用户名: 密码: 验证码:
单核细胞增多性李斯特菌PCR和PCR-ELISA检测方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
李斯特菌属(Listeria spp.)是一类革兰氏阳性菌,属内包括单核细胞增多性李斯特菌(L.monocytogenes)、绵羊李斯特菌(L.ivanovii)、英诺克李斯特菌(L.innocua)、威尔斯李斯特菌(L.welshimeri)、西尔李斯特菌(L.seeligeri)和格氏李斯特菌(L.grayi.)等6个种。李斯特菌在自然界中广泛存在,其中单核细胞增多性李斯特菌(Listeria monocytogenes,LM)对人和多种动物具有致病性,在国内外食品安全检测与控制中日益受到重视。LM在4℃的环境中仍可生长繁殖,是冷藏食品中威胁人类健康的主要病原菌之一。同时,单核细胞增多李斯特菌作为研究胞内菌感染和细胞免疫的良好模型,已经引起越来越多研究者的关注。目前,国内对LM的研究尚不深入,工作实践中使用的检验方法也主要采用二次增菌后分离鉴定,烦琐、费时,迫切需要建立敏感、特异、高通量的分子生物学检测方法。在LM中存在两个主要的毒力岛,即LIPI-1毒力岛(Listeria pathogenicity island 1)和LIPI-2(Listeria pathogenicityisland 2),其中,IPIL-1也称为prfA基因簇,是主要毒力因素,由prfA、pica、hly、mpl、actA和plcB构成,由prfA进行表达调控。本研究旨在对食品中单核细胞增多性李斯特菌污染状况、LM的生物学特性、LIPI-1毒力岛全基因序列以及分子生物学检测方法进行研究,为系统开展LM致病机理研究、开发新型疫苗载体等工作奠定基础,为检验检疫工作提供检测技术支持,为开展食品中LM的防控提供依据。
     1.单核细胞增多性李斯特菌的分离鉴定与生物学特性研究
     按照检验检疫行业标准(SN/T0148.1-2005)对156个动物源性食品样品进行了LM的分离鉴定,从中分离到7株单核细胞增多性李斯特菌,表明在动物源性食品中存在LM污染,该结果将为进行食品中LM的风险评估等工作提供参考依据。以参考菌株CCTCCAB97021和C53004为参照,对LM分离菌株XFL0605进行了药敏试验、小鼠致病性试验(LD_(50)测定)和溶血活性检测。在溶血素(LLO)溶血活性实验中,相同培养条件下,3个试验菌株培养上清中LLO的含量存在差异,但产生的单位浓度LLO活性相当,推测菌株XFL0605产生LLO的能力较参考菌株CCTCCAB97021和C53004 2株LM菌株弱。分离菌株XFL0605培养上清溶血活性与其它试验菌株相当,但小鼠毒力(LD_(50))方面较其它实验菌株略低,该菌对昆明鼠的LD_(50)为2.58×10~5CFU/mL,推测该菌株致病性差异可能由于LLO等相关毒力因子的表达差异所致。试验结果还证明,溶血素在pH5.6时活性最高,在pH7.0时活性基本丧失。对实验菌株的药敏实验结果表明,分离菌株XFL0605对常用药物(氨苄青霉素、链霉素、氯霉素、卡那霉素、环丙沙星和诺氟沙星)敏感性较高,为在分子生物学改造研究中,选择抗性筛选标记提供了依据。
     为方便、精确的检测溶血素活性,建立了分光光度法检测LM溶血素(LLO)活性,本方法中绵羊红细胞(SRBC)浓度与A_(540)相关系数为0.99995,表现出明显的线性关系,能够直接对LLO溶血活性进行量化分析。分离菌株XFL0605、2个参考菌株C53004和CCTCCAB97021培养上清半数溶血值(HC_(50))测定结果分别是18.85、19.68和21.38,与测定的LLO含量(分别为1.305、1.530和1.749mg/mL)的呈正相关性,表明3个LM菌株产生的单位含量LLO溶血活性相当,该结论在对3个菌株hlyA基因克隆测序后得到印证。本研究建立的分光光度法检测LM溶血素活性的方法具有相关系数高、敏感和判定客观的特点,较好的解决了菌株LLO溶血活性检测与鉴定问题,为进一步测定单核细胞增多性李斯特菌溶血素(LLO)编码基因表达产物活性检测奠定基础。同时,本研究还改进和建立了微量反应板梯度稀释法检测溶血素的方法,该方法直观、操作方便。
     2.单核细胞增多性李斯特菌分子生物学检测方法研究
     针对LM的IdyA基因设计特异性引物和探针,PCR扩增目的片段长度为348bp,建立了PCR和PCR-ELISA检测食品样品中单核细胞增多性李斯特菌的方法。本研究建立的PCR-ELISA方法中,在上游引物5'端标记生物素,核酸探针的3'端标记地高辛,将PCR扩增、核酸液相杂交以及酶联显色技术结合,实现扩增产物上标记的生物素与包被在微孔板上的链霉亲和素结合,标记有地高辛的探针与产物杂交,再与碱性磷酸酶标记的抗地高辛抗体结合,经底物显色。经对试验菌株检测表明,PCR、PCR-ELISA方法检测单核细胞增多性李斯特菌能扩增出特异片段,其它李斯特属的绵羊李斯特菌、英诺克李斯特菌、威尔斯李斯特菌、西尔李斯特菌和格氏李斯特菌、大肠杆菌、葡萄球菌和沙门氏菌等扩增检测结果是阴性。对相关条件进行了优化,当NaOH浓度为0.3 mol/L,杂交时间60 min;酶反应时间为45 min时,结果较好,洗板液以pH7.4 TBS-T为最佳。与PCR产物电泳法检测比较,PCR-ELISA的敏感性是前者156倍以上,并适合批量样品的检测分析。对60个样品检测表明,与SN/T0148.1-2005方法(引用ISO11290-1:2004)相比,PCR和PCR-ELISA方法具有更高的敏感性,表明本方法可以用于肉类食品中单核细胞增多性李斯特菌的快速诊断,具有敏感、特异、快速,重复性良好,无溴乙锭污染以及适合批量检测等优点,进一步标准化后可望作为食品中单核细胞增多性李斯特菌的常规检测方法。
     3.单核细胞增多性李斯特菌IPIL-1全基因克隆与序列分析
     参考Genbank中的单核细胞增多性李斯特菌LIPI-1有关基因序列设计引物,分段扩增,再进行编码核苷酸序列拼接,克隆了单核细胞增多性李斯特菌分离菌株XFL0605 LIPI-1毒力岛全基因,序列全长为8558bp,Accession No.EF661572,包括了完整的prfA、plcA、hly、mpl、actA和plcB等6个基因。
     对单核细胞增多性李斯特菌XFL0605株LIPI-1编码的6个毒力基因核苷酸序列进行分析表明,各毒力基因反映出来的进化关系不尽一致,表明该菌株在获得LIPI-1外源性毒力基因方面具有不同步性,各毒力基因的来源也不尽相同。对XFL0605菌株中LIPI-1各毒力基因所推导氨基酸序列N端作信号肽预测分析结果表明,PlcA、LLO、Mpl、ActA和PlcB5个毒力蛋白中均存在信号肽序列;actA基因推导氨基酸序列中存在跨膜区(578-600位编码氨基酸),其跨膜蛋白为Ⅰ型。LIPI-1序列中存在5个14bp的PrfA蛋白结合区,分别位于plcA上游59-73bp处,prfA上游62-75bp处,hlyA基因的上游183-196bp处,mpl上游185-198bp和actA基因上游185-198bp处。这些核苷酸序列是调控蛋白PrfA的结合位点,并具有回文结构的特点。
     对3个菌株CXFL0605、C53004和CCTCCAB97021)hlyA基因和推导氨基酸序列进行了分析,发现三者具有高度同源性,hly基因同源性在96.9%——100%之间,氨基酸同源性在97.9%以上,并具有相同的PEST基序和C端保守11肽序列,表明所测定3个菌株培养上清中LLO活性基本相当具有遗传基础。对克隆的hlyA基因所推导溶血素氨基酸序列进行PEST分析结果表明,编码LLO的N端32-50位氨基酸序列(KENSISSMAPPASPPASPK)为富含P(脯氨酸)、E(谷氨酸)、S(丝氨酸)和T(苏氨酸)的PEST(Pro-Glu-Ser-Thr)基序,PEST find值为4.71。试验菌株XFL0605actA基因编码604个氨基酸,缺失了105bp富脯氨酸重复片段编码碱基,只有两个E/DFPPPPXD/E重复序列。本研究中发现3株单核细胞增多性李斯特菌溶血素中PEST基序的氨基酸序列完全相同,而且存在PPAS氨基酸重复序列。3个菌株LLO氨基酸序列的C端483-493位存在相同的保守11个氨基酸多肽(序列为ECTGLAWEWWR),该11肽保守序列是CDTX类毒素的特征性序列。
The genus Listeria is a group of Gram-positive bacteria widely dispersed in the environment and foods,and currently subdivided into six species,L.monocytogenes,L. seeligeri,L.welshimeri,L.innocua,L.ivanovii,and L.grayi.Only L.monocytogenes is a human pathogen and a food-borne pathogen that can cause Listerisis with a high mortality rate.Listeriosis is a clinically serious disease with fatality rate of about 20 percents.Its ability to grow at temperatures as low as 4℃permits multiplication in refrigerated foods. In recent years,L.monocytogenes has become not only an important paradigm for immunological investigation but also an important model system for analysis of the molecular mechanisms of intracellular parasitism.The present method for analysis L. monocytogenes is complex and time consuming,requires 24 and 48 hours of enrichment, followed by a variety of other tests.It is necessary to establish a simple molecular method fits for rapid screen and confirmation of suspected isolates.Listeria monocytogenes strain contain two virulence clusters,Listeria pathogenicity island 1(LIPI-1) and Internalin Island(LIPI-2).LIPI-1 is the Central Virulencee Gene Cluster encode prfA,plcA,hly, mpl,actA,and plcB.In this research,we clone,Sequence,and analysis of the LIPI-1 gene duster from a L.monocytogenes isolate strain XFL0605.Furthermore,a simple PCR and PCR-ELISA method for LM detection was developed.
