用户名: 密码: 验证码:
离子液体/金属电极界面结构的现场电化学SERS研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室温离子液体作为一种新型非水溶剂,具有宽的电化学窗口、低的蒸汽压以及良好导电性等特点,已被广泛用于电化学领域。由于离子液体提供了一种完全不同于传统水溶液和有机溶剂的离子环境,“离子液体/金属电极”界面的性质及结构与以往研究的体系存在一定差别,为此研究“离子液体/金属电极”界面结构对于拓宽其应用范围具有重要的理论意义。
     本文将具有高灵敏度的表面增强拉曼光谱(SERS)与电化学技术结合,通过关联离子液体中离子或分子的光谱与电化学控制的关系,从分子水平上解析“离子液体/金属”界面结构、性质,为“离子液体/金属电极”界面新理论的建立提供依据,主要研究内容和结果如下:
     1、发展适合离子液体/金属电极体系的电化学SERS技术,以4-氰基吡啶(4-CNPy)为探针,并结合SERS的表面选律、电化学Stark效应等手段,研究其在离子液体中Pt、Au电极表面上的吸附行为。研究结果表明,较正电位下4-CNPy通过吡啶环上的氮原子与电极表面作用;较负电位下,咪唑阳离子以倾斜甚至平躺方式吸附在电极表面,4-CNPy则以平躺方式吸附在电极表面。相对于水溶液体系,离子液体中氰基伸缩振动谱峰的电化学Stark系数较小,主要由于“离子液体/金属”界面极高的离子强度及咪唑阳离子的共吸附。
     2、考察[BMIM]BF4离子液体中[BMIM]SCN在Au电极表面的吸附及水对界面结构的影响。结果表明,离子液体中SCN-在较宽的电位范围内吸附在Au电极上,在-0.4V~-0.8V区间内,以S端吸附为主;而在-0.8V~-2.0V区间内,以N端吸附为主。在离子液体中加入水后, C≡N的Stark位移明显增大,且咪唑阳离子的吸附情况发生显著变化。说明水分子进入到离子液体/电极界面双电层中,影响阴阳离子排布。
     3、探索[BMIM]BF4中CO在Pt电极表面的吸附行为并研究含水浓度变化的影响,采用循环伏安法研究了水的加入对离子液体界面结构和CO在Pt电极上的电化学性质影响。由于水的存在为CO氧化和Pt电极氧化提供氧源,水含量越多,氧化峰电位负移,CO的氧化反应更易发生。水的引入还使CO在Pt电极上[BMIM]BF4中的吸附方式多样化,同时存在线性吸附和桥式吸附,并导致COL的Stark位移较纯[BMIM]BF4增大。
     4、初步研究了采用恒电位技术在[BMIM]BF4离子液体中获得不同组成和形貌的铜沉积物,考察了表面沉积层组成及结构与沉积电位的关系,并以吡啶为探针分子,研究了沉积膜的SERS效应、催化活性以及SERS信号的均匀性。
As a non-aqueous solvent, room temperature ionic liquids (RTILs) have distinctadvantages, such as wide electrochemical window, vanishingly low vapor pressure, highconductivity, and other designable physical and chemical properties. RTILs have beenwidely used in various fields including electrochemistry. RTILs are composed pure ionsin the liquid state, which is different from the traditional aqueous or organic solvents.Therefore,deeper insight to the interfacial structure of “RTILs/metal electrode” is highdesired because it is beyond the description of classical electrochemical theory for thedilute aqueous electrolyte/metal electrode system. The investigation of the interfacialstructure of RTILs/metal electrode is beneficial to extend the application of RTILs.
     The high sensitive surface enhanced Raman spectroscopy (SERS) combined withelectrochemical methods provides a powerful tool for probing the adsorption of chemicalspecies and RTILs themselves. The information of the surface structure, properties, andadsorption behavior can be probed at the molecular level. The main results are outlinedas follows:
     1. To develop the proper electrochemical SERS technique for exploring of RTILs/metalelectrode system. By using4-cyanopyridines (4-CNPy) as probe, its adsorption behaviorwas resolved based at Pt or Au electrode based on SERS surface selection rules andelectrochemical Stark effect. The results showed that4-CNPy bounded to the Au surfacethrough the N atom of the Py ring in the slightly negative potential region. While in themore negative potential region, the4-CNPy molecules lay flat on the surface whichresulted in the decrease of surface coverage. In addition, a relative low Stark tuning ratein ionic liquid was measured by comparison to the aqueous systems. It was originatedfrom the unique RTILs/Au interfacial structure and the coadsorption of RTILs and 4-CNPy.
     2. In situ SERS investigation on adsorption behavior of [BMIM]SCN at [BMIM]BF4/Auelectrode was performed. It was found that [BMIM]SCN adsorbed on the Au surfacewithin a wide potential region. In the potential range of-0.4V to-0.8V, SCN-wasadsorbed mainly through S atom onto the Au electrode while in the range of-0.8V to-2.0V, it was oriented mainly through N atom. The effect of water on the reorientation ofionic liquids and SCN-was investigated. In this case, the increase of Stark tuning ratewas measured. The results showed that water may penetrate into the double layer of[BMIM]BF4/Au interface to affect the distribution of cation and anions.
     3. In the system of “[BMIM]BF4/Pt”, the electrochemical properties of CO and interfacestructure are studied through cyclic voltammetry with the change in the concentration ofwater. The onset potential of the CO oxidation negatively shifted with the increase of thewater concentration, suggesting that CO was oxidized more easily in [BMIM]BF4ionicliquid by the adding water, which acted as the source of oxygen atom. In addition, theintroduction of water resulted in the multi-adsorption configuration of CO, i.e. thecoexistence of linear and bridge adsorption. The increase of water concentrationmagnified the Stark tuning rate of CO in [BMIM]BF4solution
     4. The electrodeposition of Cu layer was preliminary investigated in [BMIM]BF4on ITOelectrodes by constant potential method. The composition and surface morphology of thedeposition layers were characterized, indicating that they were strongly depended on theapplied potentials. With negative movement of applied potential, the catalytic activity ofthe deposition layers in the reduction of p-nitrophenol to p-aminophenol increased. Byusing pyridine as probe, the SERS performance of the deposited layer was studied. Theresults revealed that the Cu film deposited at appropriate potential exhibited high SERSactivity and uniformity, which would be become a potential SERS substrate.
引文
[1] Walden, P. Molecular weights and electrical conductivity of several fused salts [J].Bulletin de l'Académie Impériale des Sciences de St.-Pétersbourg1914,405-422.
    [2] Hurley, F. H.; Wier, T. P. Jr. Electrodeposition of aluminum from nonaqueoussolutions at room temperature [J]. J. Electrochem. Soc.1951,98,207-212.
    [3] Hurley, F. H.; Wier, T. P., Jr. Electrodeposition of metals from fused quaternaryammonium salts [J]. J. Electrochem. Soc.1951,98,203-206.
    [4] Wilkes, J. S.; Zaworotko, M. J. Air and water stable1-ethyl-3-methylimidazoliumbased ionic liquids [J]. J. Chem. Soc., Chem. Commun.1992,965-967.
    [5]邓友全,离子液体-性质、制备与应用[M].北京:中国石化出版社,2006
    [6]张锁江,吕兴梅等.离子液体—从基础研究到工业应用[M].北京:科学出版社,2006.
    [7]张星辰等.离子液体—从理论基础到研究进展[M].北京:化学工业出版社,2008.
    [8] Hagiwara, R.; Ito, Y. Room temperature ionic liquids of alkylimidazolium cations andfluoroanions [J]. J. Fluorine Chem.2000, l05,221-227.
    [9] Rooney, D. W.; Seddon, K. R. In Handbook of Solvents [M]. Wypych, G., Ed.; ChemTec Publishing: Toronto,2001,1459-1484.
    [10] Mantz, R. A.; Trulove, P. C. In Ionic liquids in synthesis [M]. Wasserscheid, P.,Welton, T., Eds.; Wiley-VCH: Weinheim,2002.
