investigated, respectively. The TiO2/Ti electrode prepared by sol-gel method (SG-TiO2/Ti) by 550℃heat treated for 2 hours obtained the optimal photo-response and PEC efficiency. The X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis of the SG-TiO2/Ti electrode demonstrates that the electrode surface consisted of small uniform particulates, which were dominantly composed of anatase and their size was about 50 nm. The optimal treatment conditions for RB solution were: bias potential 0.4V, initial pH 2.5, Na2SO4 0.5 g L-1 and rotating speed 90 rpm. Under these condition, color and total organic carbon (TOC) removal efficiency of 20mg L-1 RB solution reached 97.2 % and 72.7 %, respectively. The stability and reproducibility of SG-TiO2/Ti electrode was excellent. Average decolourization efficiency of 10 times usages of identical electrode and 10 different electrodes was 68.0±1.0 % and 67.6±2.4 %, respectively, for treatment raw textile effluent.
     2. The comparison result of RPEC and conventional PEC reactor (CPEC) demonstrates that both the light utilization efficiency and transfer speed of RPEC was enhanced by the rotation of the TiO2/Ti electrode. On the TiO2/Ti electrode surface, thin aqueous film of several decadal microns thick formed, and the light absorption of RB solution can be avoided. In addition, the quantity of RB removed by per electrode area for RPEC treating 20-150 mg L-1RB was enhanced to 1.03-6.75 times of that of CPEC, and the enhanced times increased with RB concentration increase, and was in direct proportion to the PC activity of the TiO2/Ti electrode. RPEC can treat raw and treated textile effluents efficiently, and improve their biological degradation. Decolourization efficiency reached 81 % and 77 %, TOC removal efficiency reached 51 % and 21 %, and BOD5/COD ratio increased from 32.6 % and 34% to 48.5 % and 42.1 %, respectively, within 150 min treatment.
     3. Gradient sheet thin-film PEC reactor (GSPEC) with static photoanode was developed. Optimal treatment conditions of GSPEC with SG-TiO2/Ti electrode were: bias potential 0.8V, initial pH 2.5, Na2SO4 2.0 g L-1 and circulating flux 7.7L h-1. Under these condition, color and TOC removal efficiency of 20 mg L-1RB solution reached 97.3% and 76.2%, respectively. The analysis result of GC-MS demonstrates that RB was degraded into small molecule organic acid, CO2 and H2O at last, mainly by photogenerated holes or hydroxyl radical oxidation. Within 120 minutes, color and TOC removal efficiency of 50 mg L-1 Reactive Brilliant Red X-3B (RBR) solution reached 97.7 % and 85 %, respectively. Color and TOC removal efficiency of 100mg L-1 Reactive Brilliant Blue X-BR (RBB) solution reached 69.5 % and 43.2 %, respectively. Average decolourization efficiency of 30 times usages of identical electrode treating 20 mg L-1 RB solution was 86.8±5.3 %, with standard deviation of 2.5 %. Comparison result of GSPEC and CPEC is similar to RPEC since both the light utilization efficiency and transfer speed of GSPEC was enhanced by circulating flowing of wastewater. As a result, the overall degradation rate was improved obviously. GSPEC can degrade practical dye wastewater efficiently. Decolourization efficiency of both textile 1 (150 minutes) and 2 (180 minutes) reached 85 %, and TOC removal efficiency reached 55 % and 51 %, respectively.
     4. SG-TiO2/Ti electrode was doped by adding NH4F into sol-gel. The response wavelength of the doped SG-TiO2/Ti electrode was extended from 400 nm to 440 nm. However, its photo-activity under UV irradiation decreased. GSPEC, with both TiO2/Ti electrode and doped TiO2/Ti electrode, can use free light source—solar light as irradiation light source, and the energy cost was further reduced.
     5. In order to reduce the energy cost and improve treatment efficiency, dual rotating disks cell thin-film reactor (DRPC) was developed, in which Cu electrode was manufactured as disk and fixed on the same axis of TiO2/Ti electrode. Thus, photogerenated electrons can be driven from TiO2 to Ti substrate by Schottky Barrier between metal Ti and N-type semiconductor (TiO2) instead of by bias potential, and then to Cu surface, where the photogerenated electrons were captured by dissolved oxygen in solution on the Cu disk surface and transformed to H2O2 through one step or several steps. H2O2 can participate in dye oxidation. As a result, dual electrodes oxidation can be realized, treatment efficiency improved and energy cost decreased. Decolourization efficiency of ten kinds of dye reached 16.9 %-99.9 % by 30 minutes DRPC treatment with UV light irradiation. DRPC can degrade textile effluent 2 efficiently. Color and TOC removal efficiency within 135 minutes reached 90 % and 49 %, respectively.