     The main research included as below.
     1.Isolation and biological characterization of Listeria monocytogenes Seven strains of L.monocytogenes were isolated from 156 food samples follows standard method SN/T0148.1-2005.Virulence determination,haemolytic activity detemination, and antibiotic sensitivity test were explored to the isolate L.monocytogenes strain XFL0605 and reference strains CCTCCAB97021 and SC53004.A simple and sensitive ultraviolet spectrophotometry method was established for determining the haemolytic activity of LM strains.The coefficient between SRBC condensity and A540 was 0.99995. The HC_(50) values of XFL0605、CCTCCAB97021 and C53004 culture supematants were 18.85,21.38,and19.68 respectively,showing a strong eorelationship to the set of LLO concentrations.It showed that the haemolytie activity of the LLO secreted from the 3 different strains was identical which was confirmed by sequences of hly gene encoding the pore-forming cytolysin listeriolysin.While XFL0605 strain,whose LD_(50) was 2.58×10~5,was less pathogenic to mice compare to the reference strains.Close relationship between haemolytic activity in the culture supematants and the pH values was found, LLOs were active at pH value of 5.6 while inactive at pH value of 7.0.Antibiotic sensitivity test showed that 3 LM strains were susceptibility to 7 kinds of antimicrobial agents including Ampicillin,Streptomycin,Chloromycetin,Kanamycin,Tetracycline, Norfloxacin and Ciprofloxacin.The spectrophotometric method developed in this study for LLO haemolytic activity testing was direct-viewing and sensitive,and is suitable for testing the expression of hly gene.At the same time,the microtitre plate with serial dilution method was developed and modified which was simple and convenient for LLO haemolytic activity testing.A microtitre plate testing method measure LLO haemolytic ative by serial dilution was developed.
     2.Development of molecular methods for Listeria monocytogenes detection
     To detect L.monocytogenes contamination in foods,the simple PCR and PCR-ELISA method were developed,according to the published hlyA gene sequence,a forward PCR primers labled with biotin at 5" end and a specific probe labled with digxin were designed by using primer 5.0 software.The PCR-ELISA method which was developed in this study combinated PCR,nucleic acid hybrid reaction and enzyme coloration.Only L. monocytogenes strains were successfully amplified the expected fragment,not from E.coli,Salmonella,L.iuanuii,L.innocua,L.innocua,L.seeligeri,and L.gray were negative. The method was then applied to detect L.monocytogenes in 60 food samples to validate the PCR-ELISA procedures by compareing to the isolate method,which was higher positive detection than SN/T0148.1-2005(devivative from ISO11290-1:2004 ).LM detection can be improved by PCR-ELISA the sensitivity of PCR products 156-folds higher than agarose gel electrophoresis.The system allowed quantitative results to be obtained within 5h after 16h of enrichment in half-Fraser broth and was relatively cost-effective,showing a good potential for routine analytical use.
     3.Cloning and phylogenetic analysis of LIPI-1 gene cluster from XFL0605 strain
     The LIPI-1 gene cluster of Listeria monocytogenes XFL0605 strain was segmentally amplified by PCR and analyses.The result showed that LIPI-1 of i XFL0605 strain was 8558nt(Genbank accesion No.EF661572),contained all the members of the prfA-regulated virulence gene cluster prfA,hly,pleA,plcB,mpl,and actA.Phylogenetic analysis XFL0605 strain and other L.monocytogenes,L.seeligeri and L.ivanovii strains on the base of sequence of the LIPI-1 and prfA,hly,plcA,plcB,mpl,and actA gene individal clearly demonstrated that the evolutionary relationship of strains were difference. It revealed that recombination of LIPI-1 in different assembly process and from different source.Furthermore,the signal peptides and transmember domains and their cleavage positions were prodicted,and investigated the PrfA DNA binding sites of the LIPI-1 virulence genes.
     After prediction and analysis of signal peptides of the LIPI-1 of XFL0605 strain by the bio-software SignalP3.0,proteins of PlcA,LLO,Mpl,ActA and PlcB have an average of 26.6 amino acids located at the N-terminal region.Only the membrane protein which was essential for bacterial actin-based motility encoded by actA has the transmember domain(578-600 amino acids) in C-terminus region.There were five 14-bp DNA palindromic sequence(PrfA DNA bingding site sequence) that were present in the target gene promoters of prfA,picA,hlyA,actA and actA of XFL0605.All these palindrome domains were the targets for PrfA recognizes and binding.
     Analysis of hlyA gene and deduced amino acid of the three L.monocytogenes(XFL0605, C53004 and CCTCCAB97021) revealed that the nucleotide homology ranging from 96.9%to 100%,and deduced amino acid sequence homology of over 97.9%.And the three LLOs contained a same 19-amino acid PEST-like sequence (KENSISSMAPPASPPASPK) at the N-terminus region which is essential for the virulence and intracellular compartmentalization of LM,and a same conserved undecapeptide,ECTGLAWEWWR,at the C terminus region which is the characterization of the CDTX toxin.The results supported the conclusion of the previous study of hemolytic activity of the three LM strains.ActA gene of XFL0605 encodes 604 amino acids and contains whole open reading frame but 105bp nucleotides were absent from in proline-rich region,only contains two E/DFPPPPXD/E repeat sequences.We sugest the variation contributes to virulence difference in mice.
引文
1.董波,秦凤华,耿煜等 一种改进的溶血素测定法 军事医学科学院院刊1999,23(2):137-139
    2.范红结 焦新安 高度特异的李斯特菌单抗试剂的研制及鉴定 中国兽医科技 1996,26(10):20-21
    3.F.奥斯伯,R.E.金斯顿,R.布仑特,J.G.塞德曼,D.D.穆尔,K.斯特拉尔,J.A.史密斯 著(顾子颜,王海林译),精编分子生物学实验指南,2001
    4.李朝伟 张顺合 李斯特氏菌分离方法的研究 中国公共卫生 1991,7(7):289-292
    5.R.E.布坎南,N.E.吉本斯等编 伯杰细菌鉴定手册(第八版).北京:科学出版社,1984
    6.翁文川,杨汝德,焦红,户锋科,许龙岩,凌莉 免疫磁分离-荧光PCR应用在肉类单增李斯特氏菌的检测 中国人兽共患病学报 2006,22(6):547-550
    7.肖艳群,陈慧英,张锦锋,蒋玲丽,陆银华 实时荧光定量PCR与PCR-ELISA在乙型肝炎病毒DNA定量检测中的应用比较 检验医学2005,20(4):319-321
    8.肖义泽 任丽娟 云南省首次动物源性李斯特菌病暴发的流行病学调查 中华流行病学杂志2000,21(3):236
    9.徐建国 分子医学细菌学[M].北京:科学出版社,2000
    10.中国科学院微生物研究所 伯杰氏细菌鉴定手册[M].北京:科学出版社,1984
    11.Aarnisalo,K.,Autio,T.,Sjoberg,A.M.,Lunden,J.,Korkeala,H.& Suihko,M.L.Typing of Listeria monocytogenes isolates originating from the food processing industry with automated ribotyping and pulsed-field gel electrophoresis.J Food Prot,2003,66:249-255.