    [11] Gu, Z. Y.; Brennecke, J. F. Volume expansivities and isothermal compressibilities ofimidazolium and pyridinium-based ionic liquids [J]. J. Chem. Eng. Data,2002,47,339-345.
    [12] Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M.Physicochemical properties and structures of room temperature ionic liquids.2. Variationof alkyl chain length in imidazolium cation [J]. J. Phys. Chem. B,2005,109,6103-6110.
    [13] Mantz, R. A.; Trulove, P. C. In ionic liquids in Synthesis [M]. Wasserscheid, P.,Welton, T., Eds.; Wiley-VCH: Weinheim,2002.
    [14]王军等.离子液体的性能及应用[M].北京:中国纺织出版社,2007.
    [15] Jacquemin, J.; Husson, P.; Padua, A. A. H.; Maje, V. Density and viscosity of severalpure and water-saturated ionic liquid [J]. Green Chem.2006,8,172-180.
    [16] Seddon, K. R.; Stark, A.; Torres, M. J. Influence of chloride, water, and organicsolvents on the physical properties of ionic liquids [J]. Pure Appl. Chem.2000,72,2275-2287.
    [17] Dzyuba, S. V.; Bartsch, R. A. Influence of structural variations in1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoro methyl-sulfonyl)imides on physical properties of the ionic liquids [J]. Chem. Phys. Chem.2002,3,161-166.
    [18] Bonh te, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gr tzel, M.Hydrophobic, highly conductive ambient-temperature molten salts [J]. Inorg. Chem.,1996,35,1168-1178.
    [19] McEwen, A. B.; Ngo, H. L. Lecompte, K. Goldman, J. L. Electrochemicalproperties of imidazolium salt electrolytes for electrochemical capacitor applications [J].J. Electrochem. Soc.,1999,146,1687-1695.
    [20] Suarez, P. A. Z.; Selbach, V. M.; Dullius, J. E. L.; Einloft, S.; Piatnicki, C. M. S.;Azambuja, D. S.; de Souza, R. F.; Dupont, J. Enlarged electrochemical window indialkyl-imidazolium cation based room-temperature air and water-stable molten salts [J].Electrochim. Acta,1997,42,2533-2535.
    [21] Matsumoto, H. In Electrochemical Aspects of Ionic Liquids [M]. Ohno, H., Ed.;John Wiley&Sons: New Jersey,2005.
    [22] He, P.; Liu, H. T.; Li, Z. Y.; Liu, Y.; Xu, X. D.; Li, J. H. Electrochemical depositionof silver in room-temperature ionic liquids and its surface-enhanced Raman scatteringeffect [J]. Langmuir2004,20,10260-10267.
    [23] Trulove, P. C.; Mantz, R. A. In Ionic Liquids in Synthesis [M]. Wasserscheid, P.,Welton, T., Eds.; Wiley-VCH: Weinheim,2002.
    [24] Matsumoto, H.; Yanagida, M.; Tanimoto, K.; Nomura, M.; Kitagawa, Y.; Miyazaki,Y. Highly conductive room temperature molten salts based on small trimethyl-alkylammonium cations and bis(trifluoromethylsulfonyl)imide [J]. Chem. Lett.2000,922-923.
    [25] Suarez, P. A. Z.; Selbach, V. M.; Dullius, J. E. L.; Einloft, S.; Piatnicki, C. M. S.;Azambuja, D. S.; de Souza, R. F.; Dupont, J. Enlarged electrochemical window indialkyl-imidazolium cation based room-temperature air and water-stable molten salts [J].Electrochim. Acta,1997,42,2533-2535.
    [26] Arduengo, A. J. III; Dias, H. V. R.; Harlow, R. L.; Kline, M. Electronic stabilizationof nucleophilic carbenes [J]. J. Am. Chem. Soc.1992,114,5530-5534.
    [27] Xiao, L.; Johnson, K. E. Electrochemistry of1-butyl-3-methyl-1H-imidazoliumtetrafluoroborate ionic liquid [J]. J. Electrochem. Soc.2003,150, E307-E311.
    [28] Schroder, U.; Wadhawan, J. D.; Compton, R. G.; Marken, F.; Suarez, P. A. Z.;Consorti, C. S.; de Souza, R. F.; Dupont, J. Water-induced accelerated ion diffusion:voltammetric studies in1-methyl3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetra-fluoroborate,1-butyl-3-methylimidazolium tetrafluoroborate and hexafluoro-phosphateionic liquids [J]. New J. Chem.2000,24,1009-1015.
    [29] Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. Howionic are room-temperature ionic liquids? An indicator of the physicochemical properties[J]. J. Phys. Chem. B,2006,110,19593-19600.
    [30] Hilgers, C.; Wasserscheid, P. In Ionic liquids in synthesis [M]. Wasserscheid, P.,Welton, T., Eds.; Wiley-VCH: Weinheim,2002.
    [31] Pereiro, A. B.; Santamarta, F.; Tojo, E.; Rodrigue, A.; Tojo, J. Temperaturedependence of physical properties of ionic liquid1,3-dimethylimidazolium methylsulfate [J]. J. Chem. Eng. Data,2006,51,952-954.
    [32] Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Griffin, S. T.; Rogers, R. D.Traditional extractants in nontraditional solvents: Group1and2extraction by crownethers in room-temperature ionic liquids [J]. Ind. Eng. Chem. Res.2000,39,3596-3604.
    [33] Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.;Rogers, R. D. Characterization and comparison of hydrophilic and hydrophobic roomtemperature ionic liquids incorporating the imidazolium cation [J]. Green Chem.2001,3,156-164.
    [34] Tsuda, T.; Hussey, C. L. Electrochemical applications of room-temperature ionicliquids [J]. Interface.2007,16,42-49.
    [35] Matsumoto, K.; Hagiwara, H.; Ito, Y. Room-temperature ionic liquids with highconductivities and wide electrochemical windows [J]. Electrochem. Solid-State Lett.2004,7, E41-E47.
    [36] de Souza, R.; Padilha, J. C.; Gonc, R. S.; Dupont, J. Room temperaturedialkylimidazolium ionic liquid-based fuel cells. Electrochem. Commun.2003,5,728-731.
    [37] Nakamoto, H.; Noda, A.; Hayamizu, K.; Hayashi, S.; Hamaguchi, H.; Watanabe, M.Proton-conducting properties of a br nsted acid-base ionic liquid and ionic meltsconsisting of bis.(trifluoromethanesulfonyl)imide and benzimidazole for fuel cellelectrolytes [J]. J. Phys. Chem. C,2007,111,1541-1548.
    [38] Balducci, A.; Bardi, U.; Caporali, S.; Mastragostino, M.; Soavi, F. Ionic liquids forhybrid supercapacitors [J]. Electrochem. Commun.2004,6,566-568.
    [39]傅永春.室温离子液体中Au单晶电极上金属欠电位沉积的现场STM研究[D].理学博士学位论文,厦门:厦门大学,2010.
    [40] Endres, F.; MacFarlane, D.; Abbott, A. Electrodeposition from Ionic Liquids [M].New York: Wiley,2008.
    [41] Deng, M. J.; Lin, P. C.; Sun, I.-W.; Chen, P.-Y.; Chang, J. K. Electrodeposition ofNi-Cu alloys in an air and water stable room temperature ionic liquid [J].Electrochemistry,2009,8,582-584.
    [42] Su, Y.-Z.; Fu, Y.-C.; Mei, Y.-M.; Yan, J.-W.; Mao, B.-W. The electrode/ionicliquid interface: Electric double layer and metal electrodeposition [J]. ChemPhysChem,2010,11,2764-2778.
    [43] Endres, F.; Zein El Abedin, S. Air and water stable ionic liquids in physicalchemistry [J]. Phys. Chem. Chem. Phys.2006,8,2101-2116
    [44] Endres, F. Ionic liquids: Solvents for the electrodeposition of metals andsemiconductors [J]. ChemPhysChem,2002,3,144-154.
    [45] Silvester, D. S.; Ward, K. R.; Aldous, L.; Hardacre, C.; Compton, R. G. Theelectrochemical oxidation of hydrogen at activated platinum electrodes in roomtemperature ionic liquids as solvents [J]. J. Electroanal. Chem.2008,618,53-60.
