用户名: 密码: 验证码:
CO在贵金属电极表面吸附及氧化的电化学原位表面增强拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一氧化碳(CO)分子对阳极电催化剂的毒化是低温质子交换膜燃料电池及直接甲醇燃料电池研究中迫切需要解决的问题,提高燃料电池阳极电催化剂的活性及抗CO中毒能力是质子交换膜燃料电池实现商业化的关键所在。从分子水平上深入理解CO在贵金属上的吸附行为及氧化机理有助于解决CO的毒化问题,这也是燃料电池电催化领域重要的研究课题。
     本博士论文利用原位表面增强拉曼光谱(SERS)技术对一氧化碳分子在Pt、Pd、Ru、Rh贵金属核壳结构纳米粒子薄膜电极表面的吸附行为及电化学氧化机理进行了系统的研究。主要结果总结如下:
     1.系统地研究了CO表面覆盖度、溶液pH值以及CO分压对CO在Au@Pt核壳结构纳米粒子薄膜电极表面的吸附行为的影响。研究发现随着COad覆盖度的增加,Pt—COL(顶位吸附CO)振动频率红移,C---OL振动频率蓝移,而Pt—COL及C—OL的谱带强度则均增大。从CO饱和的H2SO4溶液切换到N2饱和的H2SO4溶液后,Pt—COL和C----OL的峰强度分别增加了6%和30%,Pt—COL的伸缩振动频率及C—OL的伸缩振动频率分别蓝移到红移了4 cm-1。根据拉曼光谱的强度、振动频率和CO分子间偶极耦合作用的定量分析得知Pt—COL带强度增加主要来源于CO分子取向的变化,Pt—COL频率变化来源于化学作用;另一方面C---OL带强度增加来源于吸附CO分子的偶极耦合作用和取向变化,C—OL带频率变化来源于偶极耦合作用及化学作用。另外在相同电势下在酸性(H2SO4)和中性(Na2SO4)溶液间切换的时间分辨SERS研究中,H2SO4溶液中的Pt—COL及C---OL频率分别比Na2SO4溶液低2 cm-1及高7 cm-1,此频率变化主要来源于H2SO4溶液中的共吸附氢原子导致的CO分子从“准线式位”向线式位的偏移。当溶液从H2SO4或NaOH溶液切换到Na2SO4溶液后,Pt—COL及C----OL带强度急剧降低约50%,此强度降低主要来自于SERS化学增强因子的变化。
     2.通过研究不同pH溶液中CO在Au@Pt纳米粒子薄膜电极上吸附的电位效果而探讨了电化学Stark效应。结果表明在所研究的电势区间Stark斜率dvC—OL,B/dE(C—OL,B表示线式及桥式吸附的CO)为正值而dvPt—COL,B/dE为负值。dvPt—CoL,B/dE在整个电势区间基本不变,dvC—OL,B/dE随电势负移明显增加。上述受电势影响的光谱行为可以用d(Pt)→2π*(CO)反馈及5σ(CO)→sp(Pt)成键的化学作用和CO分子之间的偶极耦合作用来解释。由于Pt—CO振动模的偶极耦合作用比较弱,测量的dvPt—COL,B/dE能够直接作为电势导致Pt—CO键长及键强变化的依据。根据理论推导的关联Pt—CO键长、吸附能与振动频率的解析公式及实验测量的Pt—CO振动频率,我们估算出当电极电势发生变化时,COL(COB)的吸附能变化为0.20(0.37) eV/V,而COL(COB)键长变化为0.005 (0.01) A/V。COB比COL的△Eb/△E更大说明COB的化学键对界面电场的变化比COL更为敏感。另外,我们进行了基于周期性slab模型的DFT理论计算,得到了COad表面覆盖度为0.25及0.75 ML时不同电场下的Pt—CO及C--O的振动频率及Stark斜率。DFT理论计算得到的dvPt—COL,B/dE and dvC—OL,B/dE比电化学实验观测值要小得多,另外基于slab模型的DFT理论计算结果表明|dvPt—COL/dE|>|dvPt—COB/dE|,这与实验结果矛盾,说明DFT计算所使用模型或计算方法仍旧需要进一步改进。
     3.研究了酸性溶液中CO在Au@Pt核壳纳米粒子薄膜电极上氧化前峰机理。另外利用表面增强拉曼光谱研究了不同pH溶液中CH3OH在Au@Pt纳米粒子薄膜电极上的氧化机理。在氢原子欠电位沉积(H-upd)电势区间吸附的CO在CO饱和的酸性溶液中进行电位扫描时在0.4~0.8 V出现氧化前峰,而在双电层电势区间吸附时则无氧化前峰出现。通过定量比较0.06和0.35V下饱和吸附CO后的拉曼光谱,发现其拉曼光谱没有明显的区别。因此推断在氧化前峰区CO氧化的难易程度很可能不是由表面CO的吸附构型决定,而是来源于不同吸附电势下的Pt基底的晶格结构变化。原位SERS实验发现Au@Pt内米粒子薄膜电极上甲醇在酸性、中性和碱性溶液中的氧化机理是类似的。甲醇在Au@Pt纳米粒子薄膜电极表面脱氢生成的CO以顶位和桥位吸附,三种溶液中COL和COB的比例有很大差别,这可能是三种溶液中界面电场以及电极表面共吸附物种不同导致的。
