用户名: 密码: 验证码:
船用电子设备电磁兼容技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着船舶自动化程度的提高,船用电子设备的种类、数量不断增加,运行速度不断提高,电磁环境变得更加恶劣。为保证船舶航行安全,船用电子设备应满足电磁兼容要求。中国是造船大国,但我国船舶电子产品在国际船舶市场的占有率极低。作为船用电子设备开发过程中一项核心技术的电磁兼容技术直接影响产品的性能、成本以及上市时间。传统的设计方式遵循的是设计——样品生产——测试的模式,一旦电磁兼容测试不能通过,就需要进行补救甚至重新设计,耗费冗长的设计周期和昂贵的设计成本。在设备设计前期利用计算机对其电磁兼容性能进行仿真,找出影响电磁兼容性能的关键因素,为设计工程师提供理论上的指导,能将很多的设计风险扼杀在萌芽状态,从而缩短设计周期,节省设计成本,提高产品性能。
     本文结合湖北省科技厅科技导引计划项目“船载航行参数记录仪研发”,以实现船用电子设备系统级电磁兼容性仿真设计为目标,以麦克斯韦电磁场理论为基础,以三维电磁场仿真平台为研究手段,进行了如下研究:
     (1)研究了船用电子设备电磁兼容性仿真的理论依据,在对几种求解麦克斯韦方程组的数值算法进行分析对比的基础上,选择了传输线矩阵算法作为船用电子设备系统级电磁兼容性仿真数值算法。
     (2)研究了电子设备电磁兼容方面的几个共性关键问题,得出了一系列可用于指导工程实践的结论。利用三维电磁场仿真软件,对共模和差模噪声引起的电源线电磁骚扰进行了仿真分析,并得出了相应的滤波策略。对电子设备的散热器产生的辐射场进行了仿真分析,得到了散热器的表面电流,根据表面电流分布,得到了散热器的接地策略。对带孔缝机箱的电磁屏蔽效能进行了仿真分析,研究了机箱上开有不同形状、尺寸和不同数目孔缝时的屏蔽效能,得到了机箱孔缝优化策略。
     (3)研究了船用电子设备特定频段电磁骚扰抑制技术,得到了一些该频段电磁干扰形成机制的结论和相应的抑制措施。利用三维电磁场仿真软件,对谐振腔谐振频率转移技术进行了研究,得出了谐振腔谐振频率转移的策略。从屏蔽和吸波入手,对谐振电磁骚扰抑制技术进行了研究,得到了激励源与箱体孔缝耦合的基本规律以及吸波材料贴装的优化策略。在此基础上,开展了船用VHF通信频段电磁骚扰抑制技术的研究,分析了箱体尺寸,电源线长度和缝隙长度在VHF频段形成干扰的机制,并得出了相应的抑制措施。
     (4)将仿真技术用于实际船用电子设备的电磁兼容设计,成功地设计了符合电磁兼容要求,具有完全自主知识产权的船载航行数据记录仪。建立了VDR电路板近场模型,将仿真结果导入三维电磁场仿真软件中作为激励源,进而建立了VDR系统级仿真模型。利用仿真模型对多种VDR电磁兼容设计方案进行了对比,得到了优化的设计方案。设计完成的VDR样机,一次性通过了包括电磁兼容试验在内的全部环境试验,取得了CCS、ABS、LR、PRS、RMRS、DNV等船级社的型式认可。通过了德国BSH实验室测试,取得了欧盟EC认证,性能达到国际先进水平。
With increasing development of ship automation today, ship electronic equipment's catalogue, quantity and operating speed have been promoted constantly. At the same time, the electromagnetic environment in vessel has been worse than before. To ensure the safe navigation, ship electronic equipment should satisfy the requirements of electromagnetic compatibility. China has a high occupancy in shipbuilding field, but Chinese ship electronic equipment has a low occupancy in international ship market. As a core technology during the research and development course of ship electronic equipment, electromagnetic compatibility technology will affect the performance, cost and time to market of the product directly. Traditional R&D process followed a pattern of design-prototype production-test. If the test has not been passed, remedial measures even re-design would be needed, taking long period and expensive cost.
