用户名: 密码: 验证码:
Au_(core)@Pt_(shell)纳米粒子上C_1有机小分子电催化氧化的原位SERS研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机小分子的电催化氧化反应作为燃料电池的阳极过程,一直倍受电化学工作者的关注。深入研究有机小分子在过渡金属表面上的电催化氧化行为,不仅具有重要的理论研究意义,而且具有潜在应用价值。
     几十年来,人们在过渡金属上有机小分子(特别是C_1分子)吸附和反应的重要研究领域作了大量的卓有成效的工作。但由于各类研究体系的复杂性和各种检测技术的限制,迄今人们对有机小分子吸附和反应过程的具体细节尚无定论,一些重要的问题仍待解决。在研究有机小分子吸附和反应的各种手段中,红外光谱技术是应用最为广泛的一种现场谱学技术,但由于易受溶剂水的干扰以及难以获得低波数区电化学固液表(界)面的分子水平信息,红外光谱有其一定的局限性。表面增强拉曼光谱(SERS)技术则正好弥补了红外光谱技术在电化学研究体系中的这一不足。然而,具有较强催化活性的Pt、Pd等过渡金属的SERS信号较弱。尽管本研究组曾采用特殊的电极粗糙方法来提高表面物种的SERS信号,但离电催化体系有效应用仍有一定距离。本论文工作从拓宽SERS研究C_1有机小分子在金属铂上的吸附和反应过程,设计合成特殊结构电催化剂以提高燃料电池阳极电催化性能的的研究目的出发,主要在以下几个方面开展了研究:
     (1)在球形金纳米粒子(粒径约为55 nm)的基础上用化学还原法制备了壳层厚度可调的核壳结构Au_(core)@Pt_(shell)纳米粒子。采用扫描电镜、电化学循环伏安和拉曼光谱等对合成的Au_(core)@Pt_(shell)纳米粒子进行了表征。结果表明所合成的纳米粒子粒径均匀、表面致密没有“针孔”,表现出较强的SERS活性及典型块状多晶铂电极的电化学性质。
     (2)采用电化学原位SERS技术结合循环伏安等常规电化学方法,对Au_(core)@Pt_(shell)纳米粒子上甲醇、甲醛、甲酸的电催化氧化行为进行了研究,成功地获得了甲醇、甲醛、甲酸在Au_(core)@Pt_(shell)纳米粒子上吸附解离的原位SERS。研究表明,不论是酸性、中性还是碱性介质,甲醇、甲醛均能在Au_(core)@Pt_(shell)纳米粒子上自发氧化解离出了强吸附中间体CO,只是在碱性介质中比在酸性、中性介质中更易被氧化;首次用拉曼光谱检测到甲酸在Au_(core)@Pt_(shell)纳米粒子上解离的弱吸附中间体HCOO的谱峰,同时还检测到氧化产物CO2的谱峰,为验证甲酸电催化氧化过程的双途径机理提供了一些分子水平信息。
     (3)以球形硒纳米粒子为模板,合成了金、铂等过渡金属纳米空球,用扫描电镜、透射电镜、选区电子衍射等对其进行了表征。以吡啶和SCN-为探针分子,初步研究了金纳米空球的SERS效应,结果显示所合成的金纳米空球增强因子约为7.6×10~4;以甲醇为探针分子,初步研究了铂纳米空球的电催化活性,结果表明,甲醇在所合成的铂金纳米空球上电催化氧化的起始氧化电位较实心铂纳米粒子及铂黑提前约200 mV,峰电流密度是它们的2-3倍,经过长时间循环扫描后显示出极高的稳定性。
The electrocatalytic oxidation of small organic molecules has attracted great interest due to their prospect being used as fules for the anodic reaction of fule cells. Because of its great significance to both the practical application and fundamental researches, the extensive investigation of the electrocatalytic oxidation of small organic molecules on transitional metal is very necessary.
     The investigation of the electrocatalytic oxidation of small organic molecules on transitional metal has in this field have been carried out and great progress has been made in the past four dacads. However, due to the complexity of the system during the reaction process, especially, the limitation of the detection techniques, at least at present, the detailed mechanism on the reaction process is still in controversy. Among the various techniques in investigating the adsorption and reaction behavior of small organic molecules, infrared (IR) spectroscopy is the most widely used in-situ spectroscopic method, and has made tremendous contributions to provide a better understanding of this field. But the most widely used systems in IR, are easy to interfere by the solvent such as water, and are too severe to extract the signal of the solid/aqueous interface. On the other hand, SERS can provide a wider spectral window, which is quite convenient to obtain the vibrational information reflecting the interaction of the adsorbates and the substrates located under 600 cm-1. However, in the past two decades, the application of SERS was mainly restricted to Ag, Au and Cu surfaces which provide giant surface enhancement because the SERS activity of the transitional metal with high catalitic such as Pt and Pd are low. Athough in recent years has its application been extended to transition metals by using electrochemical roughing methode in our research group, it is still not effective in investigating electrocatalytic reaction. On the purpose of extending SERS to the study of the adsorption and reaction of C_1 molecules on Pt surface effectively, and improving the electrocatalytic activity of anodic catalyst through fabricating nanoparticles with unique structure .Three parts of work have been performed, and the main results a of which are listed as follows:
     (1) Au_(core)@Pt_(shell) nanoparticles with controllable Platinum shell thickness were synthesized by chemical reduction method. The samples were characterized by scanning electron microscopy(SEM)、Cyclic voltammetry (CV) and surface enhanced Raman spectroscope(SERS). Results showed that the Au_(core)@Pt_(shell) nanoparticles with compact surface are uniform, exhibit good SERS activity and the electrochemial behavor is similar to traditional bulk Pt electrode with polymorphic crystal Structure.
     (2) In-situ SERS combined with CV was utilized to investigate the electrocatalytic oxidation behaviors of Methanol、Formaldehyde and formic acid adsorbed on Au_(core)@Pt_(shell) nanoparticles. Surface-enhanced Raman scattering spectra with high quality was acquired. Results showed that the Methanol and Formaldehyde could dissociate spontaneously to produce strongly adsorbed intermediate, CO, in acidic, neutral, and alkaline media on Au_(core)@Pt_(shell) nanoparticles. Au_(core)@Pt_(shell) nanoparticles exhibited better electro-catalytic properties for the oxidation of formaldehyde in alkaline media than in acidic or neutral media. A peak of HCOO, the weakly adsorbed intermediate of the dissociative adsorption of formic acid were successfully obtained for the first time. At the same time, the peak of the finally oxidized product CO_2 of formic acid was also detected. The dual path reaction mechanism for the oxidation of formic acid was confirmed at molecular level.