     4.利用表面增强拉曼光谱研究了不同pH值溶液中CO在Au@Pd纳米粒子薄膜电极上的吸附行为,并利用DFT理论计算了不同吸附位、电极电势及覆盖度下CO在Pd(111)表面吸附的键长、吸附能、振动频率。计算结果表明CO在Pd(111)上最稳定的吸附位为穴位,CO在Pd上的吸附能随着电势负移而降低。在-1~0.5 V/A的电场范围内,Pd—COL,M及C—OL,M的振动频率与电极电势成线性关系,说明CO在Pd上吸附时,单纯的电场作用会导致线性的Stark效应。中性和碱性溶液中的原位SERS实验发现Pd—COM及C---OM振动的Stark斜率存在明显的非线性行为。原位电化学SERS实验结果表明Pd—COM及C—OM振动的Stark斜率可以分为三部分:i)从-1.5至-1.2 V,分别为-8~-10和185~207 cm-1/V; ii)从-1.2到-0.15 V,分别为-30-~-31和83~84 cm-1/V; iii)从-0.2到0.55 V, Pd—COM及C—OM振动的Stark斜率分别为-15及43 cm-1/V。根据同步记录的循环伏安曲线,中性和碱性溶液中Stark斜率发生突变的电位恰好对应于析氢起始电位。结合周期性密度泛函理论计算的结果,中性和碱性溶液中的非线性Stark效应来源于析氢电位区间在Pd电极上的共吸附氢原子所导致的CO从桥位向穴位的转化。
     5.初步研究了CO在Au@Ru及Au@Rh壳纳米薄膜粒子电极上的吸附及氧化行为。在酸性溶液中,55 nm Au@2 nm Ru纳米粒子不稳定,易出现针孔。在中性溶液中55 nm Au@2 nm Ru纳米粒子比较稳定,在较负电位区间(-1.2~-0.6 V vs.NHE)仅观察到吸附在Ru上吸附的CO的Ru—CO振动和C—-O振动峰;在较正电位区间(大于-0.6Vvs.NHE)Ru发生氧化,可以同时观察到吸附在Ru和RuOx上的Ru—CO及C—--O谱带。RuOx上吸附CO的C—O谱带强度比Ru上吸附CO的C—O谱带强度要大得多,这主要是由于RuOx上吸附CO的C—O振动的拉曼散射截面较大的缘故。在酸性和中性溶液中CO在Au@Rh上吸附的原位SERS实验表明Au@Rh纳米粒子不稳定,易形成“针孔”。在碱性溶液中Au@Rh纳米粒子比较稳定。通过原位SERS实验验证了CO饱和的NaOH溶液中,CO在Au@Rh核壳纳米粒子薄膜电极上的氧化机理为Langmuir-Hinshelwood类型反应。
     综上所述,通过表面增强拉曼光谱及密度泛函理论的研究结果,从分子水平上理解了CO在几种贵金属纳米粒子表面的吸附及氧化机理,为研究开发具有抗CO中毒并具有高催化活性的低温质子交换膜燃料电池阳极催化剂提供了理论指导。
Fuel cells are expected to play important roles for the sustainable society. However, most of the fuel cells working at low temperature, such as proton exchange membrance fuel cell (PEMFC) and direct methanol fuel cell (DMFC), meet the same serious problem, i.e, deactivation of anode catalyst induced by adsorption of carbon monoxide (CO) from the fuel. Hence, a fundamental understanding of the adsorption and oxidation of CO at noble metal electrodes such as platinum (Pt) and palladinum (Pd), which is one of the most important components in the anode electrocatalysts, will be of great help to alleviate the CO poisoning problem.