    [46] Buzzeo, M. C.; Giovanelli, D.; Lawrence, N. S.; Hardacre, C.; Seddon, K. R.;Compton, R. G. Elucidation of the electrochemical oxidation pathway of ammonia indimethylformamide and the room temperature ionic liquid,1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)-imide [J]. Electroanalysis,2004,16,888-896.
    [47] Buzzeo, M. C.; Evans, R. G.; Compton, R. G. Non-haloaluminate room-temperatureionic liquids in electrochemistry—A review [J]. ChemPhysChem,2004,5,1106-1120.
    [48] Liu, H. T.; Liu, Y.; Li, J. H. Ionic liquids in surface electrochemistry [J]. Phys. Chem.Chem. Phys.,2010,12,1685-1697.
    [49] Bockris, J. O' M.; Drazie, D. M.著,夏熙译.电化学科学[M].北京:人民教育出版社,1980.
    [50]查全性等.电极过程动力学导论,第三版[M].北京:科学出版社,2002.
    [51]张明杰等.熔盐电化学原理与应用[M].北京:化学工业出版社,2006.
    [52]李荻.电化学原理,第三版[M].北京:北京航空航天大学出版社,2008.
    [53] Lippmann, G. Application de la théorie des couches doubles électriques de M.Helmholtz aux phénomènes électrocapillaires.-Calculde la grandeur d'un intervallemoléculaire [J]. Journal de Physique Théorique et Appliquée,1883,2,113-116.
    [54] Helmholtz, H. L. F. Von. Studies of electric boundary layers [J]. Ann. Phys. Chem.1879,7,337-382.
    [55] Gouy, G. Constitution of the electric charge at the surface of an electrolyte [J]. J.Phys.1910,9,457-467.
    [56] Chapman, D. L. A contribution to the theory of electrocapillarity [J]. Phil. Mag.1913,25,475-481.
    [57] Stern, O. Z. The theory of the electrolytic double-layer [J]. Elektrochem.1924,30,508-516.
    [58] Frumkin, A. N. Potentsialy nulevogo zaryada (Potentials of Zero Charge)[M].Moscow: Nauka,1979.
    [59] Frumkin, A. N.; Bagotskaya, I. A.; Grigorgev, N. B. Influence of the interaction ofsolvents with the electrode metal on the electric double layer structure and the contactpotential difference between metals [J]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku1975,43,2-8.
    [60] Frumkin, A. Study of the double layer at the metal-solution interface byelectrokinetic and electrochemical methods [J]. Trans. Faraday Soc.1940,36,117-127.
    [61] Grahame, D. C. The electrical double layer and the theory of electrocapillarity [J].Chem. Rev.1947,41,441-501.
    [62] Grahame, D. C. Differential capacity of mercury in aqueous sodium fluoridesolutions. I. Effect of concentration at25°[J]. J. Am. Chem. Soc.1954,76,4819-4823.
    [63] Grahame, D. C. Properties of the electrical double layer at a mercury surface. II. Theeffect of frequency on the capacity and resistance of ideal polarized electrodes [J]. J. Am.Chem. Soc.1946,68,301-310.
    [64] Bockris, J. O. M.; Devanathan, M. A. V.; Mueller, K. On the structure of chargedinterfaces [J]. Proc. Roy. Soc. Lond. Ser. A.1963,274,55-79.
    [65] Dorsey, N. E. Properties of ordinary water-substance in all its phases: water vapor,water, and all the ices [M]. New York: Reinhold Publishing Corporation,1940.
    [66] R. Parsons. Electrical double Layer: Recent experimental and theoreticaldevelopments [J]. Chem. Rev.1990,90,813-826
    [67] Graves, A. D. The electrical double layer in molten salts: Part1. The potential ofzero charge [J]. J. Electroanal. Chem. Interfacial Electrochem.1970,25,349-356.
    [68] Graves, A. D.; Hills, G. J.; Inman, D. In Advances in Electrochemistry andElectrochemical Engineering [M]. Delahay, P.; Tobias, C. W. Eds.; Interscience: NewYork,1966,4,152-177.
    [69] Parsons, R. Electrical double Layer: Recent experimental and theoreticaldevelopments [J]. Chem. Rev.1990,90,813-826.
    [70] Dogonadze, R. R.; Chizmadzhev, Y. A. Dokl. Akad. Nauk. SSSR1964,157,944.
    [71] Ukshe, E. A.; Bukun, N. G.; Leikis, D. I.; Frumkin, A. N. Investigation of theelectric double layer in salt melts [J]. Electrochim. Acta,1964,9,431-439.
    [72] Kornyshev, A. A. Double-layer in ionic liquids: Paradigm change?[J]. J. Phys.Chem. B,2007,111,5545-5557.
    [73] Fedorov, M. V.; Kornyshev, A. A. Ionic liquid near a charged wall: Structure andcapacitance of electrical double layer [J]. J. Phys. Chem. B,2008,112,11868-11872.
    [74] Fedorov, M. V.; Georgi, N.; Kornyshev, A. A. Double layer in ionic liquids: Thenature of the camel shape of capacitance [J]. Electrochem. Commun.2010,12,296-299.
    [75] Oldham, K. B. A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionicliquid) interface [J]. J. Electroanal. Chem.2008,613,131-138.
    [76] Nanjundiah, C.; McDevitt, S. F.; Koch, V. R. Differential capacitance measurementsin solvent-free ionic liquids at Hg and C interfaces [J]. J. Electrochem. Soc.1997,144,3392-3397.
    [77] Alam, M. T.; Islam, M. M.; Okajima, T.; Ohsaka, T. Capacitance measurements in aseries of room-temperature ionic liquids at glassy carbon and gold electrode interfaces [J].J. Phys. Chem. C,2008,112,16600-16608.
    [78] Alam, M. T.; Islam, M. M.; Okajima, T.; Ohsaka, T. Measurements of differentialcapacitance in room temperature ionic liquid at mercury, glassy carbon and goldelectrode interfaces [J]. Electrochem. Commun.2007,9,2370-2374.
    [79] Su, Y.-Z.; Fu, Y.-C.; Yan, J.-W.; Chen, Z.-B.; Mao B.-W. Double layer ofAu(100)/ionic liquid interface and its stability in imidazolium-based ionic liquids [J].Angew. Chem. Int. Ed.2009,121,5250-5253.
    [80]苏育专.“单晶电极/室温离子液体”界面双电层电化学和原位STM研究[D].理学博士学位论文,厦门:厦门大学,2011.
    [81] Gnahm, M.; Pajkossy, T.; Kolb, D. M. The interface between Au(111) and an ionicliquid [J]. Electrochim. Acta,2010,55,6212-6217.
    [82] Atkin, R.; Warr, G. G. Structure in confined room-temperature ionic liquids [J]. J.Phys. Chem. C,2007,111,5162-5168.
    [83] Wakeham, D.; Hayes, R.; Warr, G. G.; Atkin, R. Influence of temperature andmolecular structure on ionic liquid solvation layers [J]. J. Phys. Chem. B,2009,113,5961-5966.
    [84] Baldelli, S. Surface structure at the ionic liquid-electrified metal interface [J]. Acc.Chem. Res.2008,41,421-431.
    [85]林仲华,叶思宇,黄明东,沈培康编著.电化学中的光学方法[M].北京:科学出版社,1990.
    [86] Nanbu, N.; Sasaki, Y.; Kitamura, F. In situ FT-IR spectroscopic observation of aroom-temperature molten salt vertical bar gold electrode interphase [J]. Electrochem.Commun.2003,5,383-387.
    [87] Nanbu, N.; Kato, T.; Sasaki, Y.; Kitamura, F. In situ SEIRAS study ofroom-temperature ionic liquid vertical bar gold electrode interphase [J]. Electrochemistry,2005,73,610-613.
    [88] Bain, C. D. Sum-frequency vibrational spectroscopy of the solid/liquid interface [J].J. Chem. Soc. Faraday Trans.1995,91,1281-1296.
