用户名: 密码: 验证码:
保护性耕作对土壤水分影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分是限制农业生产的关键因子,然而研究干旱半干旱地区土壤水分利用时发现,从土壤中直接蒸发的水分占降雨量的一半以上。因此,提高农田水分利用效率的一个重要环节就是控制土壤水分的无效损耗。本文研究了秸秆覆盖、风和灌水定额三个因素对土壤水分蒸发的影响,建立了秸秆覆盖下风速、吹风历时以及灌水定额与土壤水分累计蒸发量之间的关系式,同时分析了影响土壤累计蒸发量各个参数的意义;并适当研究了不同麦秆留茬处理对近地表风速的影响。本试验取得的主要结果有:
     (1)土壤水分蒸发受风速和秸秆覆盖量的影响显著。当土壤含水量大于田间持水量的70%、覆盖量一定时(0、4120 kg/hm2)时,风速0m/s与1.5m/s之间的土壤日蒸发量差异显著;当秸秆覆盖量达到8240 kg/hm2时,风速对土壤日蒸发量没有显著影响。当土壤含水量大于田间持水量的55%时,无覆盖下风速为1.5m/s的土壤累积蒸发量最大并显著大于其他处理;全覆盖静风情况下,土壤累积蒸发量最小,但它与加倍覆盖下各风速处理的土壤累积蒸发量差异不显著。
     (2)当土壤水分充足时,无覆盖且吹风6h的土壤水分日蒸发量显著高于不吹风的对照处理;不同吹风历时下,覆盖量为4120 kg/hm2和8240 kg/hm2的土壤日蒸发量差异不显著。土壤的累积蒸发量则表现为无覆盖条件下,土壤含水量较高的前8天,吹风时长为6h与对照以及吹风时长3h之间差异显著,但吹风时长为3h与对照之间差异不显著;秸秆覆盖时,处理间差异不显著。
     (3)不同秸秆覆盖量下,随着灌水定额的增加,土壤相对累计蒸发量(Er)逐渐降低,说明随着土壤含水量增加,秸秆覆盖的保水效果更加明显。
     (4)土壤水分累积蒸发量(E)与时间(t)之间呈显著的指数关系,并且参数a和b值随着秸秆覆盖量、风速、吹风历时以及灌水定额的变化而变化。
     (5)由秸秆留茬形成的保护带,沿垂直方向,随着高度的增加,风速降低。随着与茬带距离的增加,保护作用越来越弱,在100cm处风速的降低率最大值为25%,到200cm处保护作用基本消失。风速降低率的大小与中心风速的选取有关,与耕作带距离相同的测点处,风速越小则相邻耕作带的风速降低率越大。茬高低于10cm时保护效应不明显,茬高选取15cm和25cm时,各中心风速下距茬带不同位置的风速降低幅度有明显的区别,其中风速2m/s时降低幅度为70%,而12m/s时降低幅度为41%。在留茬较低时,只有小于6m/s的低风速时保护性茬带可以起到保护作用。当中心风速为12m/s时,15cm和25cm的留茬高度虽然对整个耕作带的风速都有所降低,但是距离最远处的风速降低率很小,基本起不到保护作用。因此,为有效防治土壤风蚀,在条件允许的情况下,应尽可能的留15cm及以上的高茬。
Water is the main limiting factor of agriculture in (semi-) arid region. And the efficient utilization of water resources is an agricultural sustainable development direction in this region. In this paper, I choose the Lou soil of Guanzhong Region as the research object. The impact of wind, straw-mulching and irrigation quotas are set up as treatment factors and the effect of these factors were analyzed, while accumulative soil water evaporation was established with various factors. Our research also put forward on the anti-erosion effects under different crop stubble. The main results are as follows:
     (1) The wind speed and straw-mulching can make an obvious effect on soil water evaporation. When the water content was 70% of the field moisture capacity and straw- mulching (0, 4120 kg/hm2) were the same, the soil water evaporation with wind speed 1.5m/s was higher than other treatments significantly; when the water content was higher than 55% of the field moisture capacity, the cumulative soil water evaporation with no mulching and wind speed 1.5m/s was far more than that of other treatments.
     (2) Under enough moisture treatment, soil water evaporation with 6h winding is higher than the control treatment, while the soil water evaporation with straw-mulching (4120, 8240 kg/hm2) was no significant change. When there is no straw- mulching and enough moisture, the cumulative soil water evaporation with 6h winding is higher than the control treatment and 3h winding significantly.