     In this Ph.D. thesis, the adsorption and oxidation of CO molecules at core-shell nanoparticle electrodes of Au@M are investigated systematically [where Au and M (M=Pt, Pd, Rh, Ru) represent core and shell materials, respectively] by in-situ surface-enhanced Raman spectroscopy (SERS) measurements. These results are briefly summarized below.
     1. The effects of CO coverage, CO partial pressure, and solution pH on the vibrational properties of Pt—CO and C—O stretching modes of CO adlayer at Au@Pt core-shell nanoparticle electrodes. With the increase in COad coverage a decrease (increase) in the Pt—COL (COL) peak frequency together with the increase of all the band intensities are observed. The chemical effects are considered to be responsible for the frequency change of Pt—COL stretching band, and both the chemical and the dipole-dipole coupling effects within adsorbed CO molecules are the main causes for frequency change of C—OL.With the solution switch from CO-saturated 0.5 M H2SO4 solution to CO-free 0.5 M H2SO4 solution at 0.06 V, the peak intensities of Pt—COL and C—OLincrease ca.6% and ca.30%, respectively, together with a slight change in the peak frequency. The intensity change of Pt—COL is mainly attributed to the CO orientation change, while the dipole coupling effects, chemical effects and the CO orientation change are responsible for the intensity and frequency changes of the C—OL stretching vibration. The SERS spectra recorded upon changes in the electrolyte between H2SO4, Na2SO4 and NaOH at constant potentials reveal that a substantial change (up to 50%) in the band intensities of Pt—CO and CO stretching vibrations. In addition, the C—OL (Pt—COL) peak frequency is ca.7 cm-1 higher (2 cm-1 lower) in H2SO4 than that in Na2SO4, while no differences in the peak frequencies have been discerned when switching between in Na2SO4 and NaOH. Small lateral shift of COad from atop edges to exactly atop positions upon the the co-adsorption of H atoms in H2SO4 has been proposed to explain such frequency change, while the band intensity changes are identified to be due to the changes in the chemical enhancement factor upon the electrolyte switch.
     2. Potential dependence of CO adsorption at Au@Pt nanoparticle electrodes in a wide potential window. Throughout the potential regime examined, the Stark slopes of dvC—O/dE are always positive while that of dvPt—CO/dE are negative. The Stark slopes of dvPt—CO/dE are almost constant while that of dvC—O/dE increase toward negative potentials. Qualitatively, all the potential-dependent spectral behavior can be rationalized by the delicate changes in the counterweighing effects of the chemical bonding (d(Pt)→2π*(CO) back-donation and 5σ(CO)→sp(Pt) donation) and the dipole—dipole coupling interaction, the latter originates from potential induced changes in the fractional surface coverage of COL and COB species. Based on the fact that the influence of the dipole—dipole coupling interaction on the Pt—CO vibration is'negligible, the measured dvpt-co/dE can serve as indicator to evaluate the potential-induced changes in bonding strength and bond length of Pt-CO. From which we estimate the potential induced changes in the binding energies and bonding lengths of COL (COB) of ca. 0.20 (0.37) eV/V and 0.005 (0.01) A/V, respectively. The larger△Eb/△E of COB than COL reveals that the chemical bonding of COB is more sensitive to the changes in the interfacial electric field than that of COL. Peoridic DFT calculations have been performed to estimate the field-depdendent vibrational frequencies and Stark slopes for the saturated CO adlayer. The DFT calculations demonstrate that the Stark slopes of dvpt-co/dE and dvC—O/dE are much smaller than the present observation. The predicted order of the Stark slope of metal-adsorbate stretching vibrations, i.e.,|dvPt—COL/dE|>|dvPt-COB/dE| as predicted by peoridic DFT calculations, contradicts our experimental observation as well as that from DFT calculations using the cluster model.