    12.Aguado,V.,Vitas,A.I.,Garc.' a-Jalo'n,I..Characterization of Listeria monocytogenes and Listeria innocua from a vegetable processing plant by RAPD and REA.Int.J.Food Microbiol.2004,90:341-347.
    13.Amagiiani G,Omiccioli E,Campo A,Bruce I J,Brandi G,Magnani M.Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples.J Appl Microbiol.2006,100:375-383.
    14.Angelakopoulos H,Loock K,Sisul DM,Jensen ER,Miller JF,Hohmann EL.Safety and Shedding of an Attenuated Strain of Listeria monocytogenes with a Deletion of actA/plcB in Adult Volunteers:a Dose Escalation Study of Oral Inoculation.Infect Immun.2002,70:3592-3601.
    15.Auerbuch V,Loureiro JJ,Gertler FB,Theriot JA,Portnoy DA.Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility.Mol Microbiol.2003,49:1361-1375.
    16.Barry RA,Archie Bouwer HG,Clark TR,Cornell KA,Hinrichs DJ.Protection of interferon-gamma knockout mice against Listeria monocytogenes challenge following intramuscular immunization with DNA vaccines encoding listeriolysin O.Vaccine.2003,21:2122-2132.
    17.Beauregard KE,KD Lee,RJ Collier,and JA Swanson.pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes.J Exp Med 1997,186:1159-1163.
    18. Behari J, Youngman P. Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect. Immun. 1998,66:3635-3642.
    19. Berche, P., J.-L. Gaillard, C. Geoffroy, and J. E. Alouf. T cell recognition of listeriolysin O is induced during infection with Listeria monocytogenes. J. Immunol. 1987,139:3813-3821.
    20. Bessesen MT, Luo QA, Rotbart HA, Blaser MJ, Ellison RT 3rd. Detection of Listeria monocytogenes by using the polymerase chain reaction. Appl Environ Microbiol. 1990, 56: 2930-2932.
    21. Bierne, H., S. Dramsi, M. P. Gratacap, C. Randriamampita, G. Carpenter, B. Payrastre, and P. Cossart. The invasion protein InlB from Listeria monocytogenes activates PLC-g1 downstream from PI 3-kinase. Cell. Microbiol. 2000,2:465-476.
    22. Bierne H, Miki H, Innocenti M, Scita G, Gertler FB, Takenawa T, Cossart P. WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor. J Cell Sci. 2005;118(Pt 7):1537-1547
    23. Blais BW, Turner G, Sooknanan R, Malek LT. A nucleic acid sequence-based amplification system for detection of Listeria monocytogenes hlyA sequences. Appl. Environ. Microbiol. 1997,63: 310-313.
    24. Bo¨ckmann, R., C. Dickneite, W. Goebel, and J. Bohne. PrfA mediates specific binding to RNA polymerase of Listeria monocytogenes to PrfA dependent viruelence gene promoters resulting in a transcriptionally active complex. Mol. Microbiol. 2000,36:487-497.
    25. Bo"ckmann, R., C. Dickneite, B. Middendorf, W. Goebel, and Z. Sokolovic. Specific binding of the Listeria monocytogenes transcriptional regulator protein PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol. Microbiol. 1996,22:643-653.
    26. Boerlin P, Piffaretti JC. Piffaretti. Typing of human, animal, food and environmental isolates of Listeriamonocytogenes by multilocus enzyme electrophoresis. Appl. Environ. Microbiol. 1991,57:1624-1629.
    27. Bohne, J., Z. Sokolovic, and W. Goebel. Transcriptional regulation of prfA and PrfA-regulated virulence genes in L. monocytogenes. Mol. Microbiol. 1994,11:1141-1150.
    28. Bouwer, H. G. A., C. S. Nelson, B. L. Gibbins, D. A. Portnoy, and D. J. Hinrichs. Listeriolysin O is the target of the immune response to Listeria monocytogenes. J. Exp. Med. 1992,175:1467-1471.
    29. Braun, L., S. Dramsi, P. Dehoux, H. Bierne, G. Lindahl, and P. Cossart. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 1997,25:285-294.
    30. Braun, L., H. Ohayon, and P. Cossart. The InlB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol. Microbiol. 1998,27:1077-1087.
    31. Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, Liu W, Cook DN, Portnoy DA, Dubensky TW Jr. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A. 2004,101:13832-13837.
    32. Brunt LM, Portnoy DA, Unanue ER. Presentation of Listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth.J Immunol.1990,145(11):3540-3546.
    33.Bubert,A.,M.Kuhn,W.Goebel,and S.Ko"hler.Structural and functional properties of the p60proteins from different Listeria species.J.Bacteriol.1992,174:8166-8171.
    34.Bubert A,Hein 1,Raueh M,Lehner A,Yoon B,Goebel W,Wagner M.Detection and Differentiation of Listeria spp.by a Single Reaction Based on Multiplex PCR.Appl Environ Microbiol.1999,10:4688-4692.
    35.Buehrieser C,Broseh R,Catimel B,Roeourt J.Pulsed-field gel eleetrophoresis applied for comparing Listeria monocytogenes strains involved in outbreaks.Can J Mierobiol.1993,39:395-401
    36.Buehrieser C,Rusniok C,Kunst F,Cossart P,Glaser P;Listeria Consortium.Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua:clues for evolution and pathogenicity.FEMS Immunol Meal Mierobiol.2003,35:207-213.
    37.Buncic S,SM Avery,and AR Rogers.Listeriolysin O production and pathogenicity of non-growing Listeria monocytogenes stored at refrigeration temperature.Int J Food Mierobio 1996,131:133-147.
    38.Byron F.Brehm-Steeher BF,Hyldig-Nielsen JJ,Johnson EA.Design and evaluation of 16S rRNA-targeted peptide nucleic acid probes for whole-cell detection of members of the genus Listeria.Appl Environ Mierobiol.2005,71:5451-5457.
    39.Cai,S.,Kabuki,D.Y.,Kuaye,A.Y.,Cargioli,T.G.,Chung.M.S.,Nielsen,R.& Wiedmann,M.Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes.J Clin Microbiol.2002,40:3319-3325.
    40.Call,D.R.,Borucki,M.K.& Besser,T.E.Mixed-genome mieroarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monoeytogenes.J Clin Microbiol 2003,41:632-639.
    41.Chakraborty,T.,T.Hain,and E.Domann.Genome organization and the evolution of the virulence gene locus in Listeria species.Int.J.Med.Mierobiol.2000,290:167-174.
    42.Choi,W.S.,Hong,C.-H.Rapid enumeration of Listeria monoeytogenes in milk using competitive PCR.Int.J.Food Microbiol.2003,84:79 -85.
    43.Chen Y,Zhang W,Knabel SJ.Multi-Virulence-Loeus Sequence Typing Clarifies Epidemiology of Recent Listeriosis Outbreaks in the United States.J Clin Microbiol.2005,43:5291-5294.
    44.Christina E.Dancz,Andrea Haraga,Daniel A.Portnoy et al Inducible Control of Virulence Gene Expression in Listeria monocytogenes:Temporal Requirement of Listeriolysin O during Intracellular Infection Journal of Bacteriology,November 2002,184:5935-5945
    45.Cicchetti,G.,P.Maurer,P.Wagener,and C.Koeks.Actin and phosphoinositide binding by the ActA protein of the bacterial pathogen Listeria monocytogenes.J.Biol.Chem.1999,274:33616-33626.
    46.Clark AG,MeLaughlin J.Simple color tests based on an alanyl peptidase reaction which differentiate Listeria monocytogenes from other Listeria species.J Clin Microbiol. 1997,8:2155-2156.
    47. Cocolin, L., Rantsiou, K., Iacumin, L., Cantoni, C, Comi, G. Direct identification in food samples of Listeria spp. and Listeria monocytogenes by molecular methods. Appl. Environ. Microbiol. 2002,68: 6273-6282.
    48. Conte MP, C Longhi, G Petrone, M Polidoro, P Valenti, and L Seganti. Modulation of actA gene expression in Listeria monocytogenes by iron. J Med Microbiol 2000,49:681-683.
    49. Cook, N. The use of NASBA for the detection of microbial pathogens in food and environmental samples. J. Micriobiol. Methods 2003,53:165-174.
