用户名: 密码: 验证码:
甘草与大黄配伍主要化学成分在体外及体内相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大黄是一味常用的重要中药,始载于《神农本草经》,其药用历史悠久,功效独特,有黄良、将军、川军等名。美国学者诺尔曼·泰勒在《改变世界的植物》一书中,将大黄列为有全球影响的十几种传统药物之一。大黄性寒、味苦,具有攻积导滞、泻火、凉血、活血祛瘀、利胆退黄等功效。
     甘草是我国的常用中药,自古甘草入药组方较多。南朝医学家陶景弘说:“此草最为众药之王,经方少有不用者”,故有“十方九草”之说,尊称“国老”。东汉张仲景的《伤寒杂病论》中记载了256首处方,其中含有甘草的处方就有154首,占总处方数的60%以上。所以各药与甘草配伍的中药组方相当广泛,可见甘草的重要。
     大黄甘草汤出自张仲景的《金匮要略》,该方原治实热积滞胃肠,食已即吐,大便秘结者,沿用至今,并被日本等国广泛采用,主治便秘。大黄通便,甘草润燥缓急,助大黄通滞泻下而不伤正。大黄甘草汤为中药复方中最简单的配伍之一,是研究中药复方化学成分中甘草与大黄配伍时其中主要成分在体内外的相互作用的代表性和理想的模型。
     目的通过实验研究大黄甘草汤中大黄与甘草的主要化学成分在体外体内的相互作用,为临床合理应用含大黄与甘草的组方奠定基础。方法测定大黄甘草汤单煎、合煎两种方法中大黄蒽醌和甘草酸的含量。按处方比例准确称取大黄4g,甘草1g待用。于圆底烧瓶中加入药材量20倍的水加热至沸,下甘草,回流提取15min后,下大黄,再回流提取25min后离心,即得大黄甘草汤合煎液。准确称取大黄4g,甘草2g,按上述方法操作,即得大黄甘草汤4︰2合煎液。准确称取大黄4g,甘草4g,按上述方法操作,即得大黄甘草汤4︰4合煎液。准确称取大黄4g,甘草6g,按上述方法操作,即得大黄甘草汤4︰6合煎液。游离蒽醌的提取,精密量取各煎液5mL于圆底烧瓶中,加水10mL,混匀,加氯仿水浴回流3次,分取氯仿层,合并氯仿提取液,水浴蒸干溶剂,残渣用适量甲醇溶解于10mL量瓶中,加甲醇至刻度,摇匀,作为游离蒽醌含量测定供试品溶液。总蒽醌的提取,精密量取大黄提取液5mL于圆底烧瓶中,加水10 mL、盐酸2mL,混匀,加氯仿水浴回流提取3次(使结合蒽醌水解为游离蒽醌),分取氯仿层,合并氯仿提取液,水浴蒸干溶剂,残渣用适量甲醇溶解于10mL量瓶中,加甲醇至刻度,摇匀,作为总蒽醌含量测定供试品溶液。在色谱柱Angilent公司Zorbox SB C18(150 mm×4.6 mm),流动相为甲醇-水-冰乙酸(77︰22︰1),检测波长428 nm,流速1.0 ml/min,柱温室温的条件下测定大黄蒽醌包括游离蒽醌和结合蒽醌的含量。在色谱柱为迪马C18(250mm×416 mm),流动相为甲醇-水-冰乙酸(83.5︰15︰1.5),检测波长254 nm,流速1.0 ml/min,柱温室温的条件下测定甘草酸的含量。
     建立高效液相色谱法测定大黄酸血浆样品中大黄酸含量,并进行精密度与回收率的实验。采用SD雄性大鼠50只,随机分成5组,分别大黄酸灌胃组(rh i.g.)、甘草酸灌胃诱导组(GL i.g.)、甘草酸静脉注射诱导组(GL i.v.)、甘草次酸灌胃诱导组(GA i.g.)、甘草次酸静脉注射诱导组(GA i.v.),每组10只,诱导期为7d,甘草酸(GL)及次酸(GA)剂量均为50mg/kg,实验前12h禁食不禁水。灌胃给药后在不同时间点测定各血浆样品中大黄酸浓度,利用3p97药代动力学软件进行房室模型的拟合并计算大黄酸药物代谢动力学参数AUC、Cmax、CL,比较各种处置条件下大黄酸在大鼠体内吸收的差异。结果大黄甘草汤提取20 min与60 min相比,蒽醌含量相当,但都比40 min的少,游离蒽醌少20%~40%,总蒽醌也少在10%以上,可见大黄煎煮5 min或太长(45min),蒽醌含量都很低,只有大黄甘草汤提取40 min,即大黄提取25 min时,游离蒽醌和总蒽醌的含量都是最高的。且甘草酸的量也是提取40 min时是最高的。