     3. The origin of pre-peak in bulk CO oxidation at Au@Pt electrode and the mechanism elucidation of methanol electro-oxidation in electrolyte solutions with different pH. A pre-peak has been reported between 0.4~0.8 V for the oxidation of CO pre-adsorbed in the hydrogen adsorption potential region in a CO saturated 0.5 M H2SO4 solution; The pre-peak disappear if CO pre-adsorbed in the double layer region. However, the essential nature for the pre-peak is still in controversy. The in-situ SERS spectra of CO pre-adsorbed at 0.06 and 0.35 V have been determined and no distinguished differences are observed in spectra between the two potentials. It is proposed that the pre-peak is not caused by the CO adsorption structure, but due to the adlayer structure change on the Pt electrode surface. The mechanisms of methanol oxidation in acid, neutral, and basic solutions are found to be similar from the in-situ SERS measurements. CO from methanol dehydrogenation can adsorb at atop and bridge site on Pt surface. The ratios of COL and COB significantly change with solution pH, which may be related with the electric field and co-adsorbed species.
     4. SERS characterization and DFT calculation of CO adsorption at Au@Pd electrodes in the solutions with different pH. DFT calculations reveal that hollow site is the most stable adsorption site for COad on Pd(111) surface and CO binding energy for CO adsorption on Pd(111) surface increase with the negative shift of electrode potential. In the electric field region of -1~0.5 V/A, the vibrational frequencies of Pd—COL,M and C—OL,M are linear with the external electric field. EC-SERS studies reveal that the Stark slopes of both Pd—CO and C—O stretching vibrations can be divided into three distinct region:dvC-OM/dE decreases from 185~207 cm-1/V (from -1.5 to -1.2 V) to 83~84 cm-1/V (-1.2 to-0.15 V) and then to 43 cm-1/V (-0.2 to 0.55 V); on the other hand, dvPd-COM/dE changes from-8~-10 cm-1/V (from -1.5 to -1.2 V) to-31~-30 cm-1/V (-1.2 to-0.15 V) and then to-15 cm-1/V (-0.2 to 0.55 V). The simultaneously recorded cyclic voltammetry reveals that at E<-1.2 V hydrogen evolution reaction (HER) occurs. Based on the results of cyclic voltammetry and periodic DFT calculations, the unusual high dvC—OM/dE and the small dvPd—COM/dE in HER region are explained by the conversion of COad from bridge-to hollow-sites induced by co-adsorbed hydrogen atoms formed from dissociated water at negative potentials.
     5. The adsorption and electrochemical oxidation of CO at Au@Ru and Au@Rh nanoparticle electrodes. It is found that the Au@Ru core-shell nanoparticles are unstable and contain pinhole on the surface in acidic solution. The Au@Ru core-shell nanoparticles are relatively stable in neutral solution and have been evaluated. It is found that the bands of Ru—CO and C—O vibration modes are observed in the potential region (-1.2~-0.6 V vs. NHE). These band intensities greatly changes with potential. The bands of Ru—CO and C—O vibrations for CO bound to reduced and oxidized Ru surface sites are obtained in the more positive potential region (>-0.6 V vs. NHE). The C—O band intensity of COad on oxidized surface sites is much larger than that on reduced Ru surface sites, which probably originates from the larger Raman scattering cross-section of C—O vibration of COad on oxidized surface sites than that on reduced Ru surface sites. In-situ SERS experiments of CO adsorption on Au@Rh core-shell nanoparticle electrode reveal that Au@Rh nanoparticle electrode is only stable in basic solution. The mechanism of CO oxidation on Au@Rh nanoparticle electrode in CO saturated basic solution was found to be of the Langmuir-Hinshelwood type.
     Based on the present in-situ SERS and DFT calcualtions, we have a more comprehensive understanding of adsorption and electrochemical oxidation of CO on Pt, Pd, Rh, and Ru electrode surfaces, which could provide the general guidance for the research and development of high active anode catalysts with good CO-tolerant ability for the fuel cells working at the low temperatures.
引文
1. Carl H. Hamnett AH, Wolf Vielstich著陈艳霞,夏兴华,蔡俊译.电化笋化学工业出版社,2010.
    2. 巴德,福克纳著,邵元华,朱果逸,董献堆等译.电化学方法—原理和应用[M].北京:化学工业出版社,2005.