     (3) Transitional metal hollow nanospheres were synthesized using selenium nanoparticles as template. The samples were characterized by SEM、TEM、SAED,etc. The SERS activity of Au hollow nanospheres was measured by using Pyridine and SCN- as the probe molecule, the surface enhancement factor of Pyridine from gold hollow nanospheres reaches as high as 7.6×10~4 . The electrocatalytic activity of Platinum hollow nanospheres was measured by using methanol as the probe molecule. The results showed that the onset potential of methanol electrocatalytic oxidation on Platinum hollow nanospheres is negatively shifted about 200 mV than Platinum nanospheres and Platinumblack, the peak current density of methanol electrocatalytic oxidation on Platinum hollow nanospheres is 2~3 times as large as Platinum nanospheres and Platinumblack. It also reveals good stability of electrocatalytic oxidation after CV scanning for a long time.
引文
[1] Proceedings on EVS-13, The 13th International Electric Vehicle Symposium, Japan Electric Vehicle Association, Osaka, Japan, October 1996.
    [2] Su A H, Li C Z, Sun G Q, Zhang Y, Lu T H. High activity Pt/C catalyst for methanol and adsorbed CO electro-oxidation. Chin. J. Power Sources. 1995,19: 31–35
    [3] Gulzow E, Schulze M, Steinhilber G, Investigation of the degradation of different nickel anode types for alkaline fuel cells. J. Power Sources. 2002,106: 126–135
    [4] Whitacre J F, Valdez T, Narayanan S R. Investigation of Direct Methanol Fuel Cell Electrocatalysts Using a Robust Combinatorial Technique. J. Electrochem. Soc. 2005, 152: 1780–1789
    [5]田立朋,李伟善.直接甲醇燃料电池研究进展.现代化工. 1998,5: 14-17
    [6] Capon A, Parsons R. The Oxidation of Formic Acid on Noble Metal Electrodes, Part II. Comparison of the Behavior of Pure Metals. J.Electroanal.Chem.1973,44: 239
    [7] Hampons N A, Willars M J, McNicol B D. Direct methanol-air fuel cells for road transortation. J.Power Sources. 1979,4: 191
    [8] Srinvasan S. Fuel cell for electric utility and transportation application J. Electroanal. Chem. 1981,118: 51-69
    [9] Parsons R, VanderNoot T. The oxidation of small organic molecules:A survey of recent fuel cell related research. J. Electroanal.Chem.1988,257: 9-45
    [10] Sun S G,Lipkowski J,Ross P N,et al. Studing Electrocatalytic Oxidation of Small Organic Molecules with in-situ Infrared Spectroscopy,Frontiers of Electrochemistry. NewYork: John Wiley & Sons,Inc.1997
    [11] Jarvi T d, Stuve E M, Lipkowski J, Ross P N,et al.Studing Electrocatalytic Oxidation of Small Organic Molecules with in-situ Infrared Spectroscopy, Chapter3,Volume 4 of Frontier of Electrochemistry,NewYork:John Wiley & Sons, Inc.,1997
    [12] Breiter M W. A study of intermediates adsorbed on platinized-platinum during the stedy-state oxidation of methanol, formic acid and formaldehyde. J. Electroanal. Chem. 1967, 14: 407-413
    [13] Capon A, Parsons R. Kinetic and Product Studies on the Decomposition of Hydroxylamine in Nitric Acid. J. Electroanal. Chem. 1973, 44 (1): 9-20
    [14] Capon A,Parsons R. The Oxidation of Formic Acid on Noble Metal Electrodes, Part III. Intermediates and Mechanism on Platinum Electrodes.J. Electroanal. Chem. 1973, 45: 205-231
    [15] Parsons R, VanderNoot T. The oxidation of small organic molecules:A survey of recent fuel cell related research. J. Electroanal. Chem. 1988, 257: 9-45
    [16] Beden B, Léger J M, Lamy C. Modern Aspects of Electrochemistry. Kluwer Adcademic /Plenum Publishers: New York, 1992; pp 97-263 [17 ]Jarvi T D, Stuve E M. Electrocatalysis. Wiley-VCH: Heidelberg,Germany, 1998: 75-153
    [18] Sun S G. Electrocatalysis. Wiley-VCH: New York, 1998: 243-290
    [19] Hamnett A. Interfacial Electrochemistry: Accomplishments and Challenges. Marcel Dekker Inc. New York, 1999: 843-883
    [20] Markovic N M, Ross P N, New electrocatalysts for fuel cells: from model surfaces to practicality. Surf. Sci. Rep. 2002, 45:117-230
    [21] Wasmus S, Wang J T,Savinell R F. Real-Time Mass Spectrometric Investigation of the Methanol Oxidation in a Direct Methanol Fuel Cell - A MPEMS Study. J. Electrochem. Soc. 1995,142:3825-3833
    [22] Fan Q, Pu C, Smotkin E S. Methanol Electro-oxidation on Unsupported Pt-Ru Alloys at Different Temperatures.J. Electrochem. Soc. 1996, 143: 3053-3057
    [23] Lin W F,Wang J T,Savinell R F. On-Line FTIR Spectroscopic Investigations of the Methanol Oxidation in a Direct Methanol Fuel Cell. J. Electrochem. Soc. 1997,144: 1917-1922
    [24] Sanicharane S, Bo A,Sompalli B,Gurau B, Smotkin E S. A solid-state potentiometric sensor based on polybenzimidazole for hydrogen determination in air. J.Electrochem. Soc. 2002, 149: 119-122