     EMC performance can be simulated and predicted using computer simulation technology early in the design course of the system. It helps to identify the key factor which impacting electromagnetic compatibility, and to provide direction and improvement target for the design engineer. As a result, a lot of design risk will be nipped in the bud, the R&D cycle will be greatly shortened and costs will be saved. The dissertation is supported by the research project "the research and development of the voyage data recorder". To bring the system-level EMC prediction for ship electronic equipment, electromagnetic field theory is employed. The systematic researches were done based on 3-D electromagnetic field simulation software. Main research methods and conclusions are listed below:
     (1) The theory basis of the EMC simulation about ship electronic equipment was studied. On the basis of comparing and analyzing numerical algorithms for solving the Maxwell equation, the TLM algorithm has been selected as the simulation and analysis numerical algorithm of the EMC for ship electric equipment.
     (2) Several common key problems about EMC was underlined and solved in this dissertation, which bring a series of conclusion for practical engineering. With 3-D electromagnetic field simulation software, conducted electromagnetic disturbance caused by common mode and different mode noise has been simulated and analyzed, based on which corresponding filtering strategy can be introduced. By simulating the electromagnetic radiation field of electronic equipment's heatsink, surface current of the heatsink was obtained. According to the surface current, the optimized ground connecting strategy of the heatsink was carried out. Also, by simulating the electromagnetic shielding effectiveness towards cases with hole or slot, shielding effectiveness of case with different shape, size and number of the hole or slot was studied, and the optimized hole or slot strategy of cases was obtained.
     (3) The suppression technique of a specific band of electromagnetic disturbance on the ship electronic equipment was studied, and several measures for inhibition of VHF-band electromagnetic harassment were obtained. By means of the 3-D electromagnetic field simulation software, the harmonic frequency shift technology of the cavity resonator was studied and obtained. Started from the shielding and absorbing, the suppression technology of electromagnetic interference was studied, the basic coupling rules between the excitation source and the box hole was received, and the optimization strategy of the absorbing material placement was obtained. On this basis, the electromagnetic interference suppression technology research of the ship VHF communications band was carried out, the box size, power line length and gap length in the formation of interference in the VHF band was analyzed, and the corresponding suppression measures was draw.
     (4) Using simulation technology to the EMC design of real ship electronic equipment, the VDR with independent intellectual property rights has been designed according the electromagnetic compatibility design requirements. Near field models of the VDR boards were set up, and the VDR system-level simulation model were established by importing the simulation results into the 3-D electromagnetic field simulation software as excitation source. Based on the simulation model, a wide range of EMC design VDR were compared and the optimal design was obtained. At last, the VDR passed all environment tests including EMC at a time, and obtained type approval by CCS, ABS, LR, PRS, RMRS, DNV and so on. Performance of the VDR has reached the international advanced level.
引文
[1]王洛印,胡化凯.电磁感应定律的建立及法拉第思想的转变[J].哈尔滨工业大学学报(社会科学版),2009,(3):19-33.
    [2]崔泓.浅谈电磁干扰问题[J].大众标准化,2009,(S1):75-76.
    [3]迟琼.计算机系统抗干扰分析[J].甘肃冶金,2008,(5):97-99.
    [4]许健民,孙家栋.中国气象事业发展战略研究[M].气象出版社,2004年11月.
    [5]郭银景,吕文红.电磁兼容原理及应用教程[M].清华大学出版社,2004年4月.
    [6]路宏敏.工程电磁兼容[M].西安电子科技大学出版社,2003年5月.
    [7]李雅轩,袁秀英,刘南平.电磁辐射对人体的伤害及预防[J].工业安全与环保,2003,(9):22-24.
    [8]田永民,田利东.关于电磁污染及其防护措施的探讨[J].环境科学与管理,2008,(2):95-97.
    [9]何宏.电磁兼容设计与测试技术[M].北京航空航天大学出版社,2008年5月
    [10]张林昌.建议将电磁兼容列入我国学科目录[J].电子科技导报,1995,(7):17-19.
    [11]杜明慧.产品电磁兼容质量保证[J].电子质量,2000,(10):22-25.
    [12]刘文山.抑制船舶电力系统电磁干扰的研究[J].船舶,1996,(6):44-48.
    [13]高攸纲.大力开展我国电磁兼容技术的科研工作及若干建议[J].工科物理,2000,(5):6-12.
    [14]马喜来.汽车电磁兼容性预估计的研究[D].吉林大学博士论文,2008.
    [15]罗宇翔,陈淑凤,成跃进.EMC分析预测技术发展综述[J].空间电子技术,1996,(3):5-8.