    [89] Richmond, G. In Modern Techniques for In-Situ Interface Characterisation [M].Abruna, H. D. Ed. Wiley-VCH: New York,1991.
    [90] Bozzini, B.; Bund, A.; Busson, B.; Humbert, C.; Ispas, A.; Mele, C.; Tadjeddine, A.An SFG/DFG investigation of CN-adsorption at an Au electrode in1-butyl-1-methyl-pyrrolidinium bis (trifluoromethylsulfonyl) amide Ionic Liquid [J]. Electrochem.Commun.2010,12,56-60.
    [91] Baldelli, S. Probing electric fields at the ionic liquid-electrode interface using sumfrequency generation spectroscopy and electrochemistry [J]. J. Phys. Chem. B,2005,109,13049-13051.
    [92] Rivera-Rubero, S.; Baldelli, S. Surface spectroscopy of room-temperature ionicliquids on a platinum electrode: A sum frequency generation study [J]. J. Phys. Chem. B,2004,108,15133-15140.
    [93] Aliaga, C.; Baldelli, S. Sum frequency generation spectroscopy and double-layercapacitance studies of the1-butyl-3-methylimidazolium dicyanamide-platinum interface[J]. J. Phys. Chem. B,2006,110,18481-18491.
    [94] Zhou, W.; Inoue, S.; Iwahashi, T.; Kanai, K.; Seki, K.; Miyamae, T.; Kim, D.;Katayama, Y.; Ouchi, Y. Electrochemical double-layer structure of Pt electrode/ionicliquids interface studied by in situ IR-visible sum frequency generation spectroscopy [J].ECS Transactions,2009,16,545-557.
    [95]李剑锋.核壳结构纳米粒子增强拉曼光谱[D].理学博士学位论文,厦门:厦门大学,2010年.
    [96] Fleischmann, M.; Hendra, P. J.; McQuillan, A. Raman spectra of pyridine adsorbedat a silver electrode [J]. J. Chem. Phys. Lett.1974,26,163-166.
    [97] Jeanmaire, D. L., Van Duyne, R. P. Surface Raman spectroelectrochemistry. PartⅠ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silverelectrode [J]. J. Electroanal. Chem.1977,84,1-20.
    [98] Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine ata silver electrode [J]. J. Am. Chem. Soc.1977,99,5215-5217.
    [99]陈艳霞.电极水溶液界面的表面增强拉曼光谱研究[D].理学博士学位论文,厦门:厦门大学,1998.
    [100] Mengoli, G.; Musiani, M. M.; Fleischmann, M.; Mao, B. W.; Tian, Z. Q. EnhancedRaman-scattering from iron electrodes [J]. Electrochim. Acta,1987,32,1232-1245.
    [101] Fleischmann, M.; Tian, Z. Q.; Li, L. J. Raman spectroscopy of adsorbates on thinfilm electrodes deposited on silver substrates [J]. J. Electroanal. Chem.1987,217,397-410.
    [102] Fleischmann, M.; Tian, Z. Q. The effects of the underpotential and overpotentialdeposition of lead and thallium on silver on the Raman spectra of adsorbates, J.Electroanal. Chem.1987,217,385-395.
    [103] Ren, B.; Huang, Q. J.; Cai, W. B.; Mao, B. W.; Liu, F. M.; Tian, Z. Q. SurfaceRaman spectra of pyridine and hydrogen on bare platinum and nickel electrodes [J]. J.Electrochem. Chem.1996,415,175-178.
    [104] Tian, Z. Q.; Ren, B.; Mao, B. W. Extending surface Raman spectroscopy totransition metal surfaces for practical applications.1. Vibrational properties ofthiocyanate and carbon monoxide adsorbed on electrochemically activated Platinumsurfaces [J]. J. Phys. Chem. B,1997,101,1338-1346.
    [105] Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles bysurface-enhanced Raman scattering [J]. Science,1997,275,1102-1106.
    [106] Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.;Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Shell-isolatednanoparticle-enhanced Raman spectroscopy [J]. Nature,2010,464,392-395.
    [107] Santos, V. O.; Alves, M. B.; Carvalho, M. S.; Suarez, P. A. Z.; Rubim, J. C.Surface-enhanced Raman scattering at the silver electrode/ionic liquid (BMIPF6)interface [J]. J. Phys. Chem. B,2006,110,20379-20385.
    [108] Brand o, C. R. R.; Costa, L. A. F.; Breyer, H. S.; Rubim, J. C. Surface-enhancedRaman scattering (SERS) of a copper electrode in1-n-butyl-3-methylimidazoliumtetrafluoroborate ionic liquid [J]. Electrochem. Commun.2009,11,1846-1848.
    [109] Yuan, Y. X.; Niu, T. C.; Xu, M. M.; Yao J. L.; Gu R. A. Probing the adsorptionofmethylimidazole at ionic liquids/Cu electrode interface by surface-enhanced Ramanscattering spectroscopy [J]. J. Raman Spectrosc.2010,41,516-523.
    [110] Niu, T. C.; Yuan, Y. X.; Wang, M.; Yao, J. L.; Sun, R.; Gu, R. A. Surface enhancedRaman spectroscopic studies of the adsorption of thiocyanate at Pt electrode in ionicliquids [J]. Chem. J. Chinese U.2008,29,2245-2248.
    [111] Bozzini, B.; Busson, B.; Humbert, C.; Ruffa, C.; M. P.; Tadjeddine, A.
    Investigation of Au electrodeposition from [BMF][TFSA] room-temperature ionic liquid
    conaining K[Au(CN)2] by in situ two-dimensional sum frequency generation
    spectroscopy [J]. J. Electroanal. Chem.2011,661,20-24
    [1]高敏侠,林秀梅,任斌.结合化学组装和电沉积的SERS基底的制备方法[J].高等学校化学学报,2008,29,959-962.
    [2]苏育专.“单晶电极/室温离子液体”界面双电层电化学和原位STM研究[D].理学博士学位论文,厦门:厦门大学,2011.
    [3]姚建林.新型纳米级粗糙基底的表面增强拉曼光谱研究[D].理学博士学位论文,厦门:厦门大学,2001.
    [4]李明德.自组装构筑SERS基底、细胞膜的SERS和基于SERS的细胞内pH传感研究初探[D].理学硕士学位论文,厦门:厦门大学,2007.
    [5]牛天超.离子液体/金属界面结构的电化学及表面增强拉曼光谱研究[D].理学硕士学位论文,苏州:苏州大学,2009.
    [6]傅永春.室温离子液体中Au单晶电极上金属欠电位沉积的现场STM研究[D].理学博士学位论文,厦门:厦门大学,2010.
    [7] Park, S.; Kazlauskas, R. J. Improved preparation and use of room-temperature ionicliquid in lipase-catalyzed enantio-and regioselective acylations [J]. J. Org. Chem.2001,66,8395-8401.
    [8] Huddleston, J. G.; Visser, A. E.; Matthew Reichert, W.; Willauer, H. D.; Broker, G. A.;Rogers R. D. Characterization and comparison of hydrophilic and hydrophobic roomtemperature ionic liquids incorporating the imidazolium cation [J]. Green Chem.2001,3,156-164.
    [9] Schr der, U.; Wadhawan, J. D.; Compton, R. G.; Marken, F.; Suarez, P. A. Z.;Consorti, C. S.; Dupont R. F. Water-induced accelerated ion diffusion: voltammetricstudies in1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate,1-butyl-3-methyl-imidazolium tetrafluoroborate and hexafluorophosphate ionic liquids [J].New J. Chem.2000,24,1009-1015.
    [1] Bockris, J. O' M.,Drazie, D. M.著,夏熙译.电化学科学[M].北京:人民教育出版社,1980.
    [2]苏育专.“单晶电极/室温离子液体”界面双电层电化学和原位STM研究[D].理学博士学位论文,厦门:厦门大学,2011.
    [3] Baldelli, S. Surface structure at the ionic liquid-electrified metal interface [J]. Acc.Chem. Res.2008,41,421-431.