    [25] Tkach I, Panchenko A, Kaz T, Gogel V,Friedrich K A,Roduner E. Controlled assembling of gold nanoparticles into nanowires using b-cyclodextrin. Phys. Chem. Chem. Phys. 2004, 6, 5419-5423
    [26] Chen Y X, Miki A, Ye S,Sakai H,Osawa M. Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J. Am. Chem. Soc. 2003, 125: 3680 -3681
    [27]Liao S, Holmes K, Tsaprailis H, Birss V. High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol. J. Am. Chem. Soc. 2006, 128: 3504-3505
    [28] Beden B, Hahn F, Leger J M, Lamy C, et al. J. Electroanal. Chem. 1989,258: 463-467
    [29] Beden B, Juanto S, Leger J M, Lamy C, Infrared Spectroscopic Study of the Methanol Adsorbates at a platinum electrode. J. Electroanal. Chem.1987, 238:323-331
    [30] Pham M C, Mpslih J, Simon M, Lacaze P C, J. Electroanal. Chem. 1990, 282:285 -291
    [31] Nichols R J, Bewick A. Electrochim. Acta. 1988, 33:1691-1694
    [32] Iwasita T, Nart F C, Lopez N, Vielstich W. Electrochim. Acta.1992,37:2361-2367
    [33] Vielstich W, Christensen P A, Weeks S A,Hamnett A. J. Electroanal. Chem. 1989,242: 327-333
    [34] Herrero E, Chrzanowski W, Wieckowski A, J. Phys. Chem.1995,99:10423-10424
    [35] Heung L W H, Weaver M J. Langmuir. 1990,6:323-333
    [36] Vielstich W, Xia X H. Phys. Chem.1995, 99:10421-10422
    [37] Willsau J, Heitbaum J. Acta.1986, 31:943-948
    [38] Wolter O, Willsau J, Heitbaum J. J.Electrochem.Soc.1985,132:1635-1641
    [39] Rhodes D R, Steigelmann E F. J.Electrochem.Soc. 1965,112:16
    [40] Capon A, Parsons R,.J.Electroanal.Chem.1973,44:1-7
    [41] Capon A, Parsons R, J.Electroanal.Chem.1973,44:239-254
    [42] Beden B, Lamy C, Leger J M. J.Electroanal Chem.1983,149:295-302
    [43] Kunimatsu K. J. Electroanal. Chem.1986,213:149-157
    [44] Wilhelm S, Iwasita T, Vielstich. J.Electroanal.Chem.1983,238:383-391
    [45] Wilhelm S, Vielstich W, J.Electroanal Chem.1987,229:377-384
    [46] Juanto S, Ben B, Lamy C. J.Electroanal Chem.1987,237:119-129
    [47] Sun S G, Clavilier J, Bewick A. J.Electroanal Chem. 1988,240:147-159
    [48]Goodenough J B, Hamnett A, Kennedy B. J.Electrochim.Acta.1987,32:1233-1238
    [49] Sun S G, Clavilier J, Bewick A.in Extended Abstract of 38th ISE Meeting, No.1.1, Maastricht (1987)
    [50] Nichols R J, Bewick A. ElectroChimica Acta. 1988,33:1691-1694
    [51] Shibata M, Motoo S, J. Electroanal. Chem.1982, 139:119-130
    [52] Parsons R, VanderNoot T. J. Electroanal.Chem.1981,257:9-45
    [53] Beltowaka M, Heitbaum J.J. Electroanal. Chem.1985,183:167
    [54] Lamy C. Electrochem. Acta.1984, 29:1581-1588
    [55] Beden B, Bewick A, Kunimatsu K, Lamy C. J. Electroanal. Chem. 1982,142:345-356
    [56] Koljadko J, Podlorchenko B I, Wetzel R,Muller L. J. Electroanal. Chem.1982, 137:117
    [57] Breiter M W.Electrochem. Acta.1984,29:711-715
    [58] Bilmes S A, Tacconi N R, Arvia A J. J. Electroanal. Chem. 1983,143:179-194
    [59] Watanabe M, Motoo S. J. Electroanal. Chem.1986, 202:125
    [60] Chang S C, Weaver M J. Surf. Sci.1990, 238:122-130
    [61] Clavilier J, Lamy C, Leger J M. J. Electroanal. Chem.1981,125:249-254
    [62] Kita H, Gao Y, Hattori H. J. Electroanal. Chem.1994,370:177-180
    [63] Breiter M W. Electrochim. Acta.1984,19:131-136.
    [64] Breiter M W. J. Electroanal. Chem.1984,180:25-29
    [65]田中群,任斌,佘春兴,陈衍珍.电化学原位拉曼光谱的应用及进展.电化学. 1999,1:5-17
    [66] Bagotzky V S, Vassilyev Y B. Electrochim. Acta. 1967,12:1323-1343
    [67] Biegler T. Composition of electrosorbed methanol. J. Phys. Chem.1968, 72: 1571-1577
    [68] Iwasita T, Vielstich W. J. Electroanal. Chem.1986, 201:403-408
    [69] Willsau J, Heitbaum J. Electrochim. Acta.1986,31:943-948
    [70] Iwasita T, Vielstich W, Santos E. J. Electroanal. Chem.1987, 229:367-376
    [71] Wilhelm S, Iwasita T, Vielstich W. J. Electroanal. Chem.1987, 238:383-391
    [72] Wilhelm S, Vielstich W, Buschmann H W, J.Electroanal. Chem. 1987,229:377-384
    [73] Vielstich W, Christensen P A, Weeks S A, Hamnett A. J.Electroanal.Chem. 1989, 260:347
    [74] Iwasita T, Nart F. J. Electroanal. Chem.1991, 317:291-298
    [75] Peremans A, Tadjeddine A. J. Electroanal. Chem.1996, 409:115-121
    [76] Watanabe N, Iwatsu K, Yamakata A, et al. Surf. Sci.1996, 651:357-358
    [77] Daniell W, Lloyd N C, Bailey C, Harrison P G. J. de Physique IV, 1997,7:963
    [78]孙世刚,杨毅芸.铂单晶(100)晶面电极上甲酸氧化反应动力学参数解析.物理化学学报, 1997,13 (8): 673-679
    [79] Watanabe M, Uchida M, Motoo S. J. Electroanal. Chem.1987, 229:395-341
    [80]田昭武,电化学实验进展[M],厦门:厦门大学出版社, 1988.