     6. The comparison result of DRPC, RPEC and GSPEC demonstrates that DRPC is super to RPEC and GSPEC in treating high concentration dye wastewater. DRPC has higher efficiency and lower energy cost than RPEC and GSPEC.
     7. Exponential function was employed to establish the kinetics model of RPEC: ( )0.5383 0.6670 0.8766 0.4666 0.6065Ct = C0 exp 0.06040I Q E R C0 ?t The model can describe the pseudo first order of RB solution well degraded by RPEC. The apparent rate coefficients of the three thin-film reactors were in order below: DRPC >RPEC > GSPEC, which was consistent with the order that quantity of RB removed by per electrode area.
     The results demonatrate that the mass transfer and irradiation light utilization efficiency was enhanced by the rotation of the photoanode or the circulating flowing of wastewater in the three types of thin-film reactors developed in this paper. They are more effective and energy-saving than conventional PEC reactor, in which photoanode was completely immerged into wastewater. The significance of this research is to establish PC procedures that show promise of being industrialized in the future for real wastewater treatment.
引文
[1] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238 (1972) 37-38.
    [2] Carey J.H., Lawrence J., Tosine H.W. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension. Bull Environ. Contam. Toxic. 16 (1976) 697-701.
    [3] Frank S.N., Bard A.J. Semiconductor electrodes photoassisted oxidations and photoelectrosynthesis at polycrystalline TiO2 electrodes. J. Am. Chem. Soc. 99 (1977) 4667-4675.
    [4] Frank S.N., Bard A.J. Heterogeneous photo-catalytic oxidation of cyanine ion in aqueous solution at TiO2 powders. J. Am. Chem. Soc. 99 (1977) 303-308.
    [5] Frank S.N., Bard A.J. Heterogeneous photo-catalytic oxidation of cyanine and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 81 (1977) 1483-1489.
    [6] Ollis D.F. Contaminant Degradation in Water: Heterogeneous Photocatalysis Degrades Halogenated Hydrocarbon Contaminants. Environ. Sci. Technol. 19 (1985) 480-484.
    [7] Goswami D.Y. A Review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Process. J. Sol. Energy Eng. 119 (1997)101-107.
    [8] Vidal A., Diaz A.I., El Hraiki A., Romero M., Muguruza I., Senhaji F., Gonzalez J. Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies. Catal. Today 54 (1999) 283-290.
    [9] Wang R., Hashimoto K., Fujishima A.A. Light-induced amphiphilic surfaces. Nature 88 (1997) 431-432.
    [10] Ward M.D., Bard A.J. Photocurrent enhancement via trapping of photogenerated electrons of titanium dioxide particles. J. Phys. Chem. 86 (1982) 3599-3805.
    [11] Zanoni M.V.B., Sene J.J., Anderson M.A. Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes. J. Photochem. Photobiol. A 157 (2003) 54-63.
    [12] Li J.Q., Li L.P., Zheng L. Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method. Electrochim. Acta 51 (2006) 4942-4949.
    [13] Zhang W.B., An T.C., Xiao X.M. Photoelectrocatalytic degradation of reactive brilliant orange K-R in a new continuous flow photoelectrocatalytic reactor. Appl. Catal. A 255 (2003) 221-229.
    [14] Yang J., Chen C.C., Ji H.W. Mechanism of TiO2-Assisted Photocatalytic Degradation of Dyes under Visible Irradiation: Photoelectrocatalytic Study by TiO2-Film Electrodes. J. Phys. Chem. B. 109 (2005) 21900-21907.
    [15] Li X.Z., Liu H.L., Yue P.T. Photoelectrocatalytic Oxidation of Rose Bengal in Aqueous Solution Using a Ti/TiO2 Mesh Electrode. Environ. Sci. Technol. 34 (2000) 4401-4406.
    [16] Muruganandham M., Swaminathan M. Solar driven decolourisation of Reactive Yellow 14 byadvanced oxidation processes in heterogeneous and homogeneous media. Dyes Pigments 72 (2005)137-143.
    [17] Kuo W.S., Ho P.H. Solar photocatalytic decolorization of dyes in solution with TiO2 film. Dyes Pigments 71(2006) 212-217.