    [4] Su, Y. Z.; Fu, Y. C.; Wei, Y. M.; Yan, J. W.; Mao, B. W. The electrode/ionic liquidinterface: Electric double layer and metal electrodeposition [J]. ChemPhysChem,2010,11,2764-2778.
    [5] Liu, H. T.; Liu, Y.; Li, J. H. Ionic liquids in surface electrochemistry [J]. Phys. Chem.Chem. Phys.2010,12,1685-1697.
    [6] Pluchery, O.; Tadjeddine, M.; Flamentc, J. P.; Tadjeddine. A. Adsorption of4-cyanopyridine on Au(111): ab initio calculations and SFG measurements[J]. Phys.Chem. Chem. Phys.2001,3,3343-3350.
    [7] Yadav, G. D.; Joshi, S. S.; Lathi, P. S. Enzymatic synthesis of isoniazid innon-aqueous medium [J]. Enzyme. Microb. Tech.2005,36,217-222.
    [8] Labana, S.; Pandey, R.; Sharma, S.; Khuller, G. K. Chemotherapeutic activity againstmurine tuberculosis of once weekly administered drugs (isoniazid and rifampicin)encapsulated in liposomes [J]. Int. J. Antimicrob. Ag.2002,20,301-304.
    [9] Kardos, A. M.; Valenta, P.; Volke, J. Application of single-sweep polarography to theinvestigations of cyanopyridine reduction [J]. J. Electroanal. Chem.1965,12,84-89.
    [10] Volke, J. The electrochemical reduction of cyanopyridines—A general mechanism[J]. J. Electroanal. Chem.1972,36,383-388.
    [11] Bozzini, B.; Cavallotti, P. L.; Fanigliulo, A.; Giovannelli, G.; Mele, C.; Natali, S.Electrodeposition of white gold alloys: an electrochemical, spectroelectrochemical andstructural study of the electrodeposition of Au-Sn alloys in the presence of4-cyanopyridine [J]. J. Solid State Eletrochem.2004,8,147-158.
    [12] Bozzini, B.; Busson, B.; Mele, C.; Tadjeddine, A. SFG and DFG investigation ofAu(111), Au(210), polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact withaqueous solutions containing KCN and4-cyanopyridine [J]. J. Appl. Electrochem.2008,38,897-906.
    [13] Allen, C. S.; Van Duyne, R. P. Orientational specificity of Raman scattering frommolecules adsorbed on silver electrodes [J]. Chem. Phys. Lett.1979,63,455-459.
    [14] Shi, C. T.; Zhang, W.; Birke, R. L.; Lombardi, J. R. SERS investigation of theadsorption and electroreduction of4-cyanopyridine on a silver electrode [J]. J.Electroanal. Chem.1997,423,67-81.
    [15] Rubim, J. C. Surface-enhanced Raman scattering (SERS) on silver electrodes as atechnical tool in the study of the electrochemical reduction of cyanopyridines and inquantitative analysis [J]. J. Electroanal. Chem.1987,220,339-350.
    [16] Rubim, J. C.; Sala, O. The contribution of charge transfer excitation to the surfaceeffect on copper electrodes [J]. J. Mol. Struct.1986,145,157-172.
    [17] Furukawa, H.; Takahashi, M.; Ito, M. A Surface-enhanced Raman study of theelectrochemical reduction of4-cyanopyridine [J]. Chem. Phys. Lett.1986,132,498-501.
    [18] Coyle, C. M.; Chumanov, G.; Jagodzinski, P. W. Surface-enhanced Raman spectra ofthe reduction product of4-cyanopyridine on copper colloids [J]. J. Raman Spectrosc.1998,29,757-762.
    [19] Lan, Y. H.; Chang, H. Adsorption geometry of4-cyanopyridine on Ag electrode bySERS [J]. J. Chin. Chem. Soc.1991,38,313-317.
    [20] Chang, H.; Lee, L. J.; Sheu, U. H. Temporal response of SERS to the potential for4-cyanopyridine adsorbed on Ag electrode [J]. J. Chin. Chem. Soc.1993,40,413-418.
    [21] Yang, D. F.; Lipkowski, J. Adsorption of4-cyanopyridine at the Au(111)-solutioninterface [J]. Russ. J. Electrochem.1995,31,768-779.
    [22] Chen, A. C.; Sun, S. G.; Yang, D. F.; Pettinger, B.; Lipkowski, J. In situ FTIR studiesof4-cyanopyridine adsorption at the Au(111) electrode [J]. J. Can. J. Chem.1996,74,2321-2330.
    [23] Chen, A. C.; Yang, D. F.; Lipkowski, J. Electrochemical and FTIR studies of4-cyanopyridine adsorption at the gold(111)∣solution interface [J]. J. Electroanal. Chem.1999,475,130-138.
    [24] Pluchery, O.; Zheng, W. Q.; Marin, T.; Tadjeddine, A. Study of the adsorption of4-cyanopyridine on Au(111) using sum frequency generation nonlinear spectroscopy [J].Phys. Stat. Sol. A,1999,175,145-151.
    [25] Pluchery, O.; Tadjeddine, A. Investigation of the adsorption of4-cyanopyridine onAu(111) by in situ visible-infrared sum frequency generation [J]. J. Electroanal. Chem.2001,500,379-389.
    [26] Tadjeddine, M.; Flament, J. P. Ab initio interpretation of sum frequency generationspectra of4-cyanopyridine adsorbed on Au(111)[J]. Chem. Phys.2001,265,27-46.
    [27] Pluchery, O.; Climent, V.; Rodes, A.; Tadjeddine, A. Hydrolysis of the4-cyanopyridine on a Au(111) electrode studied by vibrational spectroscopies [J].Electrochim. Acta,2001,46,4319-4329.
    [28]蔡文斌,任斌,毛秉伟,全朝,田中群.几种粗糙铂电极上表面拉曼增强效应初探[J].物理化学学报,1996,12,1071-1073.
    [29] Huang, Q. J.; Ren, B.; Mao, B. W.; Tian, Z. Q. Extending surface Ramanspectroscopic studies to transition metals for practical applications: III. Effects of surfaceroughening procedure on surface-enhanced Raman spectroscopy from nickel andplatinum electrodes [J]. Surf. Sci.1999,428,162-166.
    [30] Tian, Z. Q.; Ren, B.; Mao, B. W. Extending surface Raman spectroscopy totransition metal surfaces for practical applications.1. Vibrational properties ofthiocyanate and carbon monoxide adsorbed on electrochemically activated platinumsurfaces [J]. J. Phys. Chem.1997,101,1338-1346.
    [31] Ren, B.; Li, X. Q.; She, C. X.; Tian Z. Q. Surface Raman spectroscopy as a versatiletechnique to study methanol oxidation on rough Pt electrodes [J]. Electrochim. Acta,2000,46,193-205.
    [32]孙玉华,曹佩根,陈惠,顾仁敖,姚建林,田中群.金属/乙腈界面微量水的增强拉曼光谱[J].光散射学报,2002,4,22-24.
    [33] Gu, R. A.; Cao, P. G.; Sun, Y. H.; Tian, Z. Q. Surface-enhanced Raman spectroscopystudies of platinum surfaces in acetonitrile solutions [J]. J. Electroanal. Chem.2002,528,121-126.
    [34] Cao, P. G.; Sun,Y. H.; Yao, J. L.; Ren B.; Gu, R. A.; Tian, Z. Q. Adsorption andelectro-oxidation of carbon monoxide at the platinum-acetonitrile interface as probed bysurface-enhanced Raman spectroscopy [J]. Langmuir,2002,18,2737-2742.
    [35] Cao, P. G.; Sun, Y. H.; Gu, R. A. Surface-enhanced Raman spectroscopy studies onthe adsorption and electrooxidation of carbon monoxide at the platinum-formic acidinterface [J]. J. Phys. Chem. B,2004,108,4716-4722.
    [36] Cao, P. G.; Sun, Y. H.; Gu, R. A. Investigations of chemisorption and reaction atnon-aqueous electrochemical interfaces by in situ surface-enhanced Raman spectroscopy[J]. J. Raman Spectrosc.2005,36,725-735.