     大黄单煎及大黄甘草4︰1、4︰2、4︰4和4︰6比例配伍后,总蒽醌类化合物煎出量变化不明显,为1.54、1.44、1.69、1.50和1.86 mg/g,基本保持恒定。但在合煎液中结合型蒽醌的含量0.83、1.09、1.11除4︰4配比外都比单煎的0.75 mg/g要高,而游离型蒽醌的含量0.60、0.58、0.76、0.72 mg/g都比单煎0.78mg/g要低。大黄与不同比例甘草合煎后,甘草酸的煎出量在合煎液中均比单煎液中高,甘草1g单煎(6.88mg/g),合煎4︰1(18.13mg/g);甘草2g单煎(8.34mg/g),合煎4︰2(14.65mg/g);甘草4g单煎(7.22mg/g),合煎4︰4(10.83mg/g);甘草6g单煎(8.99mg/g),合煎4︰6(10.80mg/g)。在经典方剂中大黄与甘草4︰1配伍时,甘草酸的煎出量是单煎时的2.6倍。
     GL灌胃诱导组、GL静脉注射诱导组、GA灌胃诱导组、GA静脉注射诱导组与rh灌胃组不论在AUC、Cmax还是CL这些药动学参数上对大黄酸均P<0.01,具有统计学意义,显著降低了大黄酸的生物利用度,清除率明显提高,加快了机体对大黄酸的代谢。
     GA灌胃诱导组与GL灌胃诱导组相比,GA灌胃诱导组AUC、Cmax明显降低而CL明显提高,P<0.01说明GA灌胃诱导组比GL灌胃诱导组对大黄酸的代谢作用更强。GA静脉注射诱导组与GL静脉注射诱导组相比,AUC、Cmax明显降低而CL明显提高,P<0.01。说明
     GA静脉注射诱导组比GL静脉注射诱导组对大黄酸的代谢作用更强。GA在灌胃诱导和静脉注射诱导条件下,GA静脉注射诱导组对大黄酸的抑制能力更强。除Cmax外,AUC明显减小,而CL明显增大,P<0.01。说明在静脉注射条件下,甘草次酸对大黄酸的抑制更强。
     GL在灌胃诱导和静脉注射诱导条件下,GL静脉注射诱导组对大黄酸的抑制能力更强。除Cmax外,AUC明显减小,而CL明显增大,P<0.01。说明在静脉注射条件下,甘草酸对大黄酸的抑制更强。结论甘草与大黄配伍主要化学成分甘草酸和大黄酸在体外及体内均存在相互作用,在体外甘草酸抑制了大黄酸的溶出。在大鼠体内,甘草酸及其代谢产物均加快了大黄酸的代谢,诱导肝药酶P450,而且甘草酸的代谢产物甘草次酸对大黄酸的抑制超过了甘草酸。
Rhubarb is wideiy used as an important traditional Chinese medicine, comes from“Shen Nong Ben Cao Jing”first. It is a long story science rhubarb been used as a very effects medicine, and also byname of Huangliang, Jiangjun and chuanjun. American scholar Norman Taylor defined rhubarb as one of a dozen of traditional medicines which have global implications in "change the world of plants".Rhubarb is cold-natured,bitter in taste,It can purging pathogenic fire, cooling blood and have effects of promoting blood flow and removing stasis and so on.
     Licorice is a widely used traditional Chinese medicine, being used as medicine since ancient times. As Taojinghong who is one of Southern physicians said:“Licorice is the king of all the traditional medicine, is rarely not be used as one medicine in prescriptions.”So there is a saying“Shi Yao Jiu Cao”, and be honored as“GuoLao”.There are 256 prescriptions in“Shang Han Za Bing Lun”written by Zhang Zhongjing.There are 154 prescriptions in the 256 prescription, account for 60% in all the prescriptions.So we can see the importance of licorice.