    50. Cooray KJ, Nishibori T, Xiong H, Matsuyama T,Fujita M, Mitsuyama M. Detection of multiple virulence-associated genes of Listeria monocytogenes by PCR in artificially contaminated milk samples. Appl Environ Microbiol. 1994,8:3023-3026.
    51. Cornell, K. A., H. G. Bouwer, D. J. Hinrichs, and R. A. Barry. Genetic immunization of mice against Listeria monoctogenes using plasmid DNA encoding listeriolysin O. J. Immunol. 1999,163:322-329.
    52. Cossart P, Vicente MF, Mengaud J, Baquero F, Perez-Diaz JC, Berche P. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect Immun. 1989, 57: 3629-3636.
    53. Cossart, P. Actin-based motility of pathogens: the Arp2/3 complex is a central player. Cell. Microbiol. 2000,2:195-205.
    54. Cossart, P., and J. Mengaud. Listeria monocytogenes, a model system for the molecular study of intracellular parasitism. Mol. Biol. Med. 1989,6:463-474.
    55. Cowart, R. E., and B. G. Foster. The role of iron in the production of haemolysin by Listeria monocytogenes. Curr. Microbiol. 1981,6:287-290.
    56. Curiale, M.S., Lepper, W., Robison, B., Enzyme-linked immunoassay for detection of Listeria monocytogenes in dairy products, seafoods, and meats: collaborative study. J. AOAC Int. 1994,77:1472-1489.
    57. Czajka J, Bsat N, Piani M, Russ W, Sultana K, Wiedmann M, Whitaker R, Batt CA. Differentiation of Listeria monocytogenes and Listeria innocua by 16S rRNA genes and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms. Appl Environ Microbiol. 1993, 1:304-308.
    58. D'Agostino, M., Wagner, M., Vazquez-Boland, J.-A., Kuchta, T., Karpiskova, R., Hoorfar, J., Novella, S., Scortti, M., Ellison, J., Murray, A., Fernandes, I., Kuhn, M., Pazlarova, J., Heuvlink, A., Cook, N., Avalidated PCR-based method to detect Listeria monocytogenes using raw milk as a food model — towards an international standard. J. Food Prot. 2004,67, 1646-1655.
    59. Darji, A., D. Bruder, S. zur Lage, B. Gerstel, T. Chakraborty, J. Wehland, and S. Weiss. The role of the bacterial membrane protein ActA in immunity and protection against Listeria monocytogenes. J. Immunol. 1998,161:2414-2420.
    60. Datta, A. R., and M. H. Kothary. Effects of glucose, growth temperature, and pH on listeriolysin O production in Listeria monocytogenes. Appl. Environ. Microbiol. 1993,59:3495-3497.
    61. Datta AR, Wentz BA, Russell J. Cloning of the listeriolysin O gene and development of specific gene probes for Listeria monocytogenes. Appl Environ Microbiol. 1990,12:3874-3877.
    62. Datta AR, Wentz BA, Shook D, Trucksess MW. Synthetic oligodeoxyribonucleotide probes for detection of Listeria monocytogenes. Appl Environ Microbiol. 1988 Dec;54(12):2933-7.
    63. Daly P, Collier T, Doyle S. PCR-ELISA detection of Escherichia coli in milk. Lett Appl Microbiol. 2002,3:222-226.
    64. Decatur, A. L., and D. A. Portnoy. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 2000,290:992-995.
    65. Destro, M. T., Leitao, M. F. F. & Farber, J. M. Use of molecular typing methods to trace the dissemination of Listeria monocytogenes in a shrimp processing plant. Appl Environ Microbiol 1996,6:705-711.
    66. Dietrich, G, A. Bubert, I. Gentschev, Z. Sokolovic, A. Simm, A. Catic, S. H. E. Kaufmann, J. Hess, A. A. Szalay, and W. Goebel. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat. Biotechnol. 1998,16:181-185.
    67. Dieterich G, Karst U, Fischer E, Wehland J, Jansch L. LEGER: knowledge database and visualization tool for comparative genomics of pathogenic and non-pathogenic Listeria species. Nucleic Acids Res. 2006,34:D402-406.
    68. Domann E, Leimeister-Wachter M, Goebel W, Chakraborty T. Molecular cloning, sequencing, and identification of a metalloprotease gene from Listeria monocytogenes that is species specific and physically linked to the listeriolysin gene. Infect Immun. 1991,59: 65-72.
    69. Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun. 2004,72:1072-1083.
    70. Dubail, I., P. Berche, and A. Charbit. Listeriolysin O as a reporter to identify constitutive and in vivo-inducible promoters in the pathogen Listeria monocytogenes. Infect. Immun. 2000, 68:3242-3250.
    71. Eiting M, Hageluken G, Schubert WD, Heinz DW. The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif.Mol Microbiol. 2005,56:433-446.
    72. Erdenlig S, Ainsworth AJ, Austin FW. Pathogenicity and production of virulence factors by Listeria monocytogenes isolates from channel catfish. J Food Prot. 2000 May;63(5):613-619.
    73. Ermolaeva S, Karpova T, Novella S, Wagner M, Scortti M, Tartakovskii I, Vazquez-Boland JA. A simple method for the differentiation of Listeria monocytogenes based on induction of lecithinase activity by charcoal. Int J Food Microbiol 2003, 82: 87-94
    74. Feldsine PT, Lienau AH, Forgey RL, Calhoon RD. Assurance polyclonal enzyme immunoassay for detection of Listeria monocytogenes and related Listeria species in selected foods: collaborative study. J. AOAC Int. 1997,80:775 - 790.
    75. Feldstine, P.T., Lienau, A.H., Forgey, R.L., Calhoon, R.D. Visual immunoprecipitate assay (VIP) for Listeria monocytogenes and related Listeria species detection in selected foods; collaborative study. J. AOAC Int. 1997,80:791 - 805.
    76. Fluit AC, Torensma R, Visser MJ, Aarsman CJ, Poppelier MJ, Keller BH, Klapwijk P, Verhoef J. Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay. Appl Environ Microbiol. 1993,59:1289-1293.
    77. Franciosa G, Tartaro S, Wedell-Neergaard C, Aureli P. Characterization of Listeria monocytogenes strains involved in invasive and noninvasive listeriosis outbreaks by PCR-based fingerprinting techniques. Appl Environ Microbiol 2001,67:1793-1799.
    78. Gangar, V., Curiale, M.S., D'Onorio, A., Schultz, A., Johnson, R.L., Atrachie, V., VIDAS enzyme-linked immunofluorescent assay for detection of Listeria in foods: collaborative study. J. AOAC Int. 2000,83:903 - 918.
    79. Gedde, M. M., D. E. Higgins, L. G Tilney, and D. A. Portnoy. Role of listeriolysin o in cell-to-cell spread of Listeria monocytogenes. Infect. Immun. 2000,68:999-1003.
    80. Geese M, Loureiro JJ, Bear JE, Wehland J, Gertler FB, Sechi AS. Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol Biol Cell 2002, 13: 2383-2396
    81. Geng T, Morgan MT, Bhunia AK. Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microbiol. 2004,70: 6138-6146.
    82. Geoffroy, C, J.-L. Gaillard, J. E. Alouf, and P. Berche. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun. 1987,55:1641-1646.
    83. Gilot P, Genicot A, Andre P. Serotyping and esterase typing for analysis of Listeria monocytogenes populations recovered from foodstuffs and from human patients with listeriosis in Belgium. J Clin Microbiol. 1996,34: 1007-1010.
    84. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, et al. Comparative genomics of Listeria species. Science. 2001, 294:849-852.
    85. Glomski, I. J., M. M. Gedde, A. W. Tsang, J. A. Swanson, D. A. Portnoy. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J. Cell Biol. 2002,156:1029-1038
    86. Gonzalez-Zorn B, Dominguez-Bernal G, Suarez M, Ripio MT, Vega Y, Novella S, Vazquez-Boland JA. The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol Microbiol. 1999,3:510-523.
    87. Gouin, E., J. Mengaud, and P. Cossart. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanoii, an animal pathogen, and Listeriaseeligeri, a nonpathogenic species. Infect. Immun. 1994,62:3550-3553.
    88. Gouin E, Welch MD, Cossart P. Actin-based motility of intracellular pathogens. Curr Opin Microbiol. 2005, 1:35-45.
    89. Graham, T., E. J. Goldsteyn-Thomas, V. P. J. Gannon, and J. E. Thomas. Genus-and species-specific detection of Listeria monocytogenes using polymerase chain reaction assays targeting the 16S/23S intergenic spacer region of the rRNA operon.Can.J.Microbiol.1996,42:1155-1162.