    [37]顾仁敖,蒋芸,孙玉华.非水体系中甲酸在铂电极上催化氧化的表面增强拉曼光谱研究[J].光谱学与光谱分析,2006,26,75-77.
    [38]顾仁敖,曹文东,曹佩根,孙玉华,姚建林,任斌,田中群.非水体系中甲醇在粗糙铂电极上解离吸附的表面增强拉曼光谱研究[J].化学学报,2001,59,356-359.
    [39]徐敏敏.贵金属纳米结构和电极表面性质及SERS研究[D].理学博士学位论文,苏州:苏州大学,2011.
    [40] Oklejas, V.; Sjostrom, C.; Harris, J. M. SERS detection of the vibrational Starkeffect from nitrile-terminated SAMs to probe electric fields in the diffuse double-layer [J].J. Am. Chem. Soc.2002,124,2408-2409.
    [41] Luo, H.; Weaver, M. J. Surface-enhanced Raman scattering as a versatile vibrationalprobe of transition-metal interfaces: Thiocyanate coordination modes on platinum-groupversus coinage-metal electrodes [J]. Langmuir,1999,15,8743-8749.
    [42] Tadjeddine, A.; Pluchery, O.; Le, A. R.; Humbert, C.; Buck, M.; Peremans, A.;Zheng, W. Q. What can we learn from the non-linear optical investigation of the liquid∣solid interface?[J]. J. Electroanal. Chem.1999,473,25-33.
    [43] Pons, S.; Korzeniewski, C.; Shirts, R. B. Field-induced infrared absorption in metalsurface spectroscopy: The electrochemical Stark effect [J]. J. Phys. Chem.,1985,89,2297-2298.
    [44] Headgordon, M.; Tully, J. C. Electic-field effects on chemisorption andvibrational-relaxation of CO on Cu(100)[J]. Chem. Phys.1993,175,37-51.
    [45] Wasileski, S. A.; Koper, M. T. M.; Weaver, M. J. Field-dependentelectrode-chemisorbate bonding: Sensitivity of vibrational stark effect and bindingenergetics to nature of surface coordination [J]. J. Am. Chem. Soc.2002,124,2796-2805.
    [46] Wang, H.; Tobin, R. G.; Lambert D. K. Coadsorption of hydrogen and CO onPt(335): Structure and vibrational Stark effect [J]. J. Chem. Phys.1994,101,4277-4287.
    [47] Xu, M. M.; Yan, L. J.; Wei, C.; Yang, F. Z.; Yuan, Y. X.; Yao, J. L.; Han, S. Y.; Wang,M.; Gu, R. A. Isomer-dependent adsorption of cyanopyridines on platinum probed bysurface-enhanced Raman spectroscopy [J]. J. Electroanal. Chem.2011,662,426-431.
    [48] Rivera-Rubero, S.; Baldelli, S. Surface spectroscopy of room-temperature ionicliquids on a platinum electrode: A sum frequency generation study [J]. J. Phys. Chem. B,2004,108,15133-15140.
    [49] Santos, V. O.; Alves, M. B.; Carvalho, M. S.; Suarez, P. A. Z.; Rubim, J. C.Surface-enhanced Raman scattering at the silver electrode/ionic liquid (BMIPF6)interface [J]. J. Phys. Chem. B,2006,110,20379-20385.
    [50]牛天超,袁亚仙,姚建林,陆枫,顾仁敖.含水离子液体/金属界面结构的SERS研究[J].中国科学:化学,2010,40,1-5.
    [51] He, P.; Liu, H. T.; Li, Z. Y.; Liu, Y.; Xu, X. D.; Li, J. H. Electrochemical depositionof silver in room-temperature ionic liquids and its surface-enhanced Raman scatteringeffect [J]. Langmuir,2004,20,10260-10267.
    [52]姚建林.新型纳米级粗糙基底的表面增强拉曼光谱研究[D].理学博士学位论文,厦门:厦门大学,2001.
    [53] Bozzini, B.; Busson, B.; Mele, C.; Tadjeddine, A. SFG and DFG investigation ofAu(111), Au(210), polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact withaqueous solutions containing KCN and4-cyanopyridine [J]. J. Appl. Electrochem.2008,38,897-906.
    [54] Bozzini, B.; Bund, A.; Busson, B.; Humbert, C.; Ispas, A.; Mele, C.; Tadjeddine, A.An SFG/DFG investigation of CN-adsorption at an Au electrode in1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid [J]. Electrochem. Commun.2010,12,56-60.
    [55]田中群.表面增强拉曼光谱研究电化学中的共吸附现象[J].物理化学学报,1988,4,344-346.
    [56] Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M. Howionic are room-temperature ionic liquids? An indicator of the physicochemical properties[J]. J. Phys. Chem. B,2006,110,19593-19600.
    [57] Yuan, Y. X.; Niu, T. C.; Xu, M. M.; Yao J. L.; Gu R. A. Probing the adsorption ofmethylimidazole at ionic liquids/Cu electrode interface by surface-enhanced Ramanscattering spectroscopy [J]. J. Raman Spectrosc.2010,41,516-523
    [1] Schultz, P. W.; Leroi, G. E.; Harrison, J. F. Ab initio calculations of ionic andhydrogen bonding interactions with the OCN-, SCN-and SeCN-anions [J]. Mol. Phys.1996,88,217-246.
    [2] Tielens, F.; Saeys, M.; Tourwe, E.; Marin, G. B.; Hubin, A.; Geerlings, P. An ab initiostudy of the interaction of SCN-with a Silver electrode: The prediction of vibrationalfrequencies [J]. J. Phys. Chem. A,2002,106,1450-1457.
    [3] Bailey, R. A.; Kozak, S. L.; Michelsen, T. W.; Mills, W. N. Infrared spectra ofcomplexes of the thiocyanate and related ions [J]. Coord. Chem. Rev.1971,6,407-445.
    [4] Hatta1, A.; Sasaki, Y.; Suütaka, W. Polarization modulation infrared spectroscopicmeasurements of thiocyanate and cyanide at the silver electrode/aqueous electrolyteinterface by means of Kretschmann's ATR prism configuration [J]. J. Electroanal. Chem.Interfacial Electrochem.1986,215,93-102.
    [5] Corrison, D. S.; Weaver, M. J. Coverage-dependent orientation of adsorbates asprobed by potential-difference infrared spectroscopy: Azide, cyanate, and thiocyanate atsilver electrodes [J]. J. Phys. Chem.1986,90,5300-5306.
    [6] Tornquist, W.; Guillaume, F. Griffin, G. L. Vibrational behavior of carbon monoxideadsorbed on platinum in nonacidic electrolytes [J]. Langmuir,1987,3,477-483.
    [7] Wadayama, T.; Sakurai, T.; Ichikawa, S.; Suetaka, W. Charge-transfer enhancement ininfrared absorption of thiocyanate ions adsorbed on a gold electrode in the KretschmannATR configuration [J]. Surf. Sci.1988,198, L359-364.
    [8] Ashley, K.; Samnt, M. G.; Seki, H.; Philpott, M. R. Cation effects on the vibrationalfrequencies of adsorbed thiocyanate on platinum [J]. J. Electroanal. Chem.1989,270,349-364.
    [9] Parry, D. B.; Harris, J. M.; Ashley, K. Multiple internal reflection Fourier transforminfrared spectroscopic studies of thiocyanate adsorption on silver and gold [J]. Langmuir,1990,6,209-217.
    [10] Tadjeddine, A.; Guyot-Sionnest, P. Spectroscopic investigation of adsorbed cyanideand thiocyanate on platinum using sum frequency generation [J]. Electrochim. Acta,1991,36,1849-1854.
    [11] Zhang, B.; Li, J. F.; Zhong, Q. L.; Ren, B. Tian, Z. Q.; Zou, S. Z. Electrochemicaland surfaced-enhanced Raman spectroscopic investigation of CO and SCN-adsorbed onAucore-Ptshellnanoparticles supported on GC electrodes [J]. Langmuir,2005,21,7449-7455.