     The prescription named Decoction of Rhubarb and Licorice comes from“Jin Kui Yao Lue”written by Zhang Zhongjing. It originally treats dyspeptic disease、emesis and constipation ,which caused by sthenic fever according to basis of theory of traditional chinese medicine. With following and developing,the prescription,applied extensively in our country and abroad. Rhubarb purge, meantime licorice can relieve the strong reaction. Decoction of Rhubarb and Licorice is one of the most simple prescriptions.It is a representation and the ideal model on study on the main chemical components of Licorice and Rhubarb’s In vitro and In vivo Interaction. Objective study on the main chemical components of Licorice and Rhubarb’s In vitro and In vivo Interaction through experiments, To lay the foundation for the clinical use of prescriptions contain rhubarb and licorice. Methods Determine the contents of anthraquinone of rhubarb and glycyrrhizic acid between individual and combination Decoctions. Accurate weighting rhubarb 4g, licorice 1g according to the proportion of priscription. Round bottom flask at 20 times the amount of added ingredients of water heated to boiling, add glycyrrhiza, reflux extraction 15min, add the rhubarb, then reflux extraction 25min and then centrifugation, which combination decoctions is done. According to the above method prepare the combination decoctions in proportion as 4︰2, 4︰4 and 4︰6. Extraction of anthraquinones, to measure precisely 5mL in each decoction in round bottom flask, add water 10mL, mix,then add chloroform and reflux extraction three times, take the chloroform layer, combined chloroform extract, solvent bath evaporation to dryness, residue dissolved with appropriate methanol in a 10 mL flask, add methanol to the mark, shake, as the sample of nomadic anthraquinones Determination solution. Extraction of total anthraquinone, to measure precisely 5mL of extraction of rhubarb and put in round bottom flask,add water 10 mL , add hydrochloric acid 2 mL, mix, add chloroform and reflux extraction three times, take the chloroform layer, combined chloroform extract, solvent bath evaporation to dryness, residue dissolved with appropriate methanol in a 10 mL flask, add methanol to the mark, shake, as the sample of total anthraquinones Determination solution. Determination the content of nomadic and total anthraquinone with HPLC under Zorbox SB C18(150 mm×4.6 mm ) , methanol-water- glacial acetic acid ( 77︰ 22︰1),428nm,1.0ml/min, room-temperature. Determination the content of glycyrrhizic acid with HPLC under DIKMA C18(250mm×416 mm), methanol-water- glacial acetic acid(83.5︰15︰1.5), 254 nm,1.0ml/min, room-temperature.
     Establish the high performance liquid chromatography of plasma samples for Rhein content, and make precision and recovery experiments.With 50 male rats, randomly divided into 5 groups, as rh i.g. , GL i.g. , GL i.v. , GA i.g. , GA i.v.,10 rats in each group, 7d of induction period, dosage of GL and GA are all 50mg/kg, 12h before the experiment can not help but water fasting. After oral administration were measured at different time points of rhein concentration in plasma samples using the 3p97 pharmacokinetic compartment model of the proposed software combined Rhein pharmacokinetic parameters AUC, Cmax, CL, comparing disposal rhein under different absorption in rats.
     Result Decoction of Rhubarb and Licorice extract compared to 20 min and 60min, anthraquinone content is about, but less than 40min, nomadic anthraquinones less 20% to 40%,total anthraquinones are less than 10%, that rhubarb decoction 5 min or too long (45min), Anthraquinone content was very low, only Rhubarb Decoction extract 40 min, 25 min when the rhubarb extract, nomadic anthraquinone and total anthraquinones are the highest. And the amount of glycyrrhizin extracted 40 min, also the highest.
     Rhubarb decoction and Decoction of Rhubarb and Licorice with 4︰1、4︰2、4︰4 and 4︰6, the total anthraquinone decocted quantity did not change significantly,as 1.54、1.44、1.69、1.50 and 1.86 mg/g,but bound anthraquinones of decoction as 0.83、1.09、1.11 are all higher than rhubarb decoction 0.75 mg/g,except decoction of rhubarb and licorice with 4︰4, while the content of nomadic anthraquinones 0.60、0.58、0.76、0.72 mg/g are lower than rhubarb decoction 0.78mg/g. Rhubarb and licorice decoction by different ratio, the amount of glycyrrhizic acid are higher than licorice decoction . Licorice decoction of 1g (6.88mg/g)compare to decoction of rhubarb and licorice 4︰1 (18.13mg/g ); licorice decoction of 2g( 8.34mg/g ) compare to decoction of rhubarb and licorice 4︰ 2(14.65mg/g); licorice decoction of 4g(7.22mg/g)compare to decoction of rhubarb and licorice 4︰4(10.83mg/g); licorice decoction of 6g ( 8.99mg/g ) compare to decoction of rhubarb and licorice 4︰ 6(10.80mg/g). In the classic decoction of rhubarb and licorice 4︰ 1, the amount of glycyrrhizic acid is 2.6 times higher than licorice decoction.