    [81] Raman C V. Nature,1928,121:711
    [82] F.R.多林希,W.G.佛特利,F.F.本特利著(朱自莹译).有机化合物特征拉曼频率.中国化学会,1980.
    [83] Fleischmann M, Hendra P J, McQuillan A J, Chem. Phys. Lett. 1974, 26:163
    [84] Jeanmaire D L, Duyne R P. J. Electroanal. Chem.1980, 3:23-39
    [85] Chang R K, Futak T E. Surface enhanced Raman Scattering: Plenum Press: New York, 1982
    [86] Birke R L, Lu T, Lombardi J R. Surface-Enhanced Raman Spectroscopy inTechniques for Characterization of Electrodes and Electrochemical Processes, R. Varma, J. R. Selman Eds. John Wiley & Sons, 1991
    [87] Campion A, Kambhampati P. Chem. Soc. Rev. 1998, 27:241-250
    [88] Moskovits M. Rev. Mod. Phys. 1985, 57:783
    [89] Gersten J, Nitzan A. J. Chem. Phys. 1980, 73:3023-3037
    [90] Laor U, Schatz G C. Chem. Phys. Lett. 1981, 82:566
    [91] Laor U, Schatz G C. J. Chem. Phys. 1982, 100:197
    [92] Chu L C, Wang S Y. Phys. Rev. B. 1985, 31:693-701
    [93] Chang R K, Furtak T E. Surface Enhanced Raman Scattering, New York: Plenum Press, 1982
    [94] Otto A. Surface-enhanced Raman scattering:“classical”and“chemical”origins. In Light Scattering in Solid, Cardona M., Guntherodt G., Vol IV (1984) 241R.
    [95] Sanda P N, Warlaumont J M, Demuth J E, Tsang J C, Christmann K, Bradley J. A. Phys. Rev. Lett. 1980, 45:1519
    [96] Burstein E, Chen C Y, Lundquist S, Birman J L. In Light Scattering in Solids. Plenum, New York, 1979:479
    [97] Demuth J E, Christmann K, Sanda P N. Chem. Phys. Lett. 1980, 76: 201
    [98] Seki H, Philpott M R. J. Chem. Phys. 1980, 73:5376
    [99] Saito H, Ikezawa Y, Toda G. Chem. Phys. Lett. 1984, 110:291
    [100] Goncher G M, Parsons C A, Harris C B. J. Phys. Chem. 1984, 88: 4200
    [101] Furtak T E, Roy D. Phys. Rev. Lett. 1983, 50:1301
    [102] Watanabe T, Kavannami O, Honda K, Pettinger B. Chem. Phys. Lett. 1983, 102:409
    [103] Pettinger B. Surf. Sci. 1985, 158:409-410
    [104] Pettenkofer C, Eickmans J, Erturk U, Otto A.Surf. Sci. 1985, 151: 9-36
    [105] Tian Z Q, Ren B. Raman Spectroscopy of Electrode Surfaces, in Encyclopedia of Electrochemistry,Wiley-VCH, in press.
    [106] Jeanmaire D L, Duyne R P Van. J. Electroanal. Chem. 1980, 3:23-39
    [107] Sanchez A L, Birke R L, Lombardi J R. J. Phys. Chem.1984, 88:1762
    [108] Fleischmann M, Graves P R, Hill I R, Robinson J. Chem. Phys. Lett. 1983, 98:503
    [109] Creighton J A, Albrecht M G, Hester R E, Mathew J . Chem. Phys. Lett. 1978, 55: 55
    [110] Pettinger B, Wenning U, Kolb D M, Bunsenges B. Phys. Chem.1978, 82:1326
    [111]姚建林.新型纳米级粗糙基底的表面增强拉曼光谱研究[D]: [厦门大学博士学位论文].厦门:厦门大学化学系, 2001
    [112]林旭锋.铑电极的表面增强拉曼光谱:从可见光到紫外光[D]: [厦门大学硕士学位论文].厦门:厦门大学化学系, 2003
    [113]黄陟峰.金属钴的铑表面增强拉曼光谱应用及其增强机理初步探索[D]: [厦门大学硕士学位论文].厦门:厦门大学化学系, 2003
    [114]黄群健,金属镍表面增强拉曼光谱研究[D]: [厦门大学硕士学位论文].厦门:厦门大学硕士学位论文,1997.
    [115] Mengoli G, Musiani M M, Fleischmann M,Electrochim Acta. 1987, 32:1239-1245
    [116] Uehara J, Nishihara H, Aramaki K. J. Electrochem. Soc. 1990, 137:2677
    [117] Aramaki K, Uehara J.J. Electrochem. Soc.1990, 137:185-192
    [118] Fleischmann M, Tian Z Q. J. Electrochem. Soc. 1987, 217:385-395
    [119] Fleischmann M, Tian Z Q, Li L J. J. Electroanal Chem. 1987, 217: 397- 410
    [120] Leung LW H, Weaver M J. J. Am .Chem. Soc.1987, 109:5113- 5119
    [121] Leung LW H, Weaver M J. Langmuir. 1998, 4:1076-1083
    [122] Feilchenfeld H, Gao X P, Weaver M J. Chem. phys. lett. 1989, 161:321
    [123] Weaver M J, Zou S Z, Chan H Y H. Anal. Chem. 2000, 72 :38
    [124] Fleischmann M, Tian Z Q. J. Electroanal Chem. 1987, 217:411-416