    [18] Muruganandham1 M., Shobana N., Swaminathan M. Optimization of solar photocatalytic degradation condition of Reactive Yellow 14 azo dye in aqueous TiO2. J. Mol. Catal. A 246 (2006) 153-161。
    [19] Wawrzyniak B., Morawski A.W. Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen. Appl.Catal. B 62 (2006) 150-158.
    [20] Ou Y., Lin J.D., Zou H.M. Effects of surface modification of TiO2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms. J. Mol. Catal. A 241 (2005) 59-65.
    [21] Liu Y., Chen X., Li J. Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61 (2005) 11-18.
    [22] Kosowska B., Mozia S., Morawski A.W. The preparation of TiO2-nitrogen doped by calcinations of TiO2.xH2O under ammonia atmosphere for visible light photocatalysis. Sol. Energy Mater. Sol. Cells 88 (2005) 269-280.
    [23] Sakthivel S., Neppolian B., Shankar M.V. Solar photocatalytic degradation of azo dye: comparision of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 77 (2003) 64-82.
    [24] Stylidi M., Kondarides D.I., Verykios X.E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B 40 (2003) 271-286.
    [25] Perez M.H., Pen-uela G., Maldonado M.I. Degradation of pesticides in water using solar advanced oxidation processes. Appl. Catal. B 64 (2006) 272-281.
    [26] Qamar M., Muneer M., Bahnemann D. Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. J. Environ. Manage. 80 (2006) 99-106.
    [27] Malatoa S., Blancoa J., Fern-andez-Alba A.R. Solar photocatalytic mineralization of commercial pesticides: Acrinathrin. Chemosphere 40 (2000) 403-409.
    [28]梁喜珍,黄国林,周跃明.光催化降解乐果的动力学研究.东华理工学院学报. 29 (2006) 80-83.
    [29] Marta I.L. Heterogeneous photocatalytic and transition metal ions in photocatalytic systems, Appl. Catal. B 23 (1999) 89-114.
    [30] Peller J., Wiest O., Kamat P.V. Synergy of combining sonolysis and photocatalytic in the degradation and mineralization of chlorinated Aromatic compounds. Environ. Sci. Technol. 37 (2003) 1925-1932.
    [31] Rengaraj S., Li X.Z. Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,5-trichlorophenol in aqueous suspension. J. Mol. Catal. A 243 (2006) 60-67.
    [32] Rabani J., Yamashita K., Ushida K., Stark J., Kira A. Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser. J. Phys. Chem. B 102 (1998) 1689-1695.
    [33] Raja P., Bozzi A., Mansilla H., Kiwi J. Evidence for superoxide-radical anion, singlet oxygen and OH-radical intervention during the degradation of the lignin model compound (3-methoxy-3-hydroxyphenylmethlcarbinol). J. Photochem. Photobiol. A 169 (2005) 271-278.
    [34] Cho M., Chung H., Choi W., Yoon J. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic distinfection. Water Res. 38 (2004)1069-1077.
    [35] Coronado J. M., Maira A., Martínez-Arias A., Conesa J.C., Soria J. EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts. J. Photochem. Photobiol. A 150 (2002)213-221.
    [36] Antonaraki S., Androulaki E., Dimotikali D., Hiskia A., Papaconstantinou E. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2. J. Photochem. Photobiol. A 148 (2002) 191-197.
    [37] Chhor K., Bocquet J. F., Colbeau-Justin C. Comparatove studies of phenol and salicylic acid photocatalytic degradation: influence of adsored oxygen. Mater.Chem.Phys. 86 (2004) 123-131.
    [38] Ska B.Z., Grzechulska J., Czuk R.J.K., Morawski A.W. The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide. Appl. Catal.B 45 (2003) 293-300.
    [39] Assabane A., Yahia A.I., Tahiri H., Guillard C., Herrmann J.M. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of tiania: identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,3-benzenetricarboxylic acid). Appl. Catal. B 24 (2000) 71-87.
    [40] Carrway E., Hoffman A., Hoffmann M. Photocatalytic oxidation of organic acids on quantum-sized semiconductor Colloids. Environ. Sci. Technol. 28 (1994) 785-793.
    [41] Ishibashi K.I., Fujishima A., Watanabe T., Hashimoto K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. A 134 (2000) 139-142.
    [42] El-morsi T.M., Budakowski W.R., Abd-el-Aziz A.S., Friesen K.J. Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO2: a reaction of adsorbed chlorinated alkane with surface hydroxyl radicals. Environ. Sci. Technol. 34 (2000) 1016-1022.