    90.Graves LM,Swaminathan B,Reeves MW,Hunter SB,Weaver RE,Plikaytis BD,Schuchat A.Comparison of ribotyping and multilocus enzyme electrophoresis for subtyping of Listeria monocytogenes isolates.J Clin Microbiol.1994,32:2936-2943.
    91.Gray,K.M.,Bhunia,A.K.Specific detection of cytopathogenic Listeria monocytogenes using a two-step method of immunoseparation and cytotoxicity analysis.J.Micriobiol.Methods 2005,60:259-268.
    92.Gracieux P,Roche SM,Pardon P,Velge P.Hypovirulent Listeria monocytogenes strains are less frequently recovered than virulent strains on PALCAM and Rapid' L.mono media.Int J Food Microbiol 2003,83:133-145
    93.Gray MJ,Zadoks RN,Fortes ED,Dogan B,Cai S,Chen Y,Scott VN,Gombas DE,Boor KJ,Wiedmann M.Listeria monocytogenes Isolates from Foods and Humans Form Distinct but Overlapping Populations.Appl Environ Microbiol.2004,70:5833-5841.
    94.Guilbaud M,de Copper P,Bourion F,Rachman C,Prevost H,Dousset X.Quantitative detection of Listeria monocytogenes in biofilms by real-time PCR.Appl Environ Microbiol.2005,71:2190-2194.
    95.Gugnani HC.Some emerging food and water borne pathogens.J Commun Dis.1999Jun;31(2):65-72.
    96.Grundling A,Gonzalez MD,Higgins DE.Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells.J Bacteriol.2003,185:6295-6307.
    97.Gysemans KP,Bernaerts K,Vermeulen A,Geeraerd AH,Debevere J,Devlieghere F,Van Impe JF.Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes.Int J Food Microbiol.2007,114:316-331.
    98.Hacker,J.,G.Blum-Oehler,I.Mu"hldorfer,and H.Tscha"pe.Pathogenicity islands of virulent bacteria:structure,function and impact on microbial evolution.Mol.Microbiol.1997,23:1089-1097.
    99.Harry,.i.T.,and E.G.Pamer.CD8 T lymphocytes specific for the secreted p60 antigen protect against Listeria monocytogenes.J.Immunol.1995,154:4642-4650.
    100.Hayes PS,Graves LM,Ajello GW,Swaminathan B,Weaver RE,Wenger JD,Schuchat A,Broome CV.Comparison of cold enrichment and U.S.Department of Agriculture methods for isolating Listeria monocytogenes from naturally contaminated foods.The Listeria Study Group.Appl Environ Microbiol.1991,8:2109-2113.
    101.Hayes,P.S.,Graves,L.S.,Swaminthan,B.,Ajello,G.W.,Malcolm,G.B.,Weaver,R.E.,Ransom,R.,Dearer,K.,Plikaytis,B.D.,Schuchat,A.,Wenger,J.D.,Pinner,R.W.,Broome,C.V.,Group,L.S.,Comparison of three selective enrichment methods for the isolation of Listeria monocytogenes from naturally contaminated foods.J.Food Prot.1992,55,952-959.
    102. Hiltbold EM, Safley SA, Ziegler HK. The presentation of class I and class II epitopes of listeriolysin O is regulated by intracellular localization and by intercellular spread of Listeria monocytogenes. J Immunol. 1996, 157(3): 1163-1175.
    103. Holko I, J Urbanova. M., Kantikova, K. Pastorova, V. Kmet PCR detection of Listera monocytogenes in milk and milk products and differention of suspect isolates. ACTA VET. BRNO 2002,71:125-131
    104. Hora' kova' , K., Greifova' , M., Seemannova' , Z., Gondova' , B.,Wyatt, GM., A comparison of the traditional method of counting viable cells and a quick microplate method for monitoring the growth characteristics of Listeria monocytogenes. Lett. Appl. Microbiol. 2004,38(3):181-184.
    105. Hough, A.J., Harbison, S.-A., Savill, M.G, Melton, L.D., Fletcher, G. Rapid enumeration of Listeria monocytogenes in artificially contaminated cabbage using real-time polymerase chain reaction. J. Food Prot. 2002,65(8), 1329 - 1332.
    106. Ikonomidis, G, D. A. Portnoy, W. Gerhard, and Y. Paterson. Influenza-specific immunity induced by recombinant Listeria monocytogenes vaccines. Vaccine 1997, 15(4):433-440.
    107. Ingianni, A., Floris, M., Palomba, P., Madeddu, M.A., Quartuccio, M., Pompei, R., Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe. Mol. Cell. Probes 2001,15:275 - 280.
    108. Inoue S, K Katagiri, M Terao, and T Maruyama. RAPD- and actA gene-typing of Listeria monocytogenes isolates of human listeriosis, the intestinal contents of cows and beef. Microbiol Immunol 2001,45:127-133.
    109. Isonhood J, Drake M, Jaykus LA. Upstream sample processing facilitates PCR detection of Listeria monocytogenes in mayonnaise-based ready-to-eat (RTE) salads. Food Microbiol. 2006, 23:584-590.
    110. Jacquet C, Gouin E, Jeannel D, Cossart P, Rocourt J. Expression of ActA, Ami, InlB, and listeriolysin O in Listeria monocytogenes of human and food origin. Appl Environ Microbiol. 2002,68:616-622.
    111. Jaton K, Sahli R, Bille J. Development of polymerase chain reaction assays for detection of Listeria monocytogenes in clinical cerebrospinal fluid samples. J Clin Microbiol. 1992, 8:1931-1936.
    112. Jenkins, E. M., and B. B. Watson. Extracellular antigens from Listeria monocytogenes. I. Purification and resolution of hemolytic and lipolytic antigens from culture filtrates of Listeria monocytogenes. Infect. Immun. 1971,3:589-594.
    113. Jenkins, E. M., A. N. Njoku-Obi, and E. W. Adams. Purification of the soluble hemolysin of Listeria monocytogenes. J. Bacteriol. 1964,88:418-424.
    114. Jensen, E. R., R. Selvakumar, H. Shen, R. Ahmed, F. O. Wettstein, and J. F. Miller. Recombinant Listeria monocytogenes vaccination eliminates papillomavirus-induced tumors and prevents papilloma formation from viral DNA. J. Virol. 1997,71:8467-8474.
    115. Jensen, E. R., H. Shen, F. O. Wettstein, R. Ahmed, J. F. Miller. Recombinant Listeria monocytogenes as a live vaccine vehicle and a probe for studying cell-mediated immunity.Immunol.Rev.1997,158:147-157
    116..lung YS,Frank JF,Brackett RE,Chert J.Polymerase chain reaction detection of Listeria monocytogenes on frankfurters using oligonucleotide primers targeting the genes encoding internalin AB.J Food Prot.2003,2:237-241
    117.Kang,F.,R.O.Laine,M.R.Bubb,F.S.Southwick,and D.L.Purich.Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator-stimulated phosphoprotein(VASP):implications for actin-based Listeria motility.Biochemistry 1997,36:8384-8392.
    118.Kanuganti,S.R.,Wesley,I.V.,Reddy,P.G.,McKean J.,Hurd,S.,Detection of Listeria monocytogenes in pigs and pork.J.Food Pint.2002,65(9):1470-1474.
    119.Kathariou,S.,J.Rocourt,H.Hof,and W.Goebel.Levels of Listeria monocytogenes hemolysin are not directly proportional to virulence in experimental infections in mice.Infect.Immun.1988,56(2):534-536.
    120.Keto-Timonen,R.O.,Autio,T.J.& Korkeala,H.J.An improved amplified fragment length polymorphism(AFLP) protocol for discrimination of Listeria isolates.Syst Appl Microbiol 2003,26(2):236-244.
    121.Kells,J.,Gilmour,A.Incidence of Listeria monocytogenes in two milk processing environments,and assessment of Listeria monocytogenes blood agar for isolation.Int.J.Food Microbiol.2004,91(2):67-174.
    122.Kim SH,Park MK,Kim JY,Chuong PD,Lee YS,Yoon BS,Hwang KK,Lim YK.Development of a sandwich ELISA for the detection of Listeria spp.using specific flagella antibodies.J Vet Sci.2005,6:41-46
    123.Klein PG,Juneja VK..Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR.Appl Environ Microbiol.1997,63:4441-4448.
    124.Kocks C,E Gouin,M Tabouret,P Berche,H Ohayon,and P Cossart.L.monocytogenes-induced actin assembly requires the actA gene product,a surface protein.Cell 1992,68:521-531.