    [12] Hui Ong, T.; Davies, P. B.; Bain, C. D. Adsorption of thiocyanate on polycrystallinesilver and gold electrodes studied in situ by sum-frequency spectroscopy [J]. J. Phys.Chem.,1993,97,12047-12050.
    [13] Lu, G. Q.; Sun, S. G.; Cai, L. R.; Chen, S. P.; Tian, Z. W. In situ FTIR spectroscopicstudies of adsorption of CO, SCN-, and poly(o-phenylenediamine) on electrodes ofnanometer thin films of Pt, Pd, and Rh: Abnormal infrared effects (AIREs)[J].Langmuir,2000,16,778-786.
    [14] Ren, B.; Lin, X. F.; Yang, Z. L.; Liu, G. K.; Aroca, R. F.; Mao, B. W.; Tian, Z. Q.Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS onrhodium and ruthenium electrodes [J]. J. Am. Chem. Soc.2003,125,9598-9599.
    [15] Wang, P. J.; Wu G. Z. Ultraviolet laser excited surface enhanced Raman scattering ofthiocyanate ion on the Au electrode [J]. Chem. Phys. Lett.2004,385,96-100.
    [16]牛天超,袁亚仙,王梅,姚建林,孙如,顾仁敖.离子液体中硫氰根在铂电极上吸附行为的SERS研究[J].高等学校化学学报,2008,29,2245-2248.
    [17] Brand o, C. R. R.; Costa, L. A. F.; Breyer, H. S.; Rubim, J. C. Surface-enhancedRaman scattering (SERS) of a copper electrode in1-n-butyl-3-methylimidazoliumtetrafluoroborate ionic liquid [J]. Electrochem. Commun.2009,11,1846-1848.
    [18] Santos, V. O., Alves, Jr. M. B. Carvalho, M. S., Suarez, P. A. Z., Rubim, J. C.Surface-enhanced Raman scattering at the silver electrode/ionic liquid(BMIPF6) interface[J]. J. Phys. Chem. B,2006,110,20379-20385.
    [19] Lambert, D. K. Vibration stark effect of adsorbates at electrochemical interface [J].Electrochim Acta,1996,41,623-630.
    [20] Bron, M.; Holze, R. Cyanate and thiocyanate adsorption at copper and goldelectrodes as probed by in situ infrared and surface-enhanced Raman spectroscopy [J]. J.Electroanal. Chem.1995,385,105-113.
    [21]顾仁敖,曹文东,曹佩根,孙玉华,姚建林,任斌,田中群.非水体系中金电极表面增强拉曼光谱研究新进展[J].光谱学与光谱分析,2001,21,308-310.
    [22]陈艳霞.电极水溶液界面的表面增强拉曼光谱研究[D].理学博士学位论文,厦门:厦门大学,1998.
    [23]牛天超,袁亚仙,姚建林,陆枫,顾仁敖.含水离子液体/金属界面结构的SERS研究[J].中国科学,2010,40,1-5.
    [24]蒋玉雄.过渡金属电极/溶液界面水分子的表面增强拉曼光谱研究[D].理学博士学位论文,厦门:厦门大学,2006.
    [25] Pettinger, B. In Adsorption of Molecules at metal electrodes [M]. Lipkowski, J.;Ross, R. N. Ed, VCH, New York,1991, chap.6and references therein.
    [26] Xiao, L.; Johnson, K. E. Electrochemistry of1-butyl-3-methyl-1H-imidazoliumtetrafluoroborate ionic liquid [J]. J. Electrochem. Soc.2003,150, E307-E311.
    [1]李筱琴. CO和CH3OH在Pt族金属上吸附和反应的电化学原位拉曼光谱研究[D].理学博士学位论文,厦门:厦门大学,1998.
    [2] Hamnett, A.; Mechanism and electrocatalysis in the direct methanol fuel cell [J].Catal Today,1997,38,445-457.
    [3] Wasmus, S.; Kuver, A. Methanol oxidation and direct methanol fuel cells: A selectivereview [J]. J. Electroanal. Chem.,1999,461,14-31.
    [4] Russell, A. E. Electrocatalysis: Theory and experiment at the interface [J]. Phys.Chem. Chem. Phys.2008,10,3607-3608.
    [5] Solla-Gullon, J.; Vidal-Iglesias, F. J.; Lopez-Cudero, A.; Ganuer, E.; Feliu, J. M.;Aldaza, A. Shape-dependent electrocatalysis: methanol and formic acid electro-oxidation on preferentially oriented Pt nanopartieles [J]. Phys. Chem. Chem. Phys.2008,10,3689-3698.
    [6]王金义.钯、镍及其非金属合金电极的表面红外光谱与应用研究.理学博士学位论文,上海:复旦大学,2010.
    [7] Tian, Z. Q.; Ren, B.; Mao, B. W. Extending surface Raman spectroscopy to transitionmetal surfaces for practical applications.1. Vibrational properties of thiocyanate andcarbon monoxide adsorbed on electrochemically activated platinum surfaces [J]. J. Phys.Chem. B,1997,101,1338-1346.
    [8] Zhang, B.; Li, J. F.; Zhong, Q. L.; Ren, B.; Tian, Z. Q.; Zou, S. Z. Electrochemicaland surfaced-enhanced Raman spectroscopic investigation of CO and SCN-adsorbed onAucore-Ptshellnanoparticles supported on GC electrodes [J]. Langmuir,2005,21,7449-7455.
    [9]孙玉华,曹佩根,郑军伟,顾仁敖,姚建林,任斌,田中群.非水乙腈体系中CO在铂电极表面吸附的SERS研究[J].光谱学与光谱分析,2002,22,33-35.
    [10] Chen, Y. X.; Miki, A.; Ye, S.; Sakai, H.; Osawa, M. Formate, an active intermediatefor direct oxidation of methanol on Pt electrode [J]. J. Am. Chem. Soc.2003,125,3680-3581.
    [11] Baldelli, S. Surface structure at the ionic liquid-electrified metal interface [J]. Acc.Chem. Res.2008,41,421-431.
    [12] Baldelli, S. Probing electric fields at the ionic liquid-electrode interface using sumfrequency generation spectroscopy and electrochemistry [J]. J. Phys. Chem. B,2005,109,13049-13051.
    [13] Zhang, P.; Cai, J. Chen Y. X.; Tang, Z. Q. Chen, D. Yang, J. L. Wu, D. Y. Ren, B.;Tian Z. Q. Potential-dependent chemisorption of carbon monoxide at a goldcore-platinum shell nanoparticle electrode: A combined study by electrochemical in situsurface-enhanced Raman spectroscopy and density functional theory J. Phys. Chem. C,2010,114,403-411.
    [14] He, P.; Liu, H. T.; Li, Z. Y.; Liu, Y.; Xu, X. D.; Li, J. H. Electrochemical depositionof silver in room-temperature ionic liquids and its surface-enhanced Raman scatteringeffect [J]. Langmuir,2004,20,10260-10267.
    [15] Kita, H.; Shimazu, K.; Kunimatsu, K. Electrochemical oxidation of CO on Pt inacidic and alkalinesolutions: Part Ⅰ. Voltammetric study on the adsorbed species andeffects of aging and Sn(Ⅳ) pretreatment [J]. J. Electroanal. Chem.1988,241,163-179.
    [16] Batista, E. A.; Iwasita, T. Vielstich, W. Mechanism of Stationary Bulk CO Oxidationon Pt(111) Electrodes [J]. J. Phys. Chem. B,2004,108,14216-14222.
    [17] Markovic, N. M.; Lucas, C. A.; Grgur, B. N.; Ross, P. N. Surface electrochemistry ofCO and H2/CO mixture at Pt(100) interface: Electrode kinetics and interfacial structures[J]. J. Phys. Chem. B,1999,103,9616-9623.
    [18] Strmcnik, D. S.; Tripkovic, D. V.; van der Vliet, D.; Chang, K. C.; Komanicky, V.;You, H. Unique activity of platinum adislands in the CO electrooxidation reaction [J]. J.Am. Chem. Soc.2008,130,15332-15339.