    [16]J. L. Norman Violette, Donald R. J. White and Michael F. Violette. Electromagnetic Compatibility Handbook. New York:Van Nostrand Reinhold Company Inc.,1987.
    [17]Kenn Atkinson, "Graphical EMI Modeling Spreadsheet," Proc. IEEE International Symp. EMC, pp.175-179,1990.
    [18]Joe LoVetri and Andrew S. Podgorski, "Evaluation of HardSys:A Simple EMI Expert System," Proc. IEEE International Symp. EMC, pp.228-232,1990
    [19]T. Hubing, J. Drewniak, T. Van Doren and N. Kashyap, "An Expert System Approach to EMC Modeling," Proc. IEEE International Symp. EMC, pp.200-203,1996.
    [20]路宏敏.电磁兼容性预测研究[D].西安交通大学博士论文,2000.
    [21]谢德馨,唐任远.计算电磁学近年来的若干重要成果[J].电工技术学报,2005(9):1-6.
    [22]洪伟.计算电磁学研究进展[J].东南大学学报(自然科学版),2002,(3):1-5.
    [23]王秉中.计算电磁学[M].北京,科学出版社,2002.
    [24]刘圣民.电磁场的数值方法[M].武汉华中理工大学出版社,1991.
    [25]丁雪,姜育峰.计算电磁学与电磁兼容仿真[J].电子质量,2007,(3):73-74.
    [26]D. S. Dixson, M. Obara, and N. Schade. Finite-element analysis (FEA) as EMC prediction tool. IEEE Trans. Electromagn. Compat.,35(2):241-248. May 1993.
    [27]C. M. Butler and K. R. Umashankar. Finite-element method applied to EMC problems. IEEE Trans. Electromagn. Compat.,35(2):178-184, February 1993.
    [28]J. R. Brauer and B. S. Brown. Mised-dimensional finite-element models of electromagnetic coupling and shielding. IEEE Trans. Electromagn. Compat.,35(2):235-24, May 1993.
    [29]K. K. Mei, "Scattering by Perfectly Conducting Rectangular Cylinders," IEEE Trans. Antennas Prop., vol. AP-11, pp.185-192, March 1963.
    [30]R. F. Harrington. Field Computation by Moment Methods. The Macmillan Company, New York,1968
    [31]R. F. Harrington and J. R. Mautz. A generalized network formulation for aperture problems. IEEE Trans. Electromagn. Compat.,24(6):870-873. November 1976
    [32]T. Wang, R. F. Harrington, and J. R. Mautz. Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies. IEEE Trans. Electromagn. Compat.,38(11):1805-1814,November 1990.
    [33]Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE,1966, AP-14:302-307
    [34]Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE, EMC,1981,23(4):377-382
    [35]Zhang X et al.. Calculations of the dispersive characteristics of microstrips by the time-domain finite difference method.IEEE, MTT,1988,36(2):263-266
    [36]Zhang X et al.. Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities. IEEE, MTT,1988, 36:1775-1787
    [37]Johns P B, Beurle R L. Numerical solution of 2-dimensional scattering problems using a transmission-line matrix[J]. Proc. IEE.,1971,118 (9):1203-1208.
    [38]Sina Akhtarzad, Peter B. Johns. Three-Dimensional Transmission-Line Matrix Computer Analysis of Microstrip Resonators IEEE Trans. Microwave Theory and Tech. MTT,1975-, 23 (12):990-997.
    [39]Wolfgang J. R. Hoefer. The Transmission-Line Matrix Method-Theory and Applications IEEE Trans.Microwave Theory and Tech.MTT,1985-,33 (10):882-893.
    [40]Peter B. Johns. A Symmetrical Condensed Node for the TLM Method IEEE Trans. Microwave Theory and Tech.MTT,1987,35 (4):370-377.
    [41]RADC-TR-74-342, "Intrasystem Electromagnetic Compatibility Program (IEMCCAD)," Rome Air Development Center, Air Force System Command, December,1974.
    [42]TRW system Group, "Specifications and Electromagnetic Compatibility Analysis Program (SEMCAP)," One Space Park, Redondo Beach, California, October,1985.
    [43]M.K. Anderson an R.M. Lassise, "A Comparison of IEMCAP and SEMCAP", IEEE 1983 international Symposium on Electromagnetic Compatibility, pp.25-28.