    125.Koo,K.,Jaykus,L.-A.Detection of Listeria monocytogenes from a model food by fluorescence resonance energy transfer-based PCR with an asymmetric fiuorogenic probe set.Appl.Environ.Microbiol.2003,69,1082-1088.
    126.Lamikanra A,Pan ZK,lsaacs SN,Wu TC,Paterson Y.Regression of established human papillomavirus type 16(HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CDS(+) T-cell responses that home to the tumor site.J Virol.2001 Oct;75(20):9654-9664.
    127.Lammerding,A.M.,Doyle,M.P.,Evaluation of enrichment procedures for recovering Listeria monocytogenes from dairy products.Int.J.Food Microbiol.1989,9:249 -268.
    128.Lampel,K.A.,Orlandi,P.A.,Komegay,L.Improved template preparation for PCR-based assays for detection of food-borne bacterial pathogens.Appl.Environ.Microbiol.2000,66:4539-4542.
    129.Lasa i,David V,Gouin E,Marchand JB,Cossart P.The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes;the central proline-rich region acts as a stimulator. Mol Microbiol 1995,18:425-436.
    130. Lasa, I., V. David, E. Gouin, M. Goethals, K. Vancompernolle, V. David, J. Vandekerckhove, and P. Cossart. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J. 1997,16:1531-1540.
    131.Lauer, P., M. Y. N. Chow, M. J. Loessner, D. A. Portnoy, R. Calender. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 2002:184: 4177-4186
    132. Lawrence, L.M., Gilmour, A. Characterization of Listeria monocytogenes isolated from poultry products and from the poultry-processing environment by random amplification of polymorphic DNA and multilocus enzyme electrophoresis. Appl. Environ. Microbiol. 1995,61:2139 - 2144.
    133. Lehner, A., Loncarevic, S., Wagner, M., Kreike, J., Brandl, E. A rapid differentiation of Listeria monocytogenes by use of PCR- SSCP in the listeriolysinO (hlyA) locus. J. Micriobiol. Methods 1999,34:165-171.
    134. Leimeister-Wa¨chter, M., and T. Chakraborty. Detection of listeriolysin, the thiol-dependent hemolysin in Listeria monocytogenes, Listeria ivanovii, and Listeria seeligeri. Infect. Immun. 1989,57:2350-2357.
    135. Leimeister-Wa¨chter, M., E. Domann, and T. Chakraborty. Detection of a gene encoding a phospatidylinositol-specific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol. Microbiol. 1991,5:361-366.
    136. Leonard, P., Hearty, S., Wyatt, G, Quinn, J., O'Kennedy, R. Development of a surface plasmon resonance-based immunoassay for Listeria monocytogenes. J. Food Prot. 2005,68:728-735.
    137. Lety, M.A., C. Frehel, I. Dubail, J.-L. Beretti, S. Kayal, P. Berche, and A. Charbit. Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes. Mol. Microbiol. 2001,39:1124-1139.
    138. Liu D, Ainsworth AJ, Austin FW, Lawrence ML. Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J Med Microbiol 2003, 52: 1065-1070
    139. Low, J. C, R. C. Davies, and W. Donachie. Purification of listeriolysin O and development of an immunoassay for diagnosis of listeric infections in sheep. J. Clin. Microbiol. 1992,30:2705-2708.
    140. Lunge, V.R., Miller, B.J., Livak, K.J., Batt, C.A. Factors affecting the performance of 5' nuclease PCR assays for Listeria monocytogenes detection. J. Micriobiol. Methods 2002,51:361 - 368.
    141.Mandal M, Lee KD. Listeriolysin O-liposome-mediated cytosolic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection. Biochim Biophys Acta. 2002 Jun 13;1563(1-2):7-17.
    142. Marquis H, Doshi V, Portnoy DA. The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun 1995, 63:4531-4534.
    143. Martin A, Katz SE. Rapid determination of Listeria monocytogenes in foods using a resuscitation/selection/kit system detection. J AOAC Int. 1993,76(3):632-636.
    144.Mattingly,J.A.,Butman,B.T.,Plank,M.C.,Durham,R.J.,Robison,B.J.,Rapid monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Listeria in food sources.J.AOAC Int.1988,71:679-681.
    145.Matar,G.M.,Bibb,W.F.,Helsel,L.,Dewitt,W.,Swaminthan,B.Immunoaffinity purification,stabilization and comparative characterization of listeriolysin O from Listeria monocytogenes serotypes 1/2a and 4b.Res.Microbiol.1992,143:489-498.
    146.Mauder N,Ecke R,Mertins S,Loeffler DI,Seidel G,Sprehe M,Hillen W,Goebel W,Muller-Altrock S.Species-specific differences in the activity of PrfA,the key regulator of listerial virulence genes.J Bacteriol.2006,188:7941-7956.
    147.McKay DB,Lu CY.Listeriolysin as a virulence factor in Listeria monocytogenes infection of neonatal mice and murine decidual tissue.Infect Immun.1991,11:4286-4290.
    148.McLauchlin J,Hampton MD,Shah S,Threlfall EJ,Wieneke AA,Curtis GD.Subtyping of Listeria monocytogenes on the basis of plasmid profiles and arsenic and cadmium susceptibility.J Appl Microbiol.1997,83(3):381-388.
    149.Mead,P.S.,L.Slutsker,V.Ditz,L.F.McCaig,J.S.Bresee,C.Shapiro,P.M.Griffin,and R.v.Tauxe.Food-related illness and death in the United States.Emerg.Infect.Dis.1999,5:607-625
    150.Meng J,Doyle MP.Emerging issues in microbiological food safety.Annu Rev Nutr.1997,17:255-275.
    151.Mengaud,J.,C.Geoffroy,and P.Cossart.Identification of a new operon involved in Listeria monocytogenes virulence:its first gene encodes a protein homologous to bacterial metalloproteases.Infect.Immun.1991,59:1043-1049.
    152.Mengaud,J.,M.-F.Vicente,J.Chenevert,J.M.Pereira,C.Geoffroy,B.Gicquel-Sanzey,F.Baquero and P.Cossart.Transcriptional mapping and nucleotide sequence of the Listeria monocytogenes hlyA region reveal structural features that may be involved in regulation.Infect.Immun.1989,57:3695-3701.
    153.Michel,E.,K.A.Reich,R.Favier,P.Berche,and P.Cossart.Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O.Mol.Microbiol.1990,4:3609-3619.
    154.Monica K,Borucki MK,Call DR.Listeria monocytogenes serotype identification by PCR.J Clin Microbiol.2003,41:5537-5540.
    155.Moors MA,B Levitt,P Youngman,and DA Portnoy.Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes.Infect Immun 1999,67:131-139.
    156.Nadon,C.A.,Woodward,D.L.,Young,C.,Rodgers,F.G.& Wiedmann,M.Correlations between molecular subtyping and serotyping of Listeria monocytogenes.J Clin Microbiol 2001,39:2704-2707.
    157.Nato,F.,K.Reich,S.Lhopital,S.Rouyre,C.Geoffroy,J.C.Mazie,and P.Cossart.Production and characterization of neutralizing and non-neutralizing monoclonal antibodies against listeriolysin O.Infect.Immun.1991,59:4641-4646.
    158.Nelson KE,Fouts DE,Mongodin EF,Ravel J,DeBoy RT,Kolonay JF,Rasko DA,Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 2004,8:2386-2395.
    159.Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl UD, Walter U et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 1997, 16: 5433-5444.
    160. Nightingale KK, Windham K, Wiedmann M. Evolution and Molecular Phylogeny of Listeria monocytogenes Isolated from Human and Animal Listeriosis Cases and Foods. J Bacteriol. 2005,187:5537-5551.
    161. Nocera D, Bannerman E, Rocourt J, Jaton-Ogay K, Bille J. Characterization by DNA restriction endonuclease analysis of Listeria monocytogenes strains related to the Swiss epidemic of listeriosis. J Clin Microbiol. 1990,10: 2259-2263.
    162. Norton DM, Batt CA.Detection of Viable Listeria monocytogenes with a 5' Nuclease PCR Assay. Appl Environ Microbiol. 1999,5: 2122-2127.
    163. Norton DM, JM Scarlett, K Horton, D Sue, J Thimothe, KJ Boor, and M Wiedmann. Characterization and pathogenic potential of Listeria monocytogenes isolates from the smoked fish industry. Appl Environ Microbiol 2001,67:646-653.
    164. Olier M, Pierre F, Lemaitre JP, Divies C, Rousset A, Guzzo J. Assessment of the pathogenic potential of two Listeria monocytogenes human faecal carriage isolates. Microbiology 2002, 148: 1855-1862.