    [125] Felidj N, Aubard J, Levi G. Phys. Rev. B. 2002, 65 , 075419-1
    [126] Hu J W, Zhao B, Xu W Q, et al. J.Phys. Chem. B. 2002,106:6500-6506
    [127] Grabar K C, Freeman R G, Hommer M B, Natan M J. Anal. Chem.1995, 65:735
    [128] Tao A, Kim F, Hess C, et al. Nano. Lett. 2003, 3:1229
    [129] Tessier P M, Velev O D, Kalambur A T, et al. J. Am .Chem. Soc. 2000, 122:9554-9555
    [130] Cooney R P, Reid E S, Fleischmann M. J. Chem. Soc. Faraday Trans. 1977,73:1691
    [131] Wetzel H, Gerischer H, Pettinger B. Chem. Phys. Lett.1981, 80: 159
    [132] Weaver M J, Barz F, Gordon J G. Surf. Sci.1983, 125 :409
    [133] Tian Z Q, Li W H, Qiao Z H. Russian. J. Electrochem.1995, 31: 1014
    [134] Sharonov S, Nabiev I, Feofanov A,et al. J. Raman Spectrosc.1994, 25:699
    [135]田中群.表面增强拉曼光谱研究电化学中的共吸附现象.物理化学学报.1998,4:344
    [136] Gosztola D, M.Weaver J, J. Electroanal. Chem.1987, 45:291-302
    [137] Casado J, Otero T F, Hotta S, et al. Opt. Mater.1998,9:82
    [138] Patterson M L, Weaver M J. J. Phys. Chem. 1985, 89: 5046-5051
    [139] Fleischmann M, Tian Z.Q, Li L J. J. Electroanal. Chem.1987, 217: 397- 410
    [140] Aramaki K, Uehara J. J. Electrochem. Soc. 1989, 29: 725-730
    [141] Leung L W, Weaver M J. J. Electroanal. Chem. 1987, 9: 367-368
    [142] Leung L W, Weaver M J. J. Am. Chem. Soc., 1987, 109: 5113- 5119
    [143]查英华,魏宝明,田中群,林昌健.表面增强拉曼光谱用于不锈钢缓蚀机理的研究.腐蚀科学与防护技术, 1994, 1: 58-62
    [144] Van Duyne R P, Haushalter J P. J. Phys. Chem. 1984, 88: 2446-2451
    [145] Feng Q, Cotton T M. J. Phys. Chem. 1986, 90: 983-987
    [146] Zou S Z, Willians C T, Chen E K-Y.Weaver M J. J. Am. Chem. Soc. 1998, 120: 3811
    [147] Tian Z Q, Ren B, Chen Y X, et al. J. Chem. Soc. Faraday Trans.1996, 20:3829
    [148] Cai W B, Ren B, Liu F M,et al. Surf. Sci.1998, 406: 9-22
    [149] Tian Z Q, Ren B. Infrared and Raman Spectroscopy in Analysis of Surface. in Ency-clopedia of Ananalytical Chemistry, R.A.Meyers (Ed.) John Wiley & Sons Ltd. Chichester, 2000:9162
    [150] Tian Z Q, Ren B. Raman Spectroscopy of Electrode Surface, in Encyclopedia of Electrochemistry, Wiley-VCH, 2002
    [151] Tian Z Q, Ren B, Chin.J.Chem.2000,18: 315
    [152] Tian Z Q, Gao J S, Li X Q, Ren B. et al. J. Ramn Spectrosc.1998, 29:703
    [153] Wu D Y, Xie Y, Ren B, Mao B W, Tian Z Q. Surface enhanced Raman scattering from bare cobalt electrode surfaces. Phys.chem.comm.2001(18): 1-3
    [154]Gu R A, Cao P G,Yao J L,Ren B, Xie Y, Mao B W, Tian Z Q. J. Electrochem. Soc. 2001,505: 95-99
    [155] Ren B, Xu X, Li X Q, et al. Surf. Sci. 1999,428: 157-161
    [156] Tian Z Q, Ren B, Mao B W. J. Phys. Chem. 1997,101:1338-1346
    [157] Gao J S, Tian Z Q. Spectrochim. Acta. A 1997,53 (10): 1595-1600
    [158] Zhang B, Li J F, Zhong Q L, Ren B,Tian Z Q,Zou,S Z.Langmuir. 2005, 21: 7449
    [159] Li J F, Yang Z L, Ren B,Liu G K,Fang P P,Jiang Y X,Wu D Y,Tian Z Q. Langmuir. 2005, 22: 10372
    [160]Tian Z Q, Yang Z L, Ren B, Li J F, Zhang Y, Lin X F, Hu J W, Wu D Y. Faraday Discuss. 2006, 132: 159–170
    [161] Tian Z Q, Ren B, Li J F, Yang Z L. Chem. Commun. 2007: 3514–3534
    [162] Jiang Y X, Li J F,Wu D Y, Yang Z L, Ren B,Hu J W, Chow Y L, Tian Z Q. Chem.Commun. 2007: 4608-4610
    [163]蒋玉雄.过渡金属电极/溶液界面水分子的表面增强拉曼光谱研究[D]: [厦门大学博士学位论文].厦门:厦门大学化学系, 2006
    [164]盛建军.金和钯包金纳米立方体的合成,表征及其SERS活性研究[D]: [厦门大学硕士学位论文].厦门:厦门大学化学系, 2007
    [165]张兵.有机小分子在铂基电极上吸附和反应的电化学和SERS研究[D]: [江西师范大学硕士学位论文].南昌:江西师范大学化学系, 2004
    [166]左演声,陈文哲等.材料现代分析方法[M].北京:北京工业大学出版社, 2000
    [167]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社, 1999.