    [44]冯学丽.箱体的电磁兼容性设计仿真研究[D].北京邮电大学硕士论文,2004.
    [45]张玉莲.电子设备电磁兼容仿真建模研究[D].西安电子科技大学硕士论文,2007.
    [46]周佩白.电磁兼容问题的计算机模拟与仿真技术.第一版.北京:中国电力出版社,2006.39-40
    [47]曹伟,程勇.电磁问题分析中的一种新型数值方法[J].南京邮电学院学报,2002,(3):38-43.
    [48]梁昌洪,李龙,郑家骏.电磁问题中统一的电路模型及路与场的相互作用[J].电子学报,2004,(6):903-906.
    [49]周晓军,喻志远,林为干.用Cassinian变换FDTD方法分析几种特殊截面波导传输特性[J].电子学报,2000,(3):53-56.
    [50]张秋菊,王秉中.时域有限差分电磁仿真的网格自动剖分[J].电子科技大学学报,2007,(1):66-69.
    [51]王加莹,高本庆.复杂波导元件的时域有限差分法分析[J].微波学报,1999,(1):16-22.
    [52]文舸一.辛算法及其在电磁场方程中的应用[J].微波学报,1999,(1):68-79.
    [53]聂在平,胡俊,姚海英,王浩刚.用于复杂目标三维矢量散射分析的快速多极子方法[J].电子学报,1999,(6):104-109.
    [54]张云华,陈抗生.传输线矩阵方法的研究及其应用进展[J].电子学报,1995,(6):95-100.
    [55]安翔,吕志清,洪伟,崔铁军,殷晓星.PBSV-DDM在电大尺寸柱体电磁散射中的应用[J].应用科学学报,2005,(2):122-125.
    [56]张洪欣,吕英华,黄永明,于学萍.基于FDTD方法的同轴电缆孔缝辐射效应研究[J].电波科学学报,2003,(2):161-165.
    [57]刘亚宁,高攸纲,吕英华.电磁生物效应[M].北京邮电大学出版社,2002.
    [58]江浩,刘光斌,俞志勇.当前国内外电磁兼容研究现状[J].电子对抗,2000,(3):33-37.
    [59]角淑媛,苏东林,周淑萍,戴飞.电磁兼容自动测试软件的工程化设计[J].电子测量技术,2006,(6):168-169.
    [60]喻菁,李晶,张崎,侯冬云.舰船电磁环境特性研究[J].舰船科学技术,2007,(6):98-100.
    [6l]孙光甦.舰船电磁兼容技术发展综述[J].舰船电子工程,2007,(5):20-22.
    [62]赵刚,李国成.舰船电磁兼容设计与仿真发展对策研究[J].舰船电子工程,2007,(2):9-12.
    [63]乔灵爱,魏全香.论赫兹对麦克斯韦电磁场理论的实验验证[J].太原师范学院学报(自然科学版),2007,(2):101-103.
    [64]王一平.电磁场与波理论基础[M].西安:西安电子科技大学出版社,2002年6月
    [65]谢处方,饶克谨.电磁场与电磁波(第4版)[M].北京:高等教育出版社,2006年1月
    [66]倪光正等.工程电磁场数值计算[M].北京:机械工业出版社,2004年3月
    [67]胡平林.微型计算机开关电源电磁兼容预测研究[D].华中科技大学硕士论文,2005.
    [68]周琦.电子系统的电磁耦合干扰研究[D].西安电子科技大学硕士论文,2007.
    [69]张慧.电磁场逆问题分析计算的快速全局优化算法研究[D].浙江大学硕士论文,2007.
    [70]关海爽,马文阁,蒙彦宇.小波矩量法在电磁场数值计算中的应用[J].辽宁工学院学报,2007,(3):144-146.
    [71]张芸潇.现代计算电磁学中的矩量法与快速算法[J].南通纺织职业技术学院学报,2006,(3):30-32.
    [72]肖志文,马嘉俊,王硕.偶极子天线矩量法分析[J].信息技术,2005,(1):35-36.
    [73]侯冬云,孙德保.用扩展矩量法对实际电子设备进行EMC分析[J].舰船电子工程,2001,(2):53-56.
    [74]张成,郑宏兴.小波矩量法求解电磁场积分方程[J].宁夏大学学报(自然科学版),2000,(1):75-78.