     GL i.g., GL i.v., GA i.g., GA i.v. vs rh i.g. in terms of AUC, Cmax or CL of these on the pharmacokinetic parameters of rhein were P<0.01, statistically significant, significantly reduced the bioavailability of Rhein, clearance rate was significantly increased to speed up the metabolism of the body of the Rhein.
     GA i.g. compared with the GL i.g., GA i.g. group AUC, Cmax decreased significantly,the CL increased, P<0.01 Description GA i.g. group than GL i.g .group on the metabolism of rhein more. GA i.v. group compared with the GL i.v., AUC, Cmax decreased significantly and CL increased, P<0.01. GA i.v. group than GL i.v. group on the metabolism of rhein more.
     GA induced by oral administration and intravenous injection in inducing conditions, GA intravenous induction group more capable of rhein inhibition. AUC significantly reduced, while the CL increased significantly, P<0.01,except Cmax. Indicate on the condition of intravenous injection, glycyrrhetinic acid on the inhibition of rhein more.
     GL induced by oral administration and intravenous induction under inducing conditions, GL intravenous induction group more capable of rhein inhibition. AUC significantly reduced, while the CL increased significantly, P<0.01, except Cmax. Indicate on the condition of intravenous injection, glycyrrhizic acid on the inhibition of rhein more
     Conclusion Licorice and rhubarb combined with the main chemical ingredient glycyrrhizin and Rhein both act interaction in vitro and in vivo interaction, in vitro glycyrrhizin inhibited the synthesis of rhein. In rats, glycyrrhizic acid and its metabolites act as inducers of hepatic drug metabolizing enzyme P450, rhein accelerated the metabolism of glycyrrhizin and glycyrrhetinic acid metabolites of rhein inhibition on more than glycyrrhizin.
引文
[1]黄熙,陈可冀,任平.“复方效应成分动力学”新假说的科学证据、要素、意义及前景[J].中国中药杂志,1997,22(4):250.
    [2]梁国刚.中药复方化学研究方法的探讨[J].中国中药杂志,1999,24(2):69.
    [3]高学敏,中药学.北京:人民卫生出版社,2000.
    [4]武新安.大黄泻下的大肠靶向给药之我见[J].中国中药志,2002,27(1):75-77.
    [5]李锋,王胜春,王新等.大黄泻下效应的药理学新解释[J].中国中药杂志,2008,33(4):481-483.
    [6]唐大轩,谭正怀,梁媛媛等.大黄蒽醌致泻作用及其机理的初步研究[J].时珍国医国药,2007,18(6):1312-1314.
    [7]寻庆应,王翠芬,魏义全等.甘草对大鼠胃动力功能影响的实验研究[J].东南大学学报(医学版),2005,24(4):226-229.
    [8]谭毓治,陈锦英,兰小平,等.甘草对小鼠肝药酶的影响.中药通报,1986,11(1O):55.
    [9]刁亚英,贺平,李琳方等.甘草酸在小鼠体内的代谢自诱导作用.中国中药杂志,1999,24(9):564.
    [10]陈洁,彭仁琇.18α-甘草酸二胺对格列苯脲在实验性糖尿病大鼠体内药动学的影响[J].中国药学杂志,2006,41(10):774-776.
    [11]徐君辉,李士敏.甘草提取液与甘草酸对小鼠安替比林代谢影响的比较研究[J].中成药,2007,29(11):1673-1675.
    [12]许舜军,李鸿燕,曾元儿等.反相高效液相色谱法测定大黄药材中五种蒽醌类成分的含量[J].时珍国医国药,2006,17(7):1201.
    [13]唐大轩,谭正怀,梁媛媛等。大黄蒽醌致泻作用及其机理的初步研究[J].时珍国医国药,2007,18(6):1312-1314.
    [14]武新安.大黄泻下的大肠靶向给药之我见[J].中国中药杂志, 2002,27(1):72-73.
    [15]杨柳,许舜军。大黄蒽醌类成分在提取过程中的量变规律。中国医院药学杂志,2007,27(7):908-910.