    [43] Turchi C.S., Ollis D.F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 122 (1990) 176-192.
    [44] Yang J.K., Davis A.P. Photocatalytic oxidation of Cu(Ⅱ)-EDTA with illuminated TiO2: kinetics. Environ. Sci. Technol. 34 (2003) 3789-3795.
    [45] Zhao J.C., Wu T.X., Wu K.Q., Hidaka H., Serpone N. Photoassisted degradation of dye pollutants. 3. degradation of the cationic dye Rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles. Environ. Sci. Technol. 32 (1998) 2393-2400.
    [46] Wu T.X., Lin T., Zhao J.C., Hidaka H., Serpone N. TiO2-assisted photodegradation of dyes. 9. photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environ. Sci. Technol. 33 (1999) 1379-1387.
    [47] Liu G.M., Wu T.X., Zhao J.C. Photoassisted degradation of dye pollutants. 8. irreversible degradation of Alizarin Red under visible light radiation in air-equilibrated aqueous TiO2 dispersions. Environ. Sci. Technol. 33 (1999) 2081-2087.
    [48] Liu G.M., Li X., Zhao J.C., Hidaka H., Serpone N. Photooxidation pathway of Sulforhodamine-B dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environ. Sci. Technol. 34 (2000) 3982-3990.
    [49] Stylidi M., Kondarides D.I., Verykios X.E. Visible light-induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions. Appl. Catal. B 47 (2004) 189-201.
    [50] Johannes S., Joseph R. Photocatalytic dechlorination of aqueous carbon tetrachloride solutions in TiO2 layer systems: a chain reaction mechanism. J.Phys.Chem.B 103 (1999) 8523-8531.
    [51] Suri R.P.S., Liu J.B., Crittenden J.C. Removal and destruction of organic contaminants in water using adsorption, steam regeneration, and photocatalytic oxidation: A polotsalve study. J. Air Waste Manage. Association 49 (1999) 1245-1248.
    [52] Asahi R., Ohwaki T., Aoki K. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 293 (2001) 269-271.
    [53] Diwald O., Thompson T.L., Goralski E.G. Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light. J. Phys. Chem. B 108 (2004) 52-57.
    [54] Ihara T., Miyoshi M., Iriyama Y. Visible-light-active titanium oxide photocatalytst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B 42 (2003) 403-409.
    [55] Ohno T., Mitsui T., Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett. 32 (2003) 363-365.
    [56] Fujishima A., Hashimoto K., Watanabe T. Applications of TiO2 photocatalysis. In TiO2 Photocatalysis: Fundamentals and Applications. CMC: Japanese, 1997.
    [57]李芳柏,王良焱.新型:Ti/TiO2电极的制备及其光电催化氧化活性.中国有色金属学报11 (2001) 977-981.
    [58]刘惠玲,周定.网状Ti/TiO2电极的制备及染料的光电催化降解.哈尔滨工业大学学报34 (2001) 789-792.
    [59]刘惠玲,周定.网状TiO2/Ti电极光电催化氧化若丹明B.环境科学23 (2002) 47-51.
    [60] Michael L., Hitchman, Fang Tina. Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 3-chloropheno. J. Electroanal. Chem. 536-539 (2002) 164-172.
    [61] Vinodgopal K., Hotchandani S., Kamat P.V. Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 3-chlorophenol. J. Phys. Chem. 97 (1993) 9040-9044.
    [62] Vinodgopal K., Stafford U., Gary K.A. Electrochemically assisted photolysis.Ⅱ.the role of oxygenand reaction intermediates in the degradation of 3-chlorophenol on immobilized TiO2 particulate films. J. Phys. Chem. 98 (1994) 6797-6803.
    [63] Vinodgopal K., Kamat P.V. Combine electrochemistry with photocatalysis. Chemtech. 26 (1996) 16-22.
    [64] Kim D.H., Anderson M.A. Photoelectrocatalytic degradation of formic acid using a porous TiO2 thin-film electrode. Environ. Sci. Technol. 28 (1994) 479-483.
    [65] Kesselman J.M., Lewis N.S., Hoffmann M.R. Photoelectrochemical degradation of 3-chlorocatechol at TiO2 electrodes: comparison between sorption and photoreactivity. Environ. Sci. Technol. 31 (1997) 2296-2302.
    [66]姚清照,刘正宝.光电催化降解染料废水.工业水处理19 (1999)14-17.
    [67]李景印,郭玉凤.光电催化降解2,3-二氯苯酚的研究.重庆环境科学24 (2002) 52-54.