    [75]闫淑辉,王秉中,易春,张秋菊.基于时域有限差分法的电磁仿真软件研制[J].电子科技大学学报,2004,(4):353-356.
    [76]马双武,高攸纲.时域有限差分法中几种吸收边界条件的比较与数值验证[J].长沙大学学报,1999,(4):1-4.
    [77]孙大伟.导体机箱孔缝的电磁辐射仿真研究[D].重庆大学硕士论文,2005.
    [78]陈莉.典型电磁兼容问题的FDTD分析[D].西安电子科技大学硕士论文,2005.
    [79]许小玲.一维和二维电磁带隙结构滤波特性的研究[D].四川大学硕士论文,2006.
    [80]张虹,王庆康,徐勤卫.电磁场数值模拟TLM算法及其应用[J].电讯技术,2002,(5):59-65.
    [81]酆广增.电磁场的T.L.M.方法[J].南京邮电学院学报,1984,(2).
    [82]毛湘宇.计算机设备电磁兼容特性的数值仿真[D].电子科技大学硕士论文,2009.
    [83]邵振海,洪伟.一种新的压缩顶点传输线矩阵法及其应用[J].电波科学学报,1 999,(04)
    [84]Christos Christopoulos. The Transmission-Line Modeling (TLM) Method in Electromagnetics[M]. Morgan& Claypool Publishers,2006
    [85]Michael. krumpholz, Christian. Huber, Peter. Russer. A field Theoretical comparison of FDTD and TLM. IEEE Trans Microwave Theory Tech,1995,43 (8):1935-1950.
    [86]胡来平,刘占军.电磁学计算方法的比较[J].现代电子技术,2003,(10):75-78.
    [87]Archambeault B., Pratapneni S., Zhang L., Wittwer D.C., Chen J.. A Proposed Set of Specific Standard EMC Problems to Help Engineers Evaluate EMC Modeling Tools, IEEE International Symposium on Electromagnetic Compatibility, vol.2, Page(s):1335-1340, 2001.
    [88]Archambeault B., Pratapneni S., Zhang L., Wittwer D.C.. Comparison of Various Numerical Modeling Tools Against a Standard Problem Concerning Heat Sink Emissions, IEEE International Symposium on Electromagnetic Compatibility, vol.2, Page(s):1341-1346 2001.
    [89]孙伟国,邱扬,权修桥,田锦.共模与差模传导干扰分析及抑制技术研究[J].电子质量,2004,(10):18-20.
    [90]杨继深.共模干扰和差模干扰[J].安全与电磁兼容,2002,(2):48-50.
    [91]赵金奎.共模干扰和差模干扰及其抑制技术[J].电子质量,2006,(5):72-75.
    [92]余韬,胡平林,漆兰芬,杨彦章.一种预测印制电路板EMI的方法[J].电子质量,2005,(1):66-68.
    [93]钱照明,袁义生.开关电源EMC研究现状及发展[J].电子产品世界,2003,(4).
    [94]刘骞.车载电子设备的电磁兼容研究[D].中南大学硕士论文,2004.
    [95]Y.C.Lee, H.T.GHAFFARI, J.M.SEGELKEN. Internal Thermal Resistance of a Mufti-Chip Packing Design for VLSI Based Systems. IEEE Trans. on Component, Hybrid, and Manufacturing Technology VOL.12, NO.2, pp.163-169 Jun.1989.
    [96]R.W.Knight, D.J.Hall, J.S.Goodling and R.C.Jaeger, HeatSink Optimization with Application to Microchannels. IEEE Trans. on Component, Hybrid, and Manufacturing Tech. Vol.15, No.5, pp.832-842 Oct.1989.
    [97]李蓉.电子器件散热片的电磁辐射特性研究[D].北方交通大学博士论文,2001.
    [98]行娟娟.散热器的电磁干扰分析[J].科技信息,2008,(35):95-96.
    [99]路宏敏,梁昌洪,李晓辉,薛梦麟.开关电源散热器的辐射发射[J].电波科学学报,2005,(2):241-246.
    [100]Kaladhar Radhakrishnan, David Wittwer, Yuan-Liang Li. Study of Heatsink Grounding Schemes for GHz Microprocessors. Electrical Performance of Electronic Packaging,2000, IEEE Conference on.23-25 Oct.2000 Page(s):189-192
    [101]张玉莲,曾立志.散热器的电磁辐射与散热设计[J].安全与电磁兼容,2005,(4):75-76.