    [16]林永秀,宋淑华.大黄煎煮时间对药理作用的影响[J].药学服务与研究,2004,4(4):344,351.
    [17]李广勋.中药药理毒理与临床.天津科技出版社,1992.141
    [18]郑志华.大黄蒽类衍生物提取工艺研究概述[J].广东药学,2002,12(3):58-59.
    [19]冈村信幸.制备大黄煎剂时番泻苷及泻下活性的变化[J].国外医学中医中药分册,2003,25(2):98-99.
    [20]寻庆应,王翠芬,魏义全等.甘草对大鼠胃动力功能影响的实验研究[J].东南大学学报(医学版),2005,24(4):226-229.
    [21]唐大轩,谭正怀,梁媛媛等。大黄蒽醌致泻作用及其机理的初步研究[J].时珍国医国药,2007,18(6):1312-1314.
    [22]武新安.大黄泻下的大肠靶向给药之我见[J].中国中药杂志, 2002,27(1):72-73.
    [23]陆奇志,戴智勇.反相高效液相色谱法测定大鼠血浆中大黄酸的含量.中国药房,2002,13(3):143-144.
    [24]祝晨蔯,郑志华,陈知良.HPLC/MS法测定大黄酸在大鼠的血药浓度.中药材,2002,25(9):646-649.
    [25]桂蜀华,祝晨蔯,梁远园等.不同工艺大黄提取物在大鼠体内的药动学研究.中草药,2005,36(5):687-690.
    [26]王新宏,范广平,安睿等.大鼠血浆中大黄蒽醌甙元的HPLC分析方法学研究.中成药,1997,(1):37-39.
    [27]邹文,周文.药物代谢性相互作用[J].食品与药品,2007,9(12):46-49.
    [28]内田英二:チトクロムP450と药物间相互作用.综合临床,1999,48:27.
    [29]杨秀芬,王乃平,曹繁典。中药有效成分对药物代谢酶的影响.中国中药杂志,2002,27(25):325-328.
    [30]杨静,彭仁琇,孔锐,等.18α-甘草酸二胺对大鼠肝脏细胞色素P450和Ⅱ相酶的影响[J].药学学报,2001,36(5):321-324.
    [31]程建峰,滕树保,陈东鸿,等.甘草酸和苯巴比妥纳对小鼠肝P4503A酶的影响[J].第四军医大学学报,2001,21(8):968-970.
    [32]金建军,夏德全,周钟鸣.甘草甜素药代动力学的研究进展[J].国外医学中医中药分册,1994;16:13-15.
    [1]王琦秋.中药成份分析[M].贵阳:贵州科学出版社, 1991,505.
    [2]黄泰康.常用中药成分与药理手册[M].北京:中国医药科技出版社,1994:228-28.
    [3]蔡永敏.最新中药药理与临床应用[M].北京:华厦出版社,1999:125-129.
    [4]麦秀军,林永刚.治疗小儿秋季腹泻31例[J].新中医,1997,29(11):45.
    [5]周金黄,王建华,刘干中.世纪之交:现代中药药理学的回顾与展望[J].中国药理学通讯,1999,16(3):6-7.
    [6]阴健,郭力弓.中药现代研究与临床应用「M].北京:京苑出版社,1995, 569.
    [7]温枫.大黄药理作用及临床应用[J].山西中医,2000,6(3):53-54.
    [8]苟奎斌,孙丽华,娄卫宁,等.大黄4种蒽醌类化合物抑制幽门螺杆菌结果比较[J].中国药学杂志,1997,32(5):278.
    [9]苟奎斌,孙丽华,娄卫宁,等.大黄蒽醌抑制幽门螺杆菌的实验研究[Jl.世界华人消化杂志,1997,(8).495-496.
    [10]祁红.大黄素的抗炎作用[J].中草药,1990,3O(7):522.
    [11]倪弘,薛小平,杨秀竹,等.大黄酸抑制小鼠腹腔巨噬细胞炎性介质活化的作用机理[J].天津中医,2001,1 8(1):35-36.
    [12]马永涛,玄延花,曹东铉.大黄醇提液抗柯萨奇B3病毒的初步研究[J].中国中医药科技,2001、8(5):308-309.
    [13]中药大辞典[M].上海科学技术出版社,1985:104.
    [14]姜晓峰,甄永苏.大黄逆转肿瘤细胞多药抗药性作用[J].药学学报,1999,34(3):164-164.