    [68]冷文华,童少平.附载型二氧化钛光电催化降解苯胺机理.环境科学学报20 (2000) 781-784.
    [69]刘鸿,冷文华.光电催化降解磺基水杨酸的研究.催化学报21 (2000) 209-212
    [70] Waldner G., Pourmodjib M., Bauer R., Neumann-Spallart M. Photoelectrocatalytic degradation of 3-chlorophenol and oxalic acid on titanium dioxide electrodes. Chemosphere 50 (2003) 989-998.
    [71]唐振宁.钛白粉的生产与管理.北京:化学工业出版社2000 42-45.
    [72]孙奉玉,吴鸣,李文钊.二氧化钛的尺寸与光催化活性的关系.催化学报19 (1998) 229-233.
    [73]于向阳,梁文,程继健.提高二氧化钛光催化性能的途径.硅酸盐通报1 (2000) 53-57.
    [74]张梅,杨绪杰,陆路德.纳米TiO2:一种性能优良的光催化剂.化工新型材料28 (2000)11-13.
    [75] Leng W.H., Zhu W.C., Ni J. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl. Catal. A 300 (2006) 23-35.
    [76]冷文华.光电催化降解苯胺的研究—外加电压的影响.环境科学学报21 (2001) 710-714.
    [77]李宣东,Ti /TiO2薄膜电极制备和光电催化降解罗丹明B.环境保护科学29 (2003) 9-12.
    [78]李景印.光电催化降解2,4 -二氯苯酚的研究.重庆环境科学24 (2002) 52-54.
    [79] Matthews R.W. Photooxidation of organic impurities in water using thin film of titanium dioxide. J.Phys.Chem. 91 (1987) 3326-3333.
    [80] Zhang Y., Crittenden J.C. Fixed-Bed Photocatalysts for Solar Decontamination of Water. Environ .Sci .Technol. 28 (1994) 434-442.
    [81]安太成.三维电极电助光催化降解直接湖蓝水溶液的研究.催化学报2 (2001) 193-197.
    [82]王柱,赵振河.光电催化氧化处理纺织印染废水技术探讨.广西纺织科技31 (2001) 34-39.
    [83] Kim D.H., Marc A.A. Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films. J. Photochem. Photobio. A 94 (1996) 221-229.
    [84]邓南圣,吴峰.环境光化学.北京:化学工业出版社2003 411-427.
    [85] Jeosadaque J., Sene W.A., Zeltner, Anderson M.A. Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin-film electrode materials. J. Phys. Chem. B.107 (2003) 1597-1603.
    [86]冷文华,光电催化降解苯胺的研究—单槽与双槽的光反应器对比.环境科学学报22 (2002) 40-44.
    [87]刘学峰,张莉,涂铭旌.载铈纳米TiO2粉体的制备及其反射光谱特性研究.光谱学与光谱分析25 (2005) 273-276.
    [88] Abdllah M., Lew G.K.C., Matthew R.W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J.Phys.Chem. 94 (1990) 6820-6825.
    [89] Crittenden J.C., Zhang Y., Hand D.W. Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts. Wat. Environ. Res. 68 (1996) 270-278.
    [90]徐炽焕.日本TiO2光催化技术的发展.国际化工信息4 (2003)15-17。
    [91] Kenji H., Teruaki H. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions. Water Res. 24 (1990) 1414-1417.
    [92] Manivannan A., Spataru N., Arihara K., Fujishima A. Electrochemical Deposition of Titanium Oxide on Boron-Doped Diamond Electrodes. Electrochem. Solid-State Lett. 8 (2005) C138-C140.
    [93] Blount M. C., Kim D. H., Falconer J. L. Transparent thin-film TiO2 photocatalysta with high activity. Environ. Sci. Technol. 35 (2001) 2986-2994.
    [94] Molinari R., Pirillo F., Falco M., Loddo V., Palmisano L. Photocatalytic degradation of dyes by using a membrane reactor. Chem. Eng. Process. 43 (2004) 1103-1114.
    [95] Lonnen J., Lilvington S., Kehoe S.C., Al-Touati F., McGuigan K.G. Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res. 39 (2005) 877-883.
    [96] Ljubas D. Solar photocatalytic-a possible step in drinking water treatment. Energy 30 (2005) 1699-1710.