     (3) Under different irrigation quotas, soil water evaporation with enough moisture and no straw-mulching is a higher increase, but soil water evaporation with straw-mulching is a gradual increase. The relative cumulative evaporation decreased gradually with the increase of irrigation quotas, and it means that the straw-mulching has better moisture retention with the increase of soil moisture.
     (4) Under different straw-mulching, wind and irrigation quotas, there lies an exponential relationship between the cumulative soil water evaporation (EI) and time (t), and parameters (a and b) have clear differences among the treatments of straw-mulching levels and irrigation quotas.
     (5) We analyzed the conservation tillage to reduce the range of the wind speed range by changing the central wind speed, as well as the height of crop stubble. The experimental results show that: crop stubble can reduce the wind speed by building protection zone, as the wind speed increased, the capacity of the crop stubble to reduce the wind speed will decrease. From the vertical direction along the surface, with the distance further, the rate on reduce of the wind speed become lower. The maximum reduce rate of weed speed was 25% in 100 cm distance, and there was less protection in 200 cm distance. The 10cm crop stubble treatment has less protection. The have significant difference with different horizontal direction. The height of crop stubble between 15cm to 25cm, which can paly an ideal protective role in soil wind erosion.
引文
常旭虹,赵广才,张雯,侯立白,孟祥云,袁宝龙. 2005.作物残茬对农田土壤风蚀的影响.水土保持学报, 19(1):28-31
    陈军胜,苑丽娟,呼格·吉乐图. 2005.免耕技术研究进展.中国农学通报, 21(5):184-190
    陈丽楠,翟瑞常,张伟. 2007.保护性耕作措施减少北方寒地土壤风蚀的研究.农机化研究, 21(6): 141-142
    陈素英,张喜英,裴冬,孙宏勇. 2005.玉米秸秆覆盖对麦田土壤温度和土壤蒸发的影响.农业工程学报, 21(10):171-173
    陈渭南,董光荣,董治宝. 1994.中国北方土壤风蚀问题的研究进展与趋势.地球科学进展, 7(5):6-12
    崔向新,高永,蒙仲举,张兴源. 2009.干草覆盖对草地土壤蒸发的影响研究.灌溉排水学报, 28(1): 94-96
    崔晓军,薛昌颖,杨晓光,杨婕,张秋平,王化琪, Bouman B A M. 2008.不同水分处理旱稻农田蒸散特征和水分利用效率.农业工程学报, 24(4):6
    董立江,赵士杰,赵彦军,贾清华,徐志成. 2009.带状间作残茬高度抗风蚀效应的测试.农机化研究, (10):134-136
    董治宝. 1999.土壤风蚀预报简述.中国水土保持, (6):17-19