    [19] Vidakovi, T.; Christov, M.; Sundmacher, K. The use of CO stripping for in situ fuelcell catalyst characterization [J]. Electrochim. Acta,2007,52,5606-5613.
    [20] Kunimatsu, K. Adsorption of carbon monoxide on a smooth palladium electrode: anin-situ infrared spectroscopic study [J]. J. Phys. Chem.1984,88,2195-2200.
    [21] Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Potential-induced COadislandformation on a platinum thin-film electrode in the H-upd potential region [J]. J. Phys.Chem. C,2007,111,435-438.
    [22] Noguchi, H.; Okada, T.; Uosaki, K. Photoinduced surface dynamics of CO adsorbedon a platinum electrode [J]. J. Phys. Chem. B,2006,110,15055-15058.
    [23] Nishimura, K.; Ohnishi, R.; Kunimatsu, K.; Enyo, M. Surface species produced onPt electrodes during HCHO oxidation in sulfuric acid solution as studied by infraredreflection-absorption spectroscopy (IR)[J]. J. Electroanal. Chem.1989,258,219-225.
    [24] Dederichs, F.; Friedrich, K. A.; Daum, W. Sum-frequency vibrational spectroscopyof CO adsorption on Pt(111) and Pt(110) electrode surfaces in perchloric acid solution:Effects of thin-layer electrolytes in spectroelectrochemistry [J]. J. Phys. Chem. B,2000,104,6626-6632.
    [25] Lambert, D. K. Stark effect of adsorbate vibrations [J]. Solid State Comm.1984,51,297-300.
    [26] Severson, M. W.; Weaver, M. J. Nanoscale island formation during oxidation ofcarbon monoxide adlayers at ordered electrochemical interfaces: A dipole-couplinganalysis of coverage-dependent infrared spectra [J]. Langmuir,1998,14,5603-5611.
    [27] Hollins, P.; Pritchard, J. Infrared studies of chemisorbed layers on single crystals [J].Prog. Surf. Sci.1985,19,275-349.
    [28] Chang, S. C.; Weaver, M. J. Coverage-dependent dipole coupling for carbonmonoxide adsorbed at ordered platinum(111)-aqueous interfaces: Structural andelectrochemical implications [J]. J. Chem. Phys.1990,92,4582-4594.
    [29]张普. CO在贵金属电极表面吸附及氧化的电化学原位表面拉曼光谱研究[D].理学博士学位论文,安徽:中国科学技术大学,2010.
    [1] Su, Y. Z.; Fu Y. C.; Wei, Y. M.; Yan, J. W.; Mao, B. W. Electrode/Ionic liquidInterface: electric double layer and metal electrodeposition [J]. Chem. Phys. Chem.2010,11,2764-2778.
    [2] Endres, F.; Zein El Abedin, S. Air and water stable ionic liquids in physical chemistry[J]. Phys. Chem. Chem. Phys.2006,8,2101-2116.
    [3] Liu, H. T.; Liu, Y.; Li, J. H. Ionic liquids in surface electrochemistry [J]. Phys. Chem.Chem. Phys.2010,12,1685-1697.
    [4] He P.; Liu, H. T.; Li, Z. Y.; Liu, Y.; Xu, X. D.; Li, J. H. Electrochemical deposition ofsilver in room-temperature ionic liquids and its surface-enhanced raman scattering effect[J]. Langmuir,2004,20,10260-10267.
    [5] He, P.; Liu, H. T.; Li, Z. Y.; Li, J. H. Electrodeposition of platinum in room-temperature ionic liquids and electrocatalytic effect on electro-oxidation of methanol [J].J. Electrochem. Soc.2005,152, E146-E153.
    [6] Endres, F.; Bukowski, M.; Hempelmann, R.; Natter, H. Electrodeposition ofnanocrystalline metals and alloys from ionic liquids [J]. Angew. Chem. Int. Ed.2003,42,3428-3430.
    [7] Endres, F. Ionic Liquids: Solvents for the Electrodeposition of Metals andSemiconductors [J]. Chem. Phys. Chem.2002,3,144-154.
    [8] Hussey, C. L.; King, L. A.; Carpio, R. A. The electrochemistry of Copper in a roomtemperature acidic chloroaluminate melt [J]. J. Electrochem. Soc.1979,126,1029-1034.
    [9] Chen, P. Y.; Sun, I. W. Electrochemical study of copper in a basic1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt [J]. Electrochim. Acta,1999,45,441-450.
    [10] Deng, M. J.; Lin, P. C.; Sun, I. W.; Chen, P. Y.; Chang, J. K. Electrodeposition ofNi-Cu alloys in an air and water stable room temperature ionic liquid [J].Electrochemistry,2009,77,582-584.
    [11] Li, H.; Liu, R.; Zhao, R. X.; Zheng, Y. F.; Chen, W. X.; Xu, Z. D. Morphologycontrol of electrodeposited Cu2O crystals in aqueous solutions using room temperaturehydrophilic ionic liquids [J]. Cryst. Growth Des.2006,6,2795-2798.
    [12]徐存英,严磊,刘亚伟,李艳,华一新,张鹏翔.离子液体存在下铜的电沉积及其表面增强拉曼散射效应研究[J].光谱学与光谱分析,2010,30,2658-2662.
    [13] Yuan, Y. X.; Wei, P. J.; Qin, W.; Zhang, Y.; Yao, J. L.; Gu, R. A. Combined studieson the surface coordination chemistry of benzotriazole at the copper electrode by directelectrochemical synthesis and surface-enhanced Raman spectroscopy [J]. Euro. J. Inorg.Chem.2007,31,4980-4987.
    [14] Yuan, Y. X.; Niu, T. C.; Xu, M. M.; Yao, J. L.; Gu, R. A. Probing the adsorption ofmethylimidazole at ionic liquids/Cu electrode interface by surface-enhanced Ramanscattering spectroscopy [J]. J. Raman Spectrosc.2010,41,516-523.
    [15] Nanjundiah, C.; Osteryoung, R. A. Electrochemical studies of Cu(I) and Cu(II) in analuminum chloride-N-(n-butyl)pyridinium chloride ionic liquid [J]. J. Electrochem. Soc.1983,130,1312-1318.
    [16] Ning, J. J.; Xiao, N. R.; Lin, A. L. Preparation and formation mechanism of cuprousoxide microcrystals [J]. Chem. J. Chin. Univ.2011,32,809-813.
    [17] Sun, F.; Guo, Y. P.; Song, W. B.; Zhao, J. Z.; Tang, L. Q.; Wang, Z. C.Morphological control of Cu2O micro-nanostructure film by electrodeposition [J]. J.Cryst. Growth,2007,304,425-429.
    [18] Ding, S. Y.; Wu, D. Y.; Yang, Z. L.; Ren, B.; Xu, X.; Tian, Z. Q. Some progresses inmechanistic studies on surface-enhanced Raman scattering [J]. Chem. J. Chin. Univ.2008,29,2569-2581.
    [19] Wang, Y. X.; Song, W.; Yang, J. X.; Xu, W. Q.; Zhao, B. Surface enhanced Ramanscattering on Cu2O/Ag composite [J]. Chem. J. Chin. Univ.2011,32,1789-1793.
    [20] Gao, M. X.; Lin, X. M.; Ren, B. Surface-enhanced Raman scatting substratesfabricated by combining chemical assembly and electrodeposition methods [J]. Chem. J.Chin. Univ.2008,29,959-962.
    [21] Pradhan, N.; Pal, A.; Pal, T. Catalytic reduction of aromatic nitro compounds bycoinage metal nanoparticles [J]. Langmiur,2001,17,1800-1802.
    [22] Panigrahi, S.; Basu S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T.Synthesis and size-selective catalysis by supported gold nanoparticles: Study onheterogeneous and homogeneous catalytic process [J]. J. Phys. Chem. C,2007,111,4596-4605.
    [23] Wunder, S.; Polzer, F; Lu,Y; Mei, Y.; Ballauff, M. Kinetic analysis of catalyticreduction of4-nitrophenol by metallic nanoparticles immobilized in sphericalpolyelectrolyte brushes [J]. J. Phys. Chem. C,2010,114,8814-882

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700