    [97] McLoughlin O. A., Kehoe S. C., McGuigan K. G., Duffy E.F., Al Touati F., Gernjak W., Alberola I. O., Rodríguez S.M., Gill L.M. Solar disinfection of contaminated Water: a comparison of three small-scale reactors. Sol. Energy 77 (2004) 657-664.
    [98] Kim D.H., Anderson M.A. Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films. J. Photochem. Photobiol. A 94 (1996) 221-229.
    [99] Vinodgopal K., Kamat P.V. Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films. Sol. Energy Mater. Sol. Cells 38 (1995) 401-410.
    [100]戴清,郭妍,袁春伟.二氧化钛多孔薄膜对含氯苯酚的电助光催化降解.催化学报28 (1999) 411-414.
    [101] Kesselman J.M., Lewis N.S., Hoffmann M.R. Photoelectrochemical degradation of 3-chlorocatechol at TiO2 electrodes: comparison between sorption and photoreactivity. Environ. Sci. Technol. 31 (1997) 2298 -2302.
    [102] Vinodgopal K., Kamat P.V. Enhanced rates of photocatalytic degradation of azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ. Sci. Technol. 29 (1995) 841- 845.
    [103]符小荣,张校刚,宋世庚.溶胶凝胶法制备纳米薄膜及其光电催化性能.功能材料28 (1997) 411-414.
    [104] Pelegrini R., Perqlta-Zamora P., Andrade A.R. Electrochemically assisted photocatalytic degradation of reactive dyes. Appl. Catal. B 22 (1999) 83 - 90.
    [105] An T.C., Zhu X.H., Ya Y. Feasibility study of photoelectrochemical degradation of methylene blue aqueous solutions with three-dimensional electrodes– photo-catalytic reactor. Chemosphere 46 (2002) 897-903.
    [106] An T.C., Ya Y., Li G.Y. Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor. J. Photochem. Photobio. A 151 (2002 ) 154-165.
    [107] Byrne J.A., Eggins B.R. Photoelectrochemistry of oxalate on particulate TiO2 electrodes. J. Electroanal. Chem. 457 (1998) 61-72.
    [108] Candal R.J., Zeltner W.A., Anderson M.A. TiO2-mediated photoelectrocatalytic purification of water. J. Adv. Oxid. Technol. 3 (1998) 270 - 276.
    [109] Hyun S., Lee K. Oxidation of organic compounds through the electrochemical reaction using TiO2 photocatalytic membranes. Memburein 6 (1996) 101-108.
    [110] Kim D.H., Anderson M.A. Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films. J. Photochem. Photobiol. A 94 (1996) 221-229.
    [111]戴清,郭妍,袁春伟,二氧化钛多孔薄膜对含氯苯酚的电助光催化降解.催化学报20 (1999) 317- 320.
    [112]冷文华,张昭,成少安,光电催化降解苯胺的研究——单槽与双槽光反应器对比.环境科学学报22 (2002) 40-44.
    [113] Yang J., Chen C.C., Ji H.W., Ma W.H., Zhao J.C. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J. Phys. Chem. B 109 (2005) 21900-21907.
    [114] Noorjahan M., Pratap Reddy M., Durga Kumari V., Lavédrine B., Boule P. Subrahmanyam M. Photocatalytic degradation of H-acid over a novel TiO2 thin film fixed bed reactor and in aqueous suspensions. J. Photochem. Photobiol. A 156 (2003) 179-187.
    [115] Chan A.H.C., Chan C.K., Barford J.P. Porter J.F. Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Res. 37 (2003) 1124-1135.
    [116] Shankar M.V., Anandan S., Venkatachalam N., Arabindoo B. and Murugesan V. Novel thin-film reactor for photocatalytic degradation of pesticides in an aqueous solution. J. Chem. Technol. Biotechnol. 79 (2004)1279-1285.
    [117]李芳柏,古国榜,万洪富.多相光催化法在水处理上的应用简介.重庆环境科20 (1998) 16-21.
    [118]颜晓莉,史惠祥,雷乐成.负载型二氧化钛光电催化降解苯酚废水的反应动力学.化工学报55 (2004) 425-433, 1.
    [119] Garcia J.C., Oliveira J.L., Silva A.E.C., Oliveira C.C., Nozaki J., De Souza N.E. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. J. Hazard. Mater. 147 (2007) 104-110.
    [120] Ma J.H., Song W.J., Chen C. C. Fenton degradation of organic compounds promoted by dyes under visible irradiation. Environ. Sci. Technol. 39 (2005) 5810-5815.
    [121] Chung K.T., Stevens S.E.J. Degradation of azo dyes by environmental microorganisms and helmints. Environ. Toxicol. Chem. 12 (1993) 2121-2132.