    董治宝,陈广庭. 1997.内蒙古后山地区土壤风蚀问题初论.土壤侵蚀与水土保持学报, 3(2): 84-90
    董治宝,陈渭南,李振山,杨佐涛. 1996.植被对土壤风蚀影响作用的实验研究.土壤侵蚀与水土保持学报, 2(2):1-8
    杜尧东,刘作新,赵国强,王丽娟. 2000.冬小麦田秸秆覆盖的小气候效应.生态学杂志, 19(3):20-23
    高克昌. 1992.旱地玉米(高粱)整秸秆覆盖免耕试验.山西农业科学, (12):4-6
    高鹏程,张国云,孙平阳. 2004.土壤水分蒸发与吹风的关系.西北林学院学报, 19(3):89-91
    郭建辉,梅成建,翟通毅,蔡元才,张东兴. 1998.美国农业保护性耕作考察报告(待续).山西农机, (4):38
    郭宪,金玉美,连海明,王娟. 2007.麦秸覆盖对杂草萌发及玉米产量的影响.安徽农业科学, 35(9): 2584-2596
    贺大良,邹本功,李长治,张继贤,邸醒民. 1986.地表风蚀物理过程风洞实验的初步研究.中国沙漠, (1)
    胡芬,梅旭荣,陈尚谟. 2001.秸秆覆盖对春玉米农田土壤水分的调控作用.中国农业气象, 22(1): 15-18
    华璐,李俊波,冯琰,蔡典雄,朱凤云,马礼,周万荣. 2005.地表径流中碱土金属流失规律及调控机制研究.农业环境科学学报, 24(1):89-93
    雷加强,王雪芹,王德. 2003.塔里木沙漠公路风沙危害形成研究.干旱区研究, 20(1):1-6
    李安宁,范学民,吴传云,李洪文. 2006.保护性耕作现状及发展趋势.农业机械学报, 37(10):177-180
    李洪文,陈君达,高焕文,王树东. 2000.旱地表土耕作效应研究.干旱地区农业研究, 18(2):13-18
    李洪文,高焕文,王晓燕,李问盈. 2003.我国保护性耕作发展趋势与存在问题.农业工程学报,
    19(z1):3
    李开元,李玉山,邵明安. 1991.土壤保墒性能与土壤水分有效性综述.中国科学院水利部西北水土
    保持研究所集刊(SPAC中水分运行与模拟研究专集), (1):94-104
    李玲玲,黄高宝,张仁陟,晋小军, Li G, Chan K Y. 2005.免耕秸秆覆盖对旱作农田土壤水分的影响.水土保持学报, 19(5):96-98
    李霞. 2006.农田带状间作留茬抗风蚀效应风洞模拟研究. [硕士学位论文].呼和浩特:内蒙古农业大学
    李霞,王国栋,薛绪掌,解迎革,陈菲,李邵. 2009.不同覆盖度下盆栽小白菜蒸散与水分利用效率.农业工程学报, 25(8):54-58
    李新举,张志国. 1999.秸秆覆盖与秸秆翻压还田效果比较.国土与自然资源研究, (1):43-45
    李新有,梁宗锁,康绍忠. 1995.节水灌溉对夏玉米蒸腾效率的影响.华北农学报, 10(4):14-19
    李毅,邵明安,王文焰,王全九. 2004.不同灌水定额条件下的覆膜开孔蒸发实验研究.水科学进展, 15(3):357-363
    梁银丽,张成娥,郭东伟. 2001.黄土高原区农田覆盖效应与前景分析.中国生态农业学报, 9(1):55-57
    林同保,孟战赢,曲奕威. 2008.不同土壤水分条件下夏玉米蒸发蒸腾特征研究.干旱地区农业研究, 26(5):22-26
    刘安能,周新国,孟兆江,陈金平,刘祖贵. 2005.不同土壤水分条件下麦地蒸散日变化规律研究.节水灌溉, (3):1-3
    刘超,汪有科,湛景武,段雪松. 2008.秸秆覆盖量对农田土面蒸发的影响.中国农学通报, 24(5): 448-451
    刘玲玲. 2002.小麦地膜覆盖的白色污染及其防治对策.小麦研究, 23(2):20-21
    刘目兴,刘连友, Muxing L, Lianyou L. 2009.农田休闲期作物留茬对近地表风场的影响.农业工程学报, 25(9):6
    刘裕春,李钢铁,郭丽珍,张卫东. 1999.国内外保护性农业耕作技术研究.内蒙古林学院学报, (3):83-88
    刘振友. 2005.我国保护性耕作的发展应用.农机化研究, (4):312
    罗伯特, E.B,等著,余汉章译. 1985.玉米地传统耕作和保护性耕作的多年平均流失量.:中国水土保持, (7):55-61
    姚云峰,姚洪林,王林和. 2004.风沙运动学.呼和浩特:远方出版社
    孟毅,蔡焕杰,王健,张西平. 2005.麦秆覆盖对夏玉米的生长及水分利用的影响.西北农林科技大学学报(自然科学版), (6):131-135
    潘瑞炽,董愚得. 1984.植物生理学(上册).北京:高等教育出版社:17-24, 132
    荣姣凤, 2004.移动式风蚀风洞研制与应用.中国农业大学,北京.山仑,刘忠民,辛业全,邓西平,马国忠. 1992.