    [102]何秋仙.电子设备电磁兼容仿真关键技术研究[D].西安电子科技大学硕士论文,2006.
    [103]郭元渊.机箱的缝隙泄漏和屏蔽设计[J].计算机工程与应用,2004,(增刊):124-125.
    [104]唐金欢,张帆.电子设备的电磁兼容仿真设计[J].电子质量,2007,(8):85-88.
    [105]唐金欢.电子设备电磁兼容仿真模型的简化研究[D].西安电子科技大学硕士论文, 2008.
    [106]M.Li, J.L.Drewniak, S.Radu, J.Juebel, T.H.Hubing, R.E.DuBroff, and T.P.Van Doren. An EMI Estimate for Shielding-Enclosure Evaluation. IEEE Trans. Electromagn. Compat., 43(3):295-304, August 2001.
    [107]J.P.Quine. Opening Leakage for Enclosures at Low and High Frequencies. IEEE Electromagnetic Compatibility Symposium Proceedings,1993, pp.183-187.
    [108]徐亮.缝隙对屏蔽效能的影响分析[J].信息与电子工程,2008,(3):176-179.
    [109]汝强,胡社军,胡显奇,等.电磁屏蔽理论及屏蔽材料的制备[J].包装工程,2004,(5)21-23.
    [110]汪柳平,高攸纲.有孔矩形腔的屏蔽效能及其对谐振频率抑制研究[J].电波科学学报,2008,23(3):560-564.
    [111]M.P.Robinson, T.M.Benson, C.D.Christopoulos, etal. Analytical formulation for the shielding effectiveness of enclosures with apertures [J]. IEEE Transactions on Electromagnetic Compatibility,1998,40(8):240-248.
    [112]卢娴.电磁兼容仿真模型的工程简化技术研究[D].西安电子科技大学硕士学位论文,2009.
    [113]金鹏.基于电磁屏蔽的箱体设计及有限元仿真的研究[D].合肥工业大学硕士学位论文,2007.
    [114]张玉莲.电子设备电磁兼容仿真建模研究[D].西安电子科技大学硕士学位论文,2007.
    [115]邱琴,张晏清,张雄.电磁吸波材料研究进展[J].电子元件与材料,2004,(5):78-81.
    [116]曾立志.吸波材料抑制电磁干扰研究[D].西安电子科技大学硕士学位论文,2007.
    [117]陈生.吸波材料抑制孔腔谐振研究[D].西安电子科技大学硕士学位论文,2008.
    [118]张帆.吸波材料抑制电磁干扰的数值仿真及优化[D].西安电子科技大学硕士学位论文,2008.
    [119]喻方平.船载航行数据记录仪(VDR)研究设计[J].中国航海,2002,(2):5-8.
    [120]戴耀存.船载航行数据记录仪对船舶安全管理的作用[J].船海工程,2003,(1):8-11.
    [121]Maritime navigation and radiocotrnnunication equipment and systems-General requirement-Methods of testing and required test results[S]. IEC-60945 ed.4.0 2002.
    [122]Maritime Navigation and Radiocommunication Equipment and Systems-Shipborne Voyage Data Recorder(VDR)-Performance Requirement-Methods of Testing and Required Test Results First Edition[S].IEC-61996 ed.1.0 2000-07, MSC.163(78).
    [123]中国船级社.船载航行数据记录仪检验指南[S].北京:人民交通出版社,2002.
    [124]中国船级社.电气电子产品型式认可试验指南[S].北京:人民交通出版社,2006..
    [125]马吉林,李鹤鸣,喻方平.基于FPGA和DSP的音频采集卡的实现[J].微计算机信 息,2008,(8):219-221.
    [126]李立,金华标,陈智君,喻方平.基于FPGA和DSP的高分辨率图像采集系统[J].数据采集与处理,2008,(1):117-122.
    [127]肖爱珍.航行数据记录仪与电磁兼容[J].气象水文海洋仪器,2008,(1):14-15.
    [128]Hubing T., "PCB EMC design guidelines:a brief annotated list", Electromagnetic Compatibility,2003 IEEE International Symposium on, vol.1, pp.34-36,2003
    [129]沙斐.机电一体化系统的电磁兼容技术[M].北京:中国电力出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700