    [122] Uygur A., K?k E. Decolorisation treatments of azo dye waste waters including dichlorotriazinyl reactive groups by using advanced oxidation method. J. Soc. Dyers Colour 115 (1999) 350-354.
    [123]张林生,蒋岚岚.染料废水的脱色方法.化工环保20 (2000) 13-18.
    [124] Forgacs E., Cserhati T., Oros G. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30 (2004) 953-971.
    [125]崔淑兰.铁屑-双氧水氧化法处理染料废水.环境保护12 (1990) 10-11.
    [126] Nag A. Utilization of Charred Saw dust as an Adsorbent of Dyes. Toxic Salts and Oil from Water: Process Safety and Environmental Protection 73(1995) 299-304.
    [127]陈欣光.离子交换纤维用于阳离子印染废水脱色的治理技术.工业水处理9 (1989) 27-28.
    [128]岳林海,樊邦棠.半导体复合体系光催化降解水溶性染料的研究.环境污染与防治16 (1994) 2-5.
    [129] Tang W.Z. UV/TiO2 Photo-Catalytic Oxidation of Commercial Dyes in Aqueous Solutions. Chemosphere 31 (1995) 4157- 4170.
    [130] Park H., Lee J., Choi W. Study of special cases where the enhanced photocatalytic activities of Pt/TiO2 vanish under low light intensity. Catal. Today 111 (2006) 259-265.
    [133] Skoog D.A., Holler F.J., Nieman T.A. Principle of Instrumental Analysis. 5th ed, Thomson Learning, US, 1998.
    [131] Zhong D.J., Yang J., Xu Y.L., Jia J.P., Wang Y.L., Sun T.H. De-colorization of Reactive Brilliant Orange X-GN by a novel rotating electrochemical disc process. J. Environ. Sci. 20(2008) 927-932.
    [132] Zhong D.J., Tao F.M., Xu Y.L., Jia J.P. Fabrication and electrochemical characterization of boron doped diamond interdigitated array disc electrode. Proc. Inst. Mech. Eng. Part E-J. Process Mech. Eng. 221(2007) 201-205.
    [134] Liu H., Li X.Z., Leng Y.J., Li W.Z. An alternative approach to ascertain the rate-determining steps of TiO2 photoelectrocatalytic reaction by electrochemical impedance spectroscopy. J. Phys. Chem. B 107(2003) 8986-8996.
    [135] Hitchman M.L., Tian F. Studies of TiO2 thin films prepared by chemical vapour deposition forphotocatalytic and photoelectrocatalytic degradation of 3-chlorophenol. J. Electroanal. Chem. 536-539 (2002) 164-172.
    [136] Zeevalkink J.A., Kelderman P., Bouelhouwer C. Liquid film thickness in a rotating disc gas–liquid contactor. Water Res. 12 (1978) 577-581.
    [137] Kavan L., Stoto T., Gratzel M., Fitzmaurice D., Shklover V. Quantum Size Effects in Nanocrystalline Semiconducting TiO2 Layers Prepared by Anodic Oxidative Hydrolysis of TiCl3. J. Phys. Chem. 97 (1993) 9493-9498.
    [138] Habibi M.H., Talebian N., Choi J.-H. Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation. Thin Solid Films 515 (2006) 1461-1469.
    [139] Xie Y.B., Yuan C.W. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Appl. Catal. B 46 (2003) 251-259.
    [140] Sato S. Photocatalytic of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett. 123 (1986) 125-128.
    [141] Irie H., Watanabe Y., Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J. Phys. Chem. B 107 (2003) 5483-5486.
    [142] Wawrzyniak B., Morawski A.W. Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen. Appl. Catal. B 62 (2006)150-158.
    [143] Umebayashi T., Yamaki T., Tanaka S., Asai K. Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett. 32 (2003) 330-331.
    [144] Ohno T., Akiyoshi M., Umebaysdhi T., Asai K. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl.Catal. A 265 (2004) 114-121.
    [145]林莉,周毅,朱月香.碳含量对C/TiO2复合材料光催化活性的影响.催化学报27 (2006) 44-49.
    [146] Egerton T.A., Janus M., Morawski A.W. New TiO2/C sol–gel electrodes for photoelectrocatalytic degradation of sodium oxalate. Chemosphere 63 (2006) 1203- 1208.