    宁夏山区草田轮作研究——Ⅰ不同轮作方式的生产力及效益.水土保持学报, (4):60-68
    山西省农业科学院旱作农业耕作栽培体系及增产机理课题组. 1991.旱地玉米(高粱)少免耕整秸秆半覆盖节水增产技术.山西农业科学, (4):1-4
    石元春,刘龚. 1995.节水农业应用基础研究进展.北京:中国农业出版社
    宋凤斌,戴俊英. 2001.干旱胁迫下秸秆覆盖增强玉米耐旱性的研究.中国沙漠:60-64
    谭军利,王林权,李生秀. 2008.地面覆盖的保水增产效应及其机理研究.干旱地区农业研究, (3):50-54
    滕希群. 2006.保护性农业的起源、发展及对策建议.山东经济战略研究, (8):43-45
    王改玲,郝明德,李仲谨. 2003.不同覆盖物和蒸发抑制剂对土壤蒸发影响的研究初报.水土保持研究, (1):133-136
    王进鑫,刘广全,王迪海. 2004.局部覆盖条件下土壤水分移动性能与蒸发力的关系.水土保持学报, (4):142-145
    王俊,李凤民,贾宇,李世清,宋秋华. 2004.半干旱地区播前灌溉和地膜覆盖对春小麦产量形成的影响.中国沙漠, (1):79-84
    王丽学,李宝筏,刘洪禄. 2002.农田覆盖技术及相关理论的发展现状与展望.中国农村水利水电, (1):33-35
    王涛,吴薇,薛娴,孙庆伟,张为民,韩致文. 2004.近50年来中国北方沙漠化土地的时空变化.地理学报, 59(2):10
    赵化春,王晓丽. 1991.少耕法与免耕法的起源与发展前景.吉林农业科学, (1):85-88
    王钊英,陈发,王晓冬,马小平,伊明. 2004.浅谈国内外保护性耕作技术的研究与应用.新疆农机化, (2):34-35
    王政友. 2003.土壤水分蒸发的影响因素分析.山西水利, (2):26-27
    吴发启,赵西宁,崔卫芳. 2003.坡耕地耕作管理措施对降雨入渗的影响.水土保持学报, (3):115-117
    吴兰. 2001.澳大利亚机械化旱作节水农业和保护性耕作情况.四川农机, (2):20-21
    吴正. 1987.风沙地貌学.北京:科学出版社
    享耳. 1998.美国和澳大利亚的保护性耕作.农村机械化, (12):42
    谢森传. 1998.农田水分循环中的蒸发蒸腾计算.清华大学学报(自然科学版), (1):109-112
    信乃诠. 2002.中国北方旱区农业研究.北京:中国农业出版社
    许翠平,刘洪禄,车建明,赵立新. 2002.秸秆覆盖对冬小麦耗水特征及水分生产率的影响.灌溉排水, 21(3):4
    杨邦杰, Blackwell P S, Nicholson D F. 1997.土壤表面蒸发阻力模型与田间测定方法.地理学报, (2):83-89
    杨林,赵嘉琨,王衍,马耀辉,吴兰. 2001.澳大利亚机械化旱作节水农业和保护性耕作考察报告.农机推广, (4):16-17
    杨荣光,毕建杰,王升国,吴则金,李振清. 2009.秸秆覆盖对麦田土壤含水量及小麦生长状况的影响.山东农业科学, (2):43-44
    姚云峰,王林和,马玉明,马世威,杨俊平,姚红林. 2004.风沙运动学.内蒙古:远方出版社
    于稀水,廖允成,袁泉,温晓霞. 2007.秸秆覆盖条件下冬小麦棵间蒸发规律研究.干旱地区农业研究, 25(3):58-61
    于晓蕾,吴普特,汪有科,张立强,员学锋,张吉祥. 2007.不同秸秆覆盖量对冬小麦生理及土壤温、湿状况的影响.灌溉排水学报, 26(4):41-44
    于云江,史培军,贺丽萍,刘家琼. 2002.风沙流对植物生长影响的研究.地球科学进展, 17(2): 262-267
    臧英,高焕文. 2002.国外农田风蚀发生机理与防治技术的研究.农业工程学报, 18(3):195-198
    张海林,高旺盛,陈阜,朱文珊. 2005.保护性耕作研究现状、发展趋势及对策.中国农业大学学报, 10(1):16-20
    张俊鹏,孙景生,刘祖贵. 2009.不同麦秸覆盖量对夏玉米田颗间土壤蒸发和地温的影响.干旱地区农业研究, 27(1):95-100
    张立强,汪有科,员学锋,湛景武,汪勇. 2006.小麦高留茬田间水分效应研究.中国农学通报,22(11):6
    赵聚宝,梅旭荣,薛军红,钟兆站,张天佑. 1996.秸秆覆盖对旱地作物水分利用效率的影晌.中国农业科学, 29(2):59-66
    赵素荣,张书荣,徐霞,徐立超,张栋河,张新民,王金凤,徐立功,齐瑛. 1998.农膜残留污染研究. 农业环境与发展, 15(3):7-10
    赵廷祥. 2002.农业保护性耕作与生态环境保护.农村牧区机械化, (4):7-8
    中国科学院南京土壤研究所土壤物理研究室编. 1987.土壤物理性质测定法.北京:科学出版社
    周凌云. 1997.秸秆覆盖对农田土壤物理条件影响的研究.农业现代化研究, 18(5):311-314
    Bachmann J, Horton R, vander Ploeg R R. 2001. Isothermal and nonisothermal evaporation from four sandy soils of different water repellency. Soil Science Society of America Journal, 65(6):1599-1607
    Benites J R, Derpsch R, McGarry D. 2003. Current Status and Future Growth Potential of Conservation Agriculture in the World. ISTROC:120-128
    Bockus W W, Shroyer J P. 1998. The impact of reduce tillage on soil-borne plant pathogens. Annual Review of Phytopathology, 36:485-500
    Brutsaert W. 1982. Evaporation into the atmosphere: Theory, history, and applications. Kluwer Academic, Hingham, MA.,
    Chepil W S. 1956. Influence of moisture on erodibility of soil by wind. Soil Sci. Soc. Proc., 20:288-291 Chepil W S, Woodruff N P, Siddoway F H, Al E. 1963. Vegetative and nonvegetative materials to control wind and water erosion. Soil Sci. Soc. Am. Proc., 27(1):86-89