    165. Paillard, D., Dubois, V., Duran, R., Nathier, F., Guittet, C, Caumette, P., Quentin, C, Rapid identification of Listeria species by using restriction fragment length polymorphism of PCR-amplified 23S rRNA gene fragments. Appl. Environ. Microbiol. 2003, 69:6386 - 6392.
    166. Pangallo D, Kaclikova E, Kuchta T, Drahovska H. Detection of Listeria monocytogenes by polymerase chain reaction oriented to the inlB gene. Microbiologica 2001,24:333 - 339.
    167. Paoli, G.C., Chen, C.-Y., Brewster, J.D.. Single-chain Fv antibody with specificity for Listeria monocytogenes. J. Immunol. Methods 2004,289, 147 - 155.
    168. Parham, P., and E. R. Unanue (ed.). Immunity to L. monocytogenes: a model intracellular pathogen. Immunol. Rev. 1997,158:1-169.
    169. Petrone G, Polidoro M, Donnarumma G, Conte MP, Papi E, Seganti L, Valenti P. Identification of Listeria monocytogenes by colony hybridization test using the virulence-associated hly and inlA genes as probes. Ann Ig. 1997,9:281-288.
    170. Peters C, Domann E, Darbouche A, Chakraborty T, Mielke ME. Tailoring host immune responses to Listeria by manipulation of virulence genes — the interface between innate and acquired immunity. FEMS Immunol Med Microbiol. 2003,35(3):243-253.
    171.Piffaretti JC,Kressebuch H,Aeschbacher M,Bille J,Bannerman E,Musser JM,Selander RK,Rocourt J.Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease.Proc Natl Acad Sci U S A.1989,10:3818-3822.
    172.Pistor,S.,T.Chakraborty,K.Niebuhr,E.Domann,and J.Wehland.The ActA protein of Listeria monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton.EMBO J.1994,13:758-763.
    173.Pistor,S.,L.Grobe,A.S.Sechi,E.Domann,B.Gerstel,L.M.Machesky,T.Chakraborty,and J.Wehland.Mutations of arginine residues within the 146-KKRRK-150 motif of the ActA protein of Listeria monocytogenes abolish intracellular motility by interfering with the recruitment of the Arp2/3 complex.J.Cell Sei.2000,113:3277-3287.
    174.Pilgrim S,Kolb-Maurer A,Gentsehev I,Goebel W,Kuhn M.Deletion of the gene encoding p60in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility.Infect Immun 2003,71:3473-3484.
    175.Portnoy,D.A.,P.S.Jacks,and D.J.Hinriehs.Role of hemolysin for the intracellular growth of Listeda monoeytogenes.J.Exp.Med.1988,167:1459-1471.
    176.Poyart C,Abachin E,Razafimanantsoa I,Berehe P.The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C:Direct evidence obtained by gene complementation.Infect Immun 1993,61:1576-1580.
    177.Rafelski SM,Theriot JA.Mechanism of polarization of Listeria monocytogenes surface protein ActA.Mol Mierobiol.2006,59:1262-1279.
    178.Rafelski SM,Theriot JA.Bacterial shape and ActA distribution affect initiation of Listeria monocytogenes actin-based motility.Biophys J.2005,89:2146-2158.
    179.Rijpens,N.,Herman,L.Comparison of selective and nonselective primary enrichments for the detection of Listefia monocytogenes in cheese.Int.J.Food.Mierobiol.2004,94:15-22.
    180.Ripio,M.-T.,C.Geoffroy,G.Dom.' nguez,J.E.Alouf,and J.A.Va' zquez-Boland.The sulphydryl-activated eytolysin and a sphingomyelinase C are the major membrane-damaging factors involved in cooperative(CAMP-like) haemolysis of Listefia spp.Res.Microbiol.1995,146:303-313.
    181.Ripio,M.-T.,G.Dominquez-Bemal,M.Lara,M.Sua' rez,and J.-A.Va' zquez-Boland.A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listefia monoeytogenes.J.Bactefiol.1997,179:1533-1540.
    182.Roberts A,Chan Y,Wiedmann M.Definition of genetically distinct attenuation mechanisms in naturally virulence-attenuated Listeria monocytogenes by comparative cell culture and molecular characterization.Appl Environ Microbiol.2005,71:3900-3910.
    183.Rodriguez-lAzaro D,Jofre A,Aymefieh T,Hugas M,Pla M.Rapid Quantitative Detection of Listefia monocytogenes in Meat Products by Real-Time PCR.Appl Environ Mierobiol.2004,10:6299-6301.
    184.Rodriguez-Lazaro D,Hernba' ndez,M.,Pla,M.Simultaneous quantitative detection of Listeria spp.and Listefia monoeytogenes using a duplex real-time PCR-based assay.FEMS Microbiol. Lett. 2004,233:257-267.
    185. Rodriguez-Lazaro, D., Hernandez, M., Scortti, M., Esteve, T., Vazquez-Boland, J.-A., Pla, M. Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: assessment of hly, iap, and lin02483 targets and AmpliFluor technology. Appl. Environ. Microbiol. 2004,70:1366-1373.
    186. Roll JT and CJ Czuprynski. Hemolysin is required for extraintestinal dissemination of Listeria monocytogenes in intragastrically inoculated mice. Infect Immun 1990,58:3147-3150.
    187. Rorvik LM, Yndestad M. Listeria monocytogenes in foods in Norway. Int J Food Microbiol. 1991,13(2):97-104.
    188. Rossmanith P, Krassnig M, Wagner M, Hein I. Detection of Listeria monocytogenes in food using a combined enrichment/real-time PCR method targeting the prfA gene. Res Microbiol. 2006,157:763-771.
    189. Rousseaux S, Olier M, Lemaitre JP, Piveteau P, Guzzo J.Use of PCR-Restriction Fragment Length Polymorphism of inlA for Rapid Screening of Listeria monocytogenes Strains Deficient in the Ability To Invade Caco-2 Cells. Appl Environ Microbiol. 2004,70: 2180-2185.
    190. Rudi, K., Naterstadt, K., Dromtorp, S.M., Holo, H., Detection of viable and dead Listeria monocytogenes on gouda-like cheeses by real-time PCR. Lett. Appl. Microbiol. 2005,40:301 -306.
    191. Salcedo C, Arreaza L, Alcala B, de la Fuente L, Vazquez JA. Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones. J Clin Microbiol. 2003,41:757-762.
    192. Samarin S, Romero S, Kocks C, Didry D, Pantaloni D, Carlier MF. How VASP enhances actin-based motility. J Cell Biol. 2003,163:131-142.
    193. Scheu P, Gasch A, Berghof K. Rapid detection of Listeria monocytogenes by PCR-ELISA. Lett Appl Microbiol. 1999,29:416-420.
    194. Schluter D, Domann E, Buck C, Hain T, Hof H, Chakraborty T, Deckert-Schluter M. Phosphatidylcholine-specific phospholipase C from Listeria monocytogenes is an important virulence factor in murine cerebral listeriosis. Infect Immun 1998, 66: 5930-5938
    195. Schmid, M., Walchor, M., Bubert, A., Wagner, M., Wagner, M., Schleifer, K.-H. Nucleic acid-based, cultivation-independent detection of Listeria spp. and genotypes of Listeria monocytogenes. FEMS Immunol. Med. Microbiol. 2003,35:215-225.
    196. Schuerch DW, Wilson-Kubalek EM, Tweten RK. Molecular basis of listeriolysin O pH dependence. Proc Natl Acad Sci U S A. 2005,35:12537-12542
    197. Scotter, S.L., Langton, S., Lombard, B., Schulten, S., Nagelkerke, N., in't Veld, P.H., Rollier, P., Lahellec, C, Validation of ISO method 11290 Part 1 — detection of Listeria monocytogenes in foods. Int. J. Food Microbiol. 2001,64:295-306.
    198. Scotter JM, Chambers ST. Comparison of galactomannan detection, PCR-enzyme-linked immunosorbent assay, and real-time PCR for diagnosis of invasive aspergillosis in a neutropenic rat model and effect of caspofungin acetate. Clin Diagn Lab Immunol. 2005,11:1322-1327.
    199. Sewell DA, Douven D, Pan ZK, Rodriguez A, Paterson Y. Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine. Arch Otolaryngol Head Neck Surg. 2004 Jan; 130(1):92-97.