    [147] Subbarao S.N., Yun Y.H., Kershaw R. Electrical and optical properties of the system TiO2-xFx, J. Inorg. Chem. 18 (1979) 486-492.
    [148] Hattori A.,Yamamoto M., Tada H. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films. Chem. Lett. 32 (1998) 707-708.
    [149]姜聚慧,陈华军,娄向东,席国喜.亚铁催化声化学降解罗丹明B.环境污染治理技术与设备.7 (2006) 99-103.
    [150] Zhang T., Oyama T., Horikoshi S., Hidaka H., Zhao J.C., Serpone N. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight. Sol. Energy Mater. Sol. Cells 73 (2002) 287-303.
    [151]陈恒,龙名策,徐俊,蔡伟民.可见光响应的氯掺杂TiO2的制备、表征及其光催化活性。催化学报27 (2006) 890-894.
    [152]孟庆巨,刘海波,孟庆辉.半导体器件物理.科学出版社2005 139-141.
    [153] Shen Z.M., Yang J., Hu X.F., Lei Y.M., Ji X.L., Jia J.P., Wang W.H. Dual Electrodes Oxidation of Dye Wastewater with Gas Diffusion Cathode. Environ. Sci. Technol. 39 (2005) 1819-1826.
    [154] Li X.Z., Liu H. S. Development of an E-H2O2/TiO2 Photoelectrocatalytic Oxidation System for Water and Wastewater Treatment. Environ. Sci. Technol. 39 (2005) 4614-4620.
    [155] Leng W.H., Zhu W.C., Ni J., Zhang Z., Zhang J.Q., Cao C.N. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl. Catal. A 300 (2006) 24-35.
    [156] Shiraishi F., Nakasako T., Hua Z.Z. Formation of Hydrogen Peroxide in Photocatalytic Reactions. J. Phys. Chem. A 107 (2003) 11072-11081.
    [157] Peavy H.S., Rowe D.R., George T. Environmental engineering. New York: McGraw-Hill Book Company. 1985 694.
    [158]傅献彩,沈文霞,姚天扬,侯文华.物理化学.高等教育出版社2006.
    [159] Yu X.D., Guo Y.N., Xu L.L., Yang X., Guo Y.H. A novel preparation of mesoporous CsxH3?xPW12O40/TiO2 nanocomposites with enhanced photocatalytic activity. Colloids and Surfaces A: Physicochem. Eng. 316 (2008) 110-118.
    [160] Yu L. Photocatalytic activity of TiO2 nanowire arrays. Mater. Lett. 62 (2008) 1246-1248.
    [161] Rajeev Jaina, Megha Mathura, Shalini Sikarwara, Alok Mittalb. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manag. 85 (2007) 956-964.
    [162] Tong T.Z., Zhang J.L., Tian B.Z., Chen F., He D.N., Masakazu Anpo. Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. J. Colloid Interf. Sci. 315 (2007) 382-388.
    [163] Ray G.K., Beenackers A.A.C.M. Novel Swirl-Flow Reactor for Kinetic Studies of Semiconductor Photocatalysis. AIChE J. 43 (1997) 2571-2578.
    [164] Chang H.T., Wu N.-M., Zhu F.Q. A Kinetic Model For Photocatalytic Degradation of Organic Contaminants in a Thin-film TiO2 Catalyst. Wat. Res. 34 (2000) 407-416.
    [165] Chen D.W., Li F.M., Ray A.K. Effect of Mass Transfer and Catalyst Layer Thickness on Photocatalytic Reaction. AIChE J. 46 (2000) 1033-1045.
    [166] Rideh L., Wehrer A., Ronze D., Zoulalian A. Photocatalytic Degradation of 2-Chlorophenol in TiO2 Aqueous Suspension: Modeling of Reaction Rate. Ind. Eng. Chem. Res. 36 (1997) 4712-4718.
    [167] Zhou S.H., Ray A.K. Kinetic Studies for Photocatalytic Degradation of Eosin B on a Thin Film of Titanium Dioxide. Ind. Eng. Chem. Res. 42 (2003) 6020-6033.
    [168] Alfano O.M., Cabrera M.I., Cassano A.E. Photocatalytic Reactions Involving Hydroxyl Radical Attack. I. Reaction Kinetics Formulation with Explicit Photon Absorption Effects. J. Catal. 1997 (172) 370-379.
    [169] Ollis D.F. Photocatalyzed Destruction of Water Contaminants. Environ. Sci. Technol. 19 (1985) 480-484.
    [170] Kamat P.V. Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chem. Rev. 93 (1993) 267-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700