    Fryear D W, Spann W P. 1994.植物特征与风蚀.水土保持科技情报, (3):33-34
    Gardner W R. 1959. Solutions of the flow equation for the drying of soil sand other porous media. Soil Sci. Soc. Am. Proc., 23(3):183-187
    Griddings L A. 1914. Transpiration of silphium Laciniatam. Plant World, 35:937-942
    Shangning Ji, Unger P W. 2001. Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Science Society Of America Journal, 65(2):442-448
    Klocke N L, Currie R S, Aiken R M. 2009. Soil water evaporation and crop residues. Transactions of the asabe, 52(1):103-110
    Knowler D, Bradshaw B. 2007. Farmers' adoption of conservation agriculture: A review and synthesis of recent research. Food Policy, 32(1):25-48
    Lahmar R. 2010. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy, 27(1):4-10
    Lascano R J, Vanbavel C. 1986. Simulation and measurement of evaportion from a bark soil. Soil Science Society of America Journal, 50(5):1127-1133
    Lockington D A. 1994. Falling rate evaporation and desorption estimates. Water Resources Research, 30(4):1071-1074
    Mcilroy I C. 1984. Terminology and concepts in natural evaporation. Agricultural Water Management, 8(1-3):77-98
    Milly P. 1984. A Simulation analysis of thermal effects on evaporation from soil. Water Resources Research, 20(8):1087-1098 Monsanto. 1981. Conservation tillage seminar
    Morris H M. 1955. Flowing in rough conditions. Transactions of the Asae, 120:373-398
    Payero J O, Tarkalson D D, Irmak S, Davison D, Petersen J L. 2008. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate. Agricultural Water Management, 95(8):895-908
    Porte-Agel F, Parlange M B, Cahill A T, Gruber A. 2000. Mixture of time scales in evaporation: Desorption and self-similarity of energy fluxes. Agronomy Journal, 92(5):832-836
    Ritchie J T. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8(5):1204
    Schilnger W F. 1997. Deep ripping fall-planted Wheat after fallow to improve infiltration and reduce erosion. Journal of Soil and water conservation, 52(3):198-202
    Shao Y P, Raupach M R, Leys J F. 1996. A model for predicting Aeolian sand drift and dust entrainment on scales from paddock to region. Austrian Journal of Soil Research, 34:309-402
    Sharlna D N, Jain M L. 1984. Evaluation of no-tillage and conventional tillage systems. AMA, (3):65-70 Stewart B A, Robinson C A, 1997. Are agro-ecosystems sustainable in semiarid regions. Advances in Agronomy, 60:199-228.
    Uri N D, Atwood J D, Sanabria J. 1999. The Environmental benefits and costs of conservation tillage. Environmental Geology, 38(2):111-125
    Wasson R J, Nanninga P M. 1986. Estimating wind transport sand on vegetated surface. Earth Surface Processes and Landforms, 11(5):505-514
    Wolfe S A, Nickling W G. 1993. The protective role of sparse vegetation in wind erosion. Progress in Physical Geography, 17(1):50-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700