    3. 贾梦秋.应用电化学.北京高等教育出版社,2004.
    4. 田昭武.电化学实验方法进展:厦门大学出版社,1988.
    5. Kuwana T, Darlington RK, Leedy DW. Electrochemical Studies Using Conducting Glass Indicator Electrodes. Anal Chem 1964;36:2023.
    6. 林仲华.电化学中的光学方法:北京:科学出版社,1990.
    7. 薛晓康.复旦大学博士学位论文.2008.
    8. Shi-Gang S, Paul Andrew C, Andrzej W. In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis. Amsterdam: Elsevier Science B.V.,2007.
    9. A S. The quantum theory of dispersion. [J]. Naturwissenschaften 1923;11:873.
    10. Raman C V, S. KK. A new type of secondary radiation. [J]. Nature (London, United Kingdom) 1928;121:501.
    11.顾仁傲.拉曼光谱在化学中的应用.沈阳:东北大学出版社,1998.
    12. Smith E, G. D. Modern Raman spectroscopy-a practical approach. [M]. John Wiley & Sons: Chichester,.2005.
    13. Petry R, Schmitt M, Popp J. Raman Spectroscopy-A prospective tool in the life sciences. Chemphyschem 2003;4:14.
    14. Spiro TG, Stein P. Resonance effects in vibrational scattering from complex molecules. Annual review of physical chemistry, vol28,1977 Annual review of physical chemistry, vol28,1977 1977:501.
    15. Fleischm.M, Hendra PJ, McQuilla.Aj. RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE. Chem Phys Lett 1974;26:163.
    16. Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 1977;99:5215.
    17. Jeanmaire DL, Van Duyne RP. Surface raman spectroelectrochemistry: Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 1977;84:1.
    18. Tian ZQ, Ren B, Li JF, Yang ZL. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun 2007:3514.
    19.陈艳霞.厦门大学博士论文.厦门,1998.
    20. Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys 1985;57:783.
    21. Ren B, Liu GK, Lian XB, Yang ZL, Tian ZQ. Raman spectroscopy on transition metals. Anal Biochem 2007;388:29.
    22.崔丽.厦门大学博士学位论文,2008.
    23.任斌,田中群.表面增强拉曼光谱的研究进展 现代仪器2004;5.
    24. Ren B, Lin XF, Yang ZL, Liu GK, Aroca RF, Mao BW, et al. Surface-enhanced Raman scattering in the ultraviolet spectral region:UV-SERS on rhodium and ruthenium electrodes. J Am Chem Soc 2003:125:9598.
    25. Yang ZL, Wu DY, Ren B, Zhou HG, Tian ZQ. SERS mechanism for rhodium electrode in the ultraviolet region. Spectrosc Spect Anal 2004;24:682.
    26. Lin XF, Ren B, Yang ZL, Liu GK, Tian ZQ. Surface-enhanced Raman spectroscopy with ultraviolet excitation.J Raman Spectrosc 2005;36:606.
    27. Tian ZQ, Yang ZL, Ren B, Wu DY. SERS from transition metals and excited by ultraviolet light. Surface-Enhanced Raman Scattering:Physics and Applications 2006; 103:125.
    28. Cui L, Wang A, Wu DY, Ren B, Tian ZQ. Shaping and Shelling Pt and Pd Nanoparticles for Ultraviolet Laser Excited Surface-Enhanced Raman Scattering. J Phys Chem C 2008;112:17618.
    29. Jeong DH, Zhang YX, Moskovits M. Polarized surface enhanced Raman scattering from aligned silver nanowire rafts. J Phys Chem B 2004; 108:12724.
    30. Tian JH, Liu B, Li XL, Yang ZL, Ren B, Wu ST, et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J Am Chem Soc 2006; 128:14748.
    31. Xu HX, Kall M. Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. Chemphyschem 2003;4:1001.
    32.蒋玉雄.厦门大学博士论文,2006.
    33. A. LD. The Raman effect-a unified treatment of the theory of Raman scattering by molecules.: [M] John Wiley & Sons,2001.
    34. Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy 2005;36:485.
    35. Moskovits M. Surface-enhanced Raman spectroscopy: a brief perspective. Surface-Enhanced Raman Scattering: Physics and Applications 2006; 103:1.