    [15]展玉涛,李定国,魏红山,等.大黄素对大鼠肝纤维形成的影响[J].中国中西医结合杂志,2000,20(4):276-276.
    [16] Arosio B , Gagliano N , Fusaro LM et al.Aloe-Emodin quinone pretreatment reduces acute liver injury induced by carbontetrachloride[J]. PharmacolToxicol , 2000, 87(5): 229-233.
    [17]吴英良,曹颖林,时向群,等.大黄对小鼠肝脏脂质过氧化的抑制作用[J].中国中药杂志,1996,21(4):240-242.
    [18]郭丹杰,徐成斌,陈源泉.大黄对血管平滑肌细胞增殖影响的实验研究[J].中华内科杂志,1996,35(3):157-159.
    [19]田金洲,宋崇顺,任映,等.复方大黄制剂对D—半乳糖所致小鼠亚急性衰老模型记忆的影响[J].中国老年学杂志,1996,16(1):39.
    [20]陈万生,徐江平,李力,等.大黄素—8—o—β—D吡喃葡萄苷的促智活性及其机制[J].中草药,2001,32(1):39-41.
    [21]王庆利,林茂,刘耕陶.异位大黄素的体外抗氧化作用[J].中国药学杂志,2001,36(12):810.
    [22]刘冠贤,叶任高,谭志明,等.大黄素对狼疮性肾炎成纤维细胞生物学行为的影响[J].中国中西医结合杂志,2000,20(3):196-198.
    [23]陈高翔.屈遂林,方勤.大黄素对人成纤维细胞产生纤溶酶原激活物抑制剂的影响[J].交通医学,2000,14(6):576-580.
    [24]王军,鲁盈,杨汝春,等.大黄素防治糖尿病大鼠早期肾损伤的实验研究[J].浙江医学,2000,22(12):723-726.
    [25]胡伟新,刘志红.黎磊石.炎症因子对人肾小球系膜细胞生长的影响及大黄素的抑制作用[J].中国实验临床学杂志,1994,6(2):20-24.
    [26]王红纲,赵振霄,刘丽秋,等.大黄对糖尿病肾病治疗作用的临床研究[J].北京中医药大学学报,1996,19(5);36-37.
    [27]郭啸华,刘志红,戴春笋,等.大黄酸抑制TGF一1诱导的肾小管上皮细胞肥大及细胞外基质产生[J].肾脏病与透析肾移植杂志,2001,10(2):101-105.
    [28]金建军,夏德全,周钟鸣.甘草甜素药代动力学的研究进展[J].国外医学中医中药分册,1994;16:13-15.
    [29] Wang A, Nishioka M, Kurosaki Y, Nakayama T, Kimura T.Gastrointestinal absorption characteristics of glycyrrhizin fromglycyrrhiza extract[J]。Biol Pharm Bull, 1995; 18 (9):123-41.
    [30]贺平,吴孟超,李琳芳,等.甘草酸对小鼠安替比林及醋氨酚代谢的影响.中国药理学通报,1998;14(6):516-519.
    [31]谭毓治,陈锦英,兰小平,等.甘草对小鼠肝药酶的影响.中药通报,1986,11(1O):55.
    [32]刁亚英,贺平,李琳方等.甘草酸在小鼠体内的代谢自诱导作用.中国中药杂志,1999,24(9):564
    [33] TakedaS,Ishthara K,Wakui Y,et al.Bioavailability study Of glycyrrhetic acid after oral administration of glycyrrhizin in rats;relevance to the intestinal bacterial hydrolysis[J].J Pharm Pharmacol,1996,48(9):902.
    [34] Van Rossum TG,Vulto A G,De Man R A,et al. Review article: glycyrrhizin as a potential treatment for chronic hepatitis C[J].Aliment Pharmacol Ther,1995,12(2):199.
    [35]吴锡铭.甘草酸铵的药动学和药效学等的研究进展.药学通报,1987,22(8):449.
    [36]俞进,楼宜嘉.α-甘草酸对肾脏类固醇激素代谢的影响[J].中国中医药科技,2006,(4):246-247.
    [37]陈洁,彭仁琇.18α-甘草酸二胺对格列苯脲在实验性糖尿病大鼠体内药动学的影响[J].中国药学杂志,2006,41(10):774-776.
    [38]徐君辉,李士敏.甘草提取液与甘草酸对小鼠安替比林代谢影响的比较研究[J].中成药,2007,29(11):1673-1675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700