    [168]周海辉.单晶银纳米立方体的合成及其SERS研究[D]: [厦门大学硕士学位论文].厦门:厦门大学化学系, 2004
    [169]朱宜,汪裕苹,陈文雄.扫描电镜图像的形成处理和显微分析[M].北京:北京大学出版社, 1991
    [170]佘春兴.双组分Pt基金属电极上的CO和CH3OH的吸附和反应的电化学和SERS研究[D]: [厦门大学硕士学位论文].厦门:厦门大学化学系, 2000
    [171]姚建林.新型纳米级粗糙基底的表面增强拉曼光谱研究[D]: [厦门大学博士学位论文].厦门:厦门大学化学系, 2001
    [172]王小聪.铂基电极上C1有机小分子电催化氧化行为及其拉曼光谱研究[D]: [江西师范大学硕士学位论文].南昌:江西师范大学化学系, 2002
    [173]林旭锋.铑电极的表面增强拉曼光谱:从可见光到紫外光[D]: [厦门大学硕士学位论文].厦门:厦门大学化学系, 2003
    [174]胡建强.金属纳米粒子的尺寸和形状可控合成及其表征[D]: [厦门大学博士学位论文].厦门:厦门大学化学系, 2003
    [175]田中群.表面增强拉曼光谱学中的纳米科学问题.中国基础科学·科学前沿, 2001,3:4-9
    [176] Tian Z Q, Ren B, Wu D Y. J. Phys. Chem. B. 2002, 106: 9463-9483
    [177] Campion A, Kambhampati P.Chem. Soc. Rev. 1998, 27: 241-250
    [178] Kneipp K, Kneipp H, Itzkan I, et al. J. Phys. Condens. Matter. 2002, 14: 597
    [179] Dou X M, Ozaki Y. Rev. Anal. Chem. 1999, 18: 285
    [180] Ren B, Huang Q J, Cai W B, et al. J. Electroananl. Chem. 1996, 415: 175-178
    [181] Tian Z Q, Ren B, Mao B W. J. Phys. Chem. B. 1997, 101: 1338-1346
    [182] Gao J S, Tian Z Q. Spectrochim. Acta A. 1997, 53: 1595
    [183] Huang Q J, Yao J L, Gu R A, et al. Chem. Phys. Lett. 1997, 271: 101
    [184] Tian Z Q, Gao J S, Li X Q, et al. J. Raman. Spectrosec. 1998, 29: 703
    [185] Cai W B, Ren B,Li X Q, She C X, Liu F M, Cai X W, Tian Z Q. Investigation of Surface-Enhanced Raman Sscattering from Platinum Electrodes Using A Confocal Raman Microscope: Dependence of Surface Roughening Pretreatment.Sur. sci. 1998, 406: 9-22
    [186] Ren B, Lin X F, Yan J W, Mao B W, Tian Z Q. Electrochemically Roughened Rhodium Electrode as a Substrate for Surface-Enhanced Raman Spectroscopy. J. Chem. Phys. B. 2003, 107: 899
    [187] Fleischmann M, Tian Z Q. J. Electroanal. Chem. 1987, 217: 385-395
    [188] Leung L-W H, Weaver M J. J. Am. Chem. Soc., 1987, 109: 5113-5119
    [189] Zou S Z, Weaver M J. Surface-Enhanced Raman Scattering on Uniform Transition-Metal Films: Towards a Versatile Adsorbate Vibrational Strategy for Solid /Non-Vacuum Interfaces?. Anal. Chem., 1998, 70: 2387
    [190] Zou S Z, Williams C T, Chen E K-Y, et al. Probing Molecular Vibrations at Catalytically Significant Interfaces: A New Ubiquity of Surface-Enhanced Raman Scattering. J. Am. Chem.Soc. 1998, 120: 3811
    [191] Mrozek M F, Xie Y, Weaver M. J. Anal. Chem. 2001, 73: 5953-5960
    [192] Park S, Yang P X, Corredor P, et al. J. Am. Chem. Soc. 2002, 124: 2428-2429
    [193] Liao P F, Bergman J G, Chemla D S, et al. Chem. Phys. Lett. 1981, 82: 355
    [194] Hulteen J C, Treichel D A, Smith M T, et al. J. Phys. Chem. B. 1999,103: 3854-3863
    [195] Green M, Liu F M. SERS Substrates Fabricated by Island Lithography: The Silver/Pyridine System. J. Phys. Chem. B. 2003, 107: 13015-13021
    [196] Yao J L, Tang J, Wu D Y, Sun D M, Xue K H, Ren B, Mao B W, Tian Z Q. Surface Enhanced Raman Scattering from Transition Metal Nano-wire Array and the Theoretical Consideration. Surf. Sci. 2002, 514: 108-116
    [197] He H X, Zhang H, Li Q G, et al. Langmuir.2000, 16: 3846-3851
    [198] Henglein A. J. Phys. Chem. B. 2000, 104: 6683-6685
    [199] Gans P, Gill J B, Fearnley D P. J. Chem. Soc.,Dalton Trans.1981: 1708
    [200]张勇.不同形状铂纳米粒子的合成及其SERS活性初步研究[D]: [厦门大学硕士学位论文].厦门:厦门大学化学系, 2005
    [201] Mrozek M F, Weaver M J. Periodic trends in electrode-chemisorbate bonding: ethylene on platinum-group and gold electrodes as probed by surface-enhanced Raman spectroscopy. J. Phys. Chem. B. 2001, 105:8931
    [202] Lambert D K. Stark effect of adsorbate vibrations . Solid State Commun. 1984, 51:297
    [203] Schell M, Xu Y H, Amini A. An electrochemical mechanism for voltammetric oxidation of methanol and its relationship with period-doubling bifurcatious. J.Phys.chem.1994,98: 12768-12775
    [204] Pansons R, vandernoot T. The oxidation of small organic molecules --A surveyof recent fuel cell related research. J .Electroanal.chem. 1998,257: 9-45
    [205] Beden B, Kadingan F, Lamy C, Leger J M. Electrocatalytic oxidation of methanol on platinum-based binary electrodes. J.Electroanal.chem. 1981,127: 75-78
    [206] Sriramulu S, Jarvi T D, Sture E M. Reaction mechanism and dynamics of methanol electrooxidation on platinum(111). J.Electroanal.chem. 1999,467: 132-142
    [207] Sun S G, Yang YY. Studies of kinetics of HCOOH oxidation on Pt(100), Pt(110) Pt(111), Pt(510) and Pt(911) single crystal electrodes.J.Electroanal.chem. 1999, 467:121-131.
    [208] Koper M T M, Hachkar M, Beden B. Investigation of the oscillatory electro -oxidation of formaldehyde on Pt and Rh electrodes . J.Chem.Soc., Faraday Trans., 1996,92(20):3975-3982.
    [209] Ren B, Li X Q, She C X, Wu D Y, Tian Z Q. Surface Raman spectroscopy as a vestile technique to study methanol oxidation on rough Pt electrodes. Electrochimica Acta. 2000,46:193-205.