    36. Otto A. The chemical(electronic) Contribution to surface-enhanced Raman scattering. J Raman Spectrosc 2005;36:497.
    37. Nakai H, Nakatsuji H. Electronic Mechanism of the Surface-Enhanced Raman-Scattering.J Chem Phys 1995;103:2286.
    38. Schatz GC, Young MA, Van Duyne RP. Electromagnetic mechanism of SERS. Surface-Enhanced Raman Scattering:Physics and Applications 2006;103:19.
    39. Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-Enhanced Raman-Scattering. Journal of Physics-Condensed Matter 1992;4:1143.
    40. Ding SY, Wu DY, Yang ZL, Ren B, Xu X, Tian ZQ. Some Progresses in Mechanistic Studies on Surface-Enhanced Raman Scattering. Chem J Chinese U 2008;29:2569.
    41. Wu DY, Liu XM, Duan S, Xu X, Ren B, Lin SH, et al. Chemical enhancement effects in SERS spectra:A quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals. J Phys Chem C 2008;112:4195.
    42. Dvoynenko MM, Wang JK. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering. Opt Lett 2007;32:3552.
    43. Tian ZQ, Ren B, Wu DY. Surface-enhanced Raman scattering:From noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 2002;106:9463.
    44.任斌,田中群.电化学催化中的激光拉曼光谱法.科学出版社,2002.
    45. Tian ZQ, Yang ZL, Ren B, Li JF, Zhang Y, Lin XF, et al. Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. Faraday Discuss 2006;132:159.
    46. Weaver MJ, Corrigan DS, Gao P, Gosztola D, Leung LWH. Some applications of surface Raman and infrared spectroscopies to mechanistic electrochemistry involving adsorbed species. J Electron Spectrosc Relat Phenom 1987;45:291.
    47. Tolia AA, Smiley RJ, Delgass WN, Takoudis CG, Weaver MJ. Surface Oxidation of Rhodium at Ambient Pressures as Probed by Surface-Enhanced Raman and X-Ray Photoelectron Spectroscopies. J Catal 1994;150:56.
    48. Leung LWH, Weaver MJ. Adsorption and electrooxidation of carbon monoxide on rhodium-and ruthenium-coated gold electrodes as probed by surface-enhanced Raman spectroscopy. Langmuir 1988;4:1076.
    49. Zou SZ, Weaver MJ. Surface-enhanced Raman scattering an uniform transition metal films: Toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces? Anal Chem 1998;70:2387.
    50. Zou SZ, Weaver MJ. Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: Chemical bonding versus electrostatic field effects.J Phys Chem 1996;100:4237.
    51. Mrozek MF, Xie Y, Weaver MJ. Surface-enhanced Raman scattering on uniform platinum-group overlayers: Preparation by redox replacement of underpotential-deposited metals on gold. Anal Chem 2001;73:5953.
    52. Park S, Yang PX, Corredor P, Weaver MJ. Transition metal-coated nanoparticle films: Vibrational characterization with surface-enhanced Raman scattering. J Am Chem Soc 2002:124:2428.
    53. Li MD, Cui Y, Gao MX, Luo J, Ren B, Tian ZQ. Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane. Anal Chem 2008;80:5118.
    54. Fang PP, Li JF, Yang ZL, Li LM, Ren B, Tian ZQ. Optimization of SERS activities of gold nanoparticles and gold-core-palladium-shell nanoparticles by controlling size and shell thickness. J Raman Spectrosc 2008;39:1679.
    55. Li JF, Yang ZL, Ren B, Liu GK, Fang PP, Jiang YX, et al. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes:Toward a versatile vibrational strategy for electrochemical interfaces. Langmuir 2006;22:10372.
    56. Hu JW, Li JF, Ren B, Wu DY, Sun SG, Tian ZQ. Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate.J Phys Chem C 2007:111:1105.
    57. Bao F, Li JF, Ren B, Yao JL, Gu RA, Tian ZQ. Synthesis and characterization of Au@Co and Au@Ni core-shell nanoparticles and their applications in surface-enhanced Raman Spectroscopy. J Phys Chem C 2008;112:345.
    58.鲍芳,崔颜,姚建林,任斌,顾仁敖.AucoreCoshell纳米粒子的制备、表征及其表面增强拉曼光谱研究.高等学校化学学报2007;28:627.