    200. Sewell, A.M., Warburton, D.W., Boville, A., Daley, E.F., Mullen, K. The development of an efficient and rapid enzyme linked fluorescent assay method for the detection of Listeria spp. from foods. Int. J. Food Microbiol. 2003,81(2): 123 - 129.
    201. Shearer, A.E.H., Strapp, CM., Joerger, R.D., Evaluation of a polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp. and Listeria monocytogenes on fresh fruits and vegetables. J. Food Prot. 2001,64, 788 - 795.
    202. Sheehan B, Klarsfeld A, Msadek T, Cossart P.Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator. J Bacteriol. 1995,177: 6469-6476.
    203. Shen, H., M. K. Slifka, M. Matloubian, E. R. Jensen, R. Ahmed, and J. F. Miller. Recombinant Listeria monocytogenes as live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl. Acad. Sci. USA 1995,92:3987-3991.
    204. Silbernagel KM, Jechorek RP, Kaufer AL, Johnson RL, Aleo V, Brown B, Buen M, Buresh J, Carson M, Franklin J, Ham P, Humes L, Husby G, Hutchins J, Jechorek R, Jenkins J, Kaufer A, Kexel N, Kora L, Lam L, Lau D, Leighton S, Loftis M, Luc S, Martin J, Nacar I, Nogle J, Park J, Schultz A, Seymore D, Smith C, Smith J, Thou P, Ulmer M, Voss R, Weaver V. Evaluation of the VIDAS Listeria (LIS) immunoassay for the detection of Listeria in foods using demi-Fraser and Fraser enrichment broths, as modification of AOAC Official Method 999.06 (AOAC Official Method 2004.06). J AOAC Int. 2005,3:750-60
    205. Silva IM, Almeida RC, Alves MA, Almeida PF. Occurrence of Listeria spp. in critical control points and the environment of Minas Frescal cheese processing. Int J Food Microbiol. 2003 ,3:241-248
    206. Smith, G. A., J. A. Theriot, and D. A. Portnoy. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol. 1996,135:647-660.
    207. Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 1995, 63: 4231-4237
    208. Snyder A, Marquis H. Restricted translocation across the cell wall regulates secretion of the broad-range phospholipase C of Listeria monocytogenes. J Bacteriol. 2003,185:5953-5958.
    209. Sokolovic Z, S Schuller, J Bohne, A Baur, U Rdest, C Dickneite, T Nichterlein, and W Goebel.. Differences in virulence and in expression of PrfA and PrfA-regulated virulence genes of Listeria monocytogenes strains belonging to serogroup 4. Infect Immun, 1996,64:4008- 4019.
    210. Spreng S, Gentschev I, Goebel W, Mollenkopf H, Eck M, Muller-Hermelink HK, Schmausser B. Identification of immunogenic antigens of Helicobacter pylori via the Escherichia coli hemolysin secretion system(1). FEMS Microbiol Lett. 2000, 15; 186(2):251-256.
    211. Sun AN, Camilli A, Portnoy DA. Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 1990, 58: 3770-3778
    212. Ueda S, Maruyama T, Kuwabara Y. Detection of Listeria monocytogenes from food samples by PCR after IMS-plating.Biocontrol Sci. 2006,11:129-134.
    213. Unanue ER. Inter-relationship among macrophages, natural killer cells and neutrophils in early stages of Listeria resistance. Curr Opin Immunol. 1997,1:35-43.
    214. Uyttendaele, M., Schukkink, R., van Gemen, B., Debvrere, J. Development of NASBA, a nucleic acid amplification system, for identification of Listeria monocytogenes and comparison to ELISA and a modified FDA method. Int. J. Food Microbiol. 1995,27:77-89.
    215. Van Netten, P., Perales, I., van de Moosdijk, A., Curtis, GD.W., Mossel, D.A.A., Liquid and solid selective differential media for the detection and enumeration of L. monocytogenes and other Listeria spp. Int. J. Food Microbiol. 1989, 8:299-316.
    216. Van Coillie E, Werbrouck H, Heyndrickx M, Herman L, Rijpens N. Prevalence and typing of Listeria monocytogenes in ready-to-eat food products on the Belgian market. J Food Prot. 2004,11:2480-2487.
    217. Vazquez-Boland JA, Dominguez L, Fernandez JF, Rodriguez-Ferri EF, Briones V, Blanco M, Suarez G. Revision of the validity of CAMP tests for Listeria identification. Proposal of an alternative method for the determination of haemolytic activity by Listeria strains. Acta Microbiol. Hung. 1990,37:201-206.
    218. Vazquez-Boland, J.A., G. Dom.' nguez-Bernal, B. Gonza' lez-Zorn, J. Kreft, and W. Goebel. Pathogenicity islands and virulence evolution in Listeria Microb. Infect. 2001,3:571-584.
    219. Vazquez-Boland, J.A., C. Kocks, S. Dramsi, H. Ohayon, C. Geoffroy, J. Mengaud, and P. Cossart. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-tocell spread. Infect. Immun. 1992, 60:219-230.
    220. Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G, Goebel, W., Gonzalez-Zorn, B., Wehland, J. & Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001,14:584-640.
    221. Vega Y, Rauch M, Banfield MJ, Ermolaeva S, Scortti M, Goebel W, Vazquez-Boland JA. New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure-function of the virulence regulator PrfA. Mol Microbiol. 2004,52:1553-1565.
    222. Vogel, B.F., Fussing, V, Ojeniyi, B., Gram, L., Ahrens, P. High-resolution genotyping of Listeria monocytogenes by fluorescent amplified fragment length polymorphism analysis compared to pulsed-field gel electrophoresis, random amplified polymorphic DNA analysis, ribotyping, and PCR-restriction fragment length polymorphism analysis. J. Food Prot. 2004,67:1656 - 1665.
    223. Warburton DW, Farber JM, Armstrong A, Caldeira R, Hunt T, Messier S, Plante R, Tiwari NP, Vinet J. A comparative study of the 'FDA' and 'USDA' methods for the detection of Listeria monocytogenes in foods. Int J Food Microbiol. 1991,13:105-117.
    224. Wan, J., King, K., Forsyth, S., Coventry, M.J., Detection of Listeria monocytogenes in salmon using Probelia polymerase chain reaction system. J. Food Prot. 2003,66:436 - 440.
    225. Wang C, Hong C. Quantitative PCR for Listeria monocytogenes with colorimetric detection. J Food Prot. 1999 Jan;62(1):35-39.
    226.Weidmann,M.,Bruce,J.L.,Keating,C.,Johnson,A.E.,McDonough,P.L.,Batt,C.A.,Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential.Infect.Immun.1997,65:2707-2716.
    227.Wiedmann M,Czajka J,Barany F,Batt CA.Discrimination ofListeria monocytogenes from other Listeria species by ligase chain reaction.Appi Environ Microbiol.1992,58:3443-3447.
    228.Williams JR,Thayyullathil C,Freitag NE.Sequence Variations within PrfA DNA Binding Sites and Effects on Listeria monocytogenes Virulence Gene Expression.J Bacteriol.2000,3:837-841.
    229.Willis C,Baalham T,Greenwood M,Presland F Evaluation of a new chromogenic agar for the detection of Listeria in food.J Appl Microbiol.2006,3:711-717.
    230.Wong KK,Freitag NE.A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products.J Bacteriol.2004,186:6265-6276,
    231.Xinyan Zhao,Zhongxia Li,Baiyan Gu,and Fred R.Frankel Pathogenicity and immunogenicity of a vaccine strain of Listeria monocytogenes that relies on a suicide plasmid to supply an essential gene product infection and immunity 2005,73:5789-5798
    232.Yde,M.,Genicot,A.,Use of PFGE to characterize clonal relationships among Belgian clinical isolates of Listeria monocytogenes.J.Med.Microbiol.2004,53:399-402.
    233.Yeung PS,Na Y,Kreuder A J,Marquis H.Compartmentalization of the broad-range phospholipase C activity to the spreading vacuole is critical for Listeria monocytogenes virulence.Infect Immun.2007,75:44-51.
    234.Yeung PS,Zagorski N,Marquis H.The metalloprotease of Listeria monocytogenes controls cell wall translocation of the broad-range phospholipase C.J Bacteriol.2005,187:2601-2608.
    235.Yousef AE,Ryser ET,Marth EH.Methods for improved recovery of Listeria monocytogenes from cheese.Appl Environ Microbiol.1988,11:2643-2649.
    236.Yu KY,Noh Y,Chung M,Park H J,Lee N,Youn M,Jung BY,Youn BS.Use of monoclonal antibodies that recognize p60 for identification of Listeria monocytogenes.Ciin Diagn Lab Immunol.2004,3:446-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700