    [210] Chen Y X, Miki A,Ye S, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode . J. Am. Chem. Soc., 2003, 125:3680-3681
    [211] Wei Z D, Li L L, Luo Y H, et al.. Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes. J. Phys. Chem. B, 2006, 110:26055-26061
    [212] Buck R P,Griffith L R. J. Electrochem. Soc. 1962, 109:1005
    [213] Hunger H F. J. Electrochem. Soc. 1968, 115: 492
    [214] Xu Y, Schell M. J. Phys. Chem. 1990, 94: 7137-7143
    [215] Schell M, Albahadily F N, Safar J, Xu Y. J. Phys. Chem.1989, 93: 4806-4810
    [216] Yang H, Lu T H, Xue K H, Sun S G, Lu G Q,Chen S P. J. Mol. Catal.A: Chem. 1999, 144: 315
    [217] Okamoto H, Tanaka N, Naito M. J. Electrochem. Soc. 2000, 147: 2629-2634
    [218] Nakabayashi S, Uosaki K. Chem. Phys. Lett. 1994, 217:163-166
    [219] Nishimura K, Ohnishi R, Kunimatsu K,Enyo M. J. Electroanal. Chem. 1989, 258: 219
    [220] Miki A, Ye S, Senzaki T, Osawa M. J. Electroanal. Chem. 2004, 563: 23-31
    [221] Anton A, parmeter J, Weinberg W. J. Am. Chem. Soc.1986, 108: 1361-1361
    [222] Breiter M W. J. Electroanal. Chem. 1967, 14: 407-413
    [223] Capon A, Parsons R. J. Electroanal. Chem. 1973, 44: 1-7
    [224] Parsons R, VanderNoot T. J. Electroanal. Chem., 1988, 257: 9-45
    [225] Beden B, Léger J, Lamy M C. Modern Aspects of Electrochemistry. New York:Kluwer Adcademic/Plenum. 1992: 97-263
    [226] Sun S G, Lin Y,Li N H, Mu J Q. J. Electroanal. Chem. 1994, 370: 273
    [227]Sun S G, Electrocatalysis. New York:Wiley-VCH.1998: 243-290
    [228]Rice C, Ha S, Masel R I, Wieckowski A. J. Power Sources. 2003, 115: 229
    [229] Cao P G, Sun Y H, Gu R A. J . Phys . Chem. B. 2004, 108: 4716-4722
    [230] Chen Y X, Heinen M, Jusys Z, Behm R. J. Angew. Chem. Int. Ed.2006, 45: 981
    [231] Bewick A, Kunimatsu K, Pons S B. J. Electroanal. Chem. 1987, 216: 293
    [232] Beden B,Lamy C. In Spectroelectrochemistry ?Theory and Practice. New York: Plenum Press. 1988: 189
    [233] Ren B, Huang Q J, Cai W B. J. Electroanal. Chem. 1996, 415: 175-178
    [234] Tian Z Q, Ren B , Mao B W. J. Phys. Chem. B. 1997, 101: 1338-1346
    [235] Cai W B, Ren B, Liu F M,Li X Q , She C X,Cai X W,Tian Z Q. J. Surf. Sci., 1998, 406: 9-22
    [236]钟起玲,张兵,丁月敏,刘跃龙,饶贵仕,王国富,任斌,田中群.乙醇在不同介质中电氧化的原位表面增强拉曼光谱研究.物理化学学报. 2007, 23(9): 1432-1436
    [237]李筱琴,任斌,田中群.甲醇在粗糙铂电极上解离吸附的表面拉曼光谱.高等学校化学学报. 1998, 19 (1): 120-122
    [238] Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering:from noble to transition-metals and from rough surfaces to ordered nanostructures.J. Phys. Chem. B. 2002, 106: 9463-9483
    [239]钟起玲,王小聪,章磊,张小红,向娟,任斌,田中群.粗糙铂电极上甲酸吸附氧化的电化学原位表面增强拉曼光谱研究.化学学报. 2003, 61(12): 1960- 1964
    [240]钟起玲,黄芃,张兵,杨熊元,丁月敏,周海辉,任斌,田中群.甲酸在Pt-Ru/GC电极上氧化的SERS研究.物理化学学报. 2006, 22(3): 291-295
    [241] Zhang B, Li J F, Zhong Q L, et al. Electrochemical and surfaced-enhanced Raman spectroscopic investigation of CO and SCN- adsorbed on Aucore-Ptshell nanoparticles supported on GC electrodes . Langmuir. 2005, 21: 7449-7455
    [242] Li J F, Yang Z L, Ren B, et al.. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces. Langmuir. 2005, 22: 10372
    [243] Tian Z Q, Yang Z L, Ren B, Li J F, Zhang Y, Lin X F, Hu J W,Wu D Y. Faraday Discuss. 2006, 132: 159–170
    [244] Tian Z Q, Ren B, Li J F, Yang Z L. Chem. Commun. 2007: 3514–3534
    [245] Jiang Y X, Li J F,Wu D Y, Yang Z L, Ren B,Hu J W, Chow Y L, Tian Z Q. Chem.Commun. 2007: 4608-4610
    [246] Zou S, Weaver M J. Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: chemical bonding versus electrostatic field effects. J. Phys. Chem., 1996, 100:4237.