    59.陈敏伯.计算化学:从理论化学到分子模拟.北京:科学出版社,2009.
    60.徐光宪,黎乐民.量子化学.北京:科学出版社,1999.
    61.曾谨言.量子力学.北京:科学出版社,2000.
    62. D.R.Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Ⅰ. Theory and Methods. Proc Cambridge Phil Soc 1928;24:111.
    63. Foresman; JB, Frisch E. Exploring Chemistry with Electronic Structure Methods: Gaussian Inc., 1996.
    64.孙莲.中国科学技术大学博士学位论文,2008.
    65. Dirac PAM. Note on exchange phenomena in the thomas-fermi atom. Proc Camb Phil Soc 1930;26:376.
    66. Hohenberg; P, Kohn W. Inhomogeneous Electron Gas. Phys Rev 1964;136:B864.
    67.阚二军.中国科学技术大学博士学位论文,2008.
    68. Kohn; W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 1965;140:A1133.
    69. Perdew; JP, Yue W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys Rev B 1986;33:8800.
    70. Perdew JP, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy. Phys Rev B 1992;45:13244.
    71. Becke AD. Density-Functional Thermochemistry.3. The Role of Exact Exchange.J Chem Phys 1993;98:5648.
    72. Becke AD. A New Mixing of Hartree-Fock and Local Density-Functional Theories.J Chem Phys 1993;98:1372.
    73.肖海燕.四川大学博士学位论文,2004.
    74. Park S, Wasileski SA, Weaver MJ. Some interpretations of surface vibrational spectroscopy pertinent to fuel-cell electrocatalysis. Electrochim Acta 2002;47:3611.
    75. Wasileski SA, Weaver MJ. Electrode potential-dependent anion chemisorption and surface bond polarization as assessed by Density Functional Theory. J Phys Chem B 2002;106:4782.
    76. Wasileski SA, Weaver MJ. Influence of solvent co-adsorption on the bonding and vibrational behavior of carbon monoxide on Pt(111) electrodes.225th National Meeting of the American-Chemical-Society. New Orleans, La,2003:482.
    77. Roudgar A, Gross A. Water bilayer on the Pd/Au(111) overlayer system:Coadsorption and electric field effects. Chem Phys Lett 2005;409:157.
    78. Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, et al. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 2007;9:3241.
    79. Otani M, Hamada I, Sugino O, Morikawa Y, Okamoto Y, Ikeshoji T. Structure of the water/platinum interface-a first principles simulation under bias potential. Phys Chem Chem Phys 2008;10:3609.
    80. Wasileski SA, Janik MJ. A first-principles study of molecular oxygen dissociation at an electrode surface:a comparison of potential variation and coadsorption effects. Phys Chem Chem Phys 2008;10:3613.
    81. Santana JA, Ishikawa Y. Density-functional theory study of interactions between water and carbon monoxide adsorbed on platinum under electrochemical conditions. Chem Phys Lett 2009;478:110.
    82. Wasileski SA, Taylor CD, Neurock M. Modeling Electrocatalytic Reaction Systems from First Principles. Device and Materials Modeling in Pem Fuel Cells,2009:551.
    83. Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach. J Phys Chem B 2005;109:11622.
    84. Ferrin P, Nilekar AU, Greeley J, Mavrikakis M, Rossmeisl J. Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf Sci 2008;602:3424.
    85.奥海尔.燃料电池基础.电子工业出版社,2007.
    86.李筱琴.厦门大学硕士学位论文,1998.
    87. Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal Today 1997;38:445.
    88. Wasmus S, Kuver A. Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 1999;461:14.
    89.张凤娇.重庆大学硕士学位论文,2006.
    90. Russell AE. Electrocatalysis:theory and experiment at the interface. Phys Chem Chem Phys 2008;10:3607.
    91. Solla-Gullon J, Vidal-Iglesias FJ, Lopez-Cudero A, Garnier E, Feliu JM, Aldaza A. Shape-dependent electrocatalysis:methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 2008;10:3689.
    92. Morallon E, Rodes A, Vazquez JL, Perez JM. Voltammetric and in-Situ Ftir Spectroscopic Study of the Oxidation of Methanol on Pt(Hkl) in Alkaline Media. J Electroanal Chem 1995;391:149.