    [247] Park S, Yang P, Corredor P, et al..Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering. J. Am. Chem. Soc. 2003: 125:3680
    [248] SamjeskéG , Miki A,Ye S, Osawa M. Mechanistic study of Electrocatalytic Oxidation of Formic Acid at Platinum in Acidic Solution by Time-Resolved Surface-Enhanced Infrared Absorption Spectroscopy. J. Phys. Chem. B. 2006, 110: 16559-16566
    [249] Miki A, Ye S, Osawa M. Chem. Commun. 2002: 1500-1501
    [250] Columbia M R, Crabtree A M, Thiel P A. J. Am. Chem. Soc.1992, 114: 1231-1237
    [251] Chen Y X, Heinen M, Jusys Z,Behm R. J. Langmuir.2006, 22: 10399-10408
    [252] Breiter M W. J. Electroanal. Chem. 1967, 14: 407-413
    [253] Capon A, Parsons R. J. Electroanal. Chem. 1973, 44: 1-7
    [254]Capon A, Parsons R. J. Electroanal. Chem. 1973, 45: 205-231
    [255] Capon A, Parsons R. J. Electroanal. Chem. 1973, 44: 239-254
    [256] Watanabe M, Motoo S. Denki Kagaku 1973, 41: 190
    [257] Bogdanovskaya V A, Evstefeeva Y E, Tarasevich M R, et al. Electrochemical biosensors for medicine and ecology. Russ. J. Electrochem. 1997, 33: 137
    [258] Sun S, Anders S, Hamann H F, et al. J. Am. Chem. Soc. 2002, 124: 2884-2885
    [259] Fieldler S, Shirley S G, Schnelle T, et al. Anal. Chem. 1998, 70: 1909-1915
    [260] Roucoux A, Schulz J, Patin H. Chem. Rev. 2002, 102:3757
    [261] Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, et al. Adv. Mater. 2003,15: 353
    [262] Kamat P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B. 2002, 106: 7729-7744
    [263] Maxwell D J, Taylor J R, Nie S M. Self-assembled Nanoparticles Probes for Recognition and Detection of Biomolecules. J. Am. Chem. Soc. 2002,124: 9606-9612
    [264] Lu L H, Sun G Y, Zhang H J, et al. J. Mater. Chem. 2004, 14: 1005
    [265] Tao A, Kim F, Hess C, et al. Nano. Lett. 2003, 13: 1229
    [266] Bruchez M, Moronne M, Gin P, et al. Science. 1998 , 281: 2013-2016
    [267] Hibino T, Hashimoto A, Mori K, Sano M. Eletrochem. Solid ST. 2001, 4: 9
    [268] Mattoussi H, Radzilowski L H, Dabbousi B O, et al. Appl. Phys. 1998,83: 7965
    [269] Schlamp M C, Peng X G, Alivisatos A P. Appl . Phys. 1997, 82: 5837
    [270] Huynh W, Peng X, Alivasatos A P. Adv. Mater. 1999,11: 923-927
    [271] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots.Science. 1996, 271: 933-937
    [272] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc.Chem. Res. 2001, 34: 257-264
    [273] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32: 435-439
    [274] Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science.2002, 298: 2176-2179
    [275] Hu J Q, Zhang Y, Liu B, Hu J, Zhang Y, Liu B, Liu J, Zhou H, Xu Y, Jiang Y, Yang Z , Tian Z Q. Synthesis and properties of tadpole-shaped gold nanoparticles. J. Am. Chem. Soc. 2004, 126: 9470-9471
    [276] Teng X W, Black D, Watkins N J, et al.. Platinum-maghemite core-shell nanoparticles Using a sequential synthesis. Nano Lett. 2003, 3: 261
    [277] Tian N, Zhou Z Y, Sun S G, et al.. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science. 2007, 316: 732-735
    [278] Zhong C J, Mage M M. Adv. Mater. 2001,13: 1507
    [279] Henglein A. J. Phys. Chem. B. 2000, 104: 2201-2203
    [280] Zhong Y Z, Mastai Y, Koltyin Y, Zhao M Y, Gedanken A. Chem. Mater. 1999, 11: 2350-2359
    [281] Caruso F, Caruso R A, MIhwald H, Science. 1998, 282: 1111
    [282] Caruso F, Chem. Eur. J. 2000, 6: 413; Caruso F, Adv. Mater.2001, 13: 11
    [283] GIltner C G. Angew. Chem. 1999, 111: 3347; Angew. Chem. Int. Ed. 1999, 38: 3155
    [284] Zhong Z Y, Yin Y D, Gates B, Xia Y N, Adv. Mater. 2000, 12: 206
    [285] Sun Y G, Xia Y N. Shape-controlled synthesis of old and silver nanoparticles ugang. Science. 2002, 298: 2176-2178
    [286] Sun Y G, Xia Y N.Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano.Lett. 2003,3(11): 1569-1572
    [287] Oldfield G, Ung T, Mulvaney P. Adv. Mater. 2000,12(20): 1519-1522
    [288] Schartl W. Adv. Mater. 2000,12 (24): 1899-1908
    [289] Iida M, Sasaki, T, Watanabe M. Chem. Mater. 1998, 10: 3780-3782
    [290] Liu J G, Wilcox D L. J. Mater. Res. 1994, 10: 84-94
    [291] Hotz J, Meier W. Vesicle-templated polymer hollow spheres. Langmuir. 1998, 14: 1031-1036
    [292] Caruso F, Shi X Y, Caruso R A, Adv. Mater.2001, 13: 740-744
    [293] Bourlinos A B, Karakassides M A, Petridis D. Chem.Commun. 2001, 16: 1518-1519
    [294] Fowler C E, Khushalani D D, Mann S. Optical Sensing of Amine Vapours with a Series of Tin Compounds. Chem. Commun.2001, 19: 2028-2029
    [295] Schmidt H T, Ostafin A E. Liposome directed growth of calcium phosphate nanoshells. Adv. Mater. 2002, 14: 532-535
    [296] Huang J X, Xie Y, Li B, Liu Y, Qian Y T, Zhang S Y. Solvothermal Route to Tin Monoselenide Bulk Single Crystal with Different Morphologies. Adv. Mater. 2000, 11: 808-811
    [297] Kim S W, Kim M, Lee W Y, Hyeon T. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions. J. Am. Chem.Soc. 2002, 124: 7642-7643
    [298] Tian Z Q, Ren B. Raman Spectroscopy of Electrode Surfaces, in Encyclopedia of Electrochemistry, Bard A J, Stratmann M.(Eds.) Wiley&VCH, New york, 2003.
    [299] Xiao X Y, Xu B Q, Tao N J. Measurement of single molecule conductance: benzenedimethanethio. Nano. Lett. 2004,4(2):267-271
    [300] Soriaga M P, Wilon P H, Hurbbard A T. J.Electroanal.Chem.1984,168: 43-66
    [301] Bewick A, Pons S. Infrared spectroscopy of the electrode-electrolyte solution interface, Adv. Infrared Raman Spectrosc. 1985, 12: 1-63
    [302] Corrigan D S, Gao P, Leung L, et al. Comparisons between surface infrared and surface-enhanced Raman spectroscopies: band frequencies, bandwidths, and selection rules for pseudohalide and related adsorbates at gold and silver. Langmuir. 1986, 2: 744-752
    [303] Li X, Gewirth A A. Potential-dependent reorientation of thiocyanate on Au electrodes. J. Am. Chem. Soc. 2003, 125:11674-11683
    [304] Xu H X, Bjerneld E J, K?ll M, et al.. Spect roscopy of Single Hemoglobin Molecules by Surface Enhanced RamanScattering. Phys. Rev. Lett. 1999, 83: 4357-4360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700