    93. Schultz T, Zhou S, Sundmacher K. Current status of and recent developments in the direct methanol fuel cell. Chem Eng Technol 2001;24:1223.
    94. Chen YX, Heinen M, Jusys Z, Behm RJ. Kinetic isotope effects in complex reaction networks: Formic acid electro-oxidation. Chemphyschem 2007;8:380.
    95. Yan Xia C, Martin H, Zenonas J, Rolf Jurgen B. Kinetics and Mechanism of the Electrooxidation of Formic Acid-Spectroelectrochemical Studies in a Flow Cell. Angew Chem Int Ed 2006;45:981.
    96. Aric AS, Srinivasan S, Antonucci V. DMFCs:From Fundamental Aspects to Technology Development: Fuel Cells 2001;1:133.
    97. Iwasita T. Electrocatalysis of methanol oxidation. Electrochim Acta 2002;47:3663.
    98. Housmans THM, Koper MTM. Methanol oxidation on stepped Pt[n(111) x (110)] electrodes: A chronoamperometric study. J Phys Chem B 2003;107:8557.
    99. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP. A review of anode catalysis in the direct methanol fuel cell.J Power Sources 2006;155:95.
    100. Kunimatsu K, Hanawa H, Uchida H, Watanabe M. Role of adsorbed species in methanol oxidation on Pt studied by ATR-FTIRAS combined with linear potential sweep voltammetry.J Electroanal Chem 2009;632:109.
    101. Chen QS, Sun SG, Zhou ZY, Chen YX, Deng SB. CoPt nanoparticles and their catalytic properties in electrooxidation of CO and CH3OH studied by in situ FTIRS. Phys Chem Chem Phys 2008;10:3645.
    102. Cohen JL, Volpe DJ, Abruna HD. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 2007;9:49.
    103. Wieckowski A, Rubel M, Gutierrez C. Reactive sites in bulk carbon monoxide electro-oxidation on oxide-free platinum(111). J Electroanal Chem 1995;382:97.
    104. Watanabe S, Kinomoto Y, Kitamura F, Takahashi M, Ito M. An infrared study of CO adsorbed on Pt(100) and Pt(110) electrodes:Dynamic aspects of CO at reconstructed surfaces. J Electron Spectrosc Relat Phenom 1990;54-55:1205.
    105.Walther A, Kaspar Andreas F, Ulrich S. Potential-dependence of CO adlayer structures on Pt(111) electrodes in acid solution: Evidence for a site selective charge transfer.J Chem Phys 2000; 113:6864.
    106. Roth JD, Weaver MJ. The electrooxidation of carbon monoxide on platinum as examined by surface infrared spectroscopy under forced hydrodynamic conditions.J Electroanal Chem 1991;307:119.
    107. Spendelow JS, Goodpaster JD, Kenis PJA, Wieckowski A. Mechanism of CO oxidation on Pt(111) in alkaline media. J Phys Chem B 2006;110:9545.
    108. Wasileski SA, Koper MTM, Weaver MJ. Field-Dependent Chemisorption of Carbon Monoxide on Platinum-Group (111) Surfaces:Relationships between Binding Energetics, Geometries, and Vibrational Properties as Assessed by Density Functional Theory. J Phys Chem B 2001; 105:3518.
    109. Bandara A, Kano SS, Onda K, Katano S, Kubota J, Domen K, et al. SFG spectroscopy of CO/Ni(111):UV pumping and the transient hot band transition of adsorbed CO. Bull Chem Soc Jpn 2002;75:1125.
    110. Alvarez B, Rodes A, Perez JM, Feliu JM. Two-Dimensional Effects on the in Situ Infrared Spectra of CO Adsorbed at Palladium-Covered Pt(111) Electrode Surfaces. J Phys Chem B 2003;107:2018.
    111. Chou KC, Markovic NM, Kim J, Ross PN, Somorjai GA. An in Situ Time-Dependent Study of CO Oxidation on Pt(111) in Aqueous Solution by Voltammetry and Sum Frequency Generation. J Phys Chem B 2003; 107:1840.
    112. Lopez-Cudero A, Cuesta A, Gutierrez C. Potential control of the CO adsorption site on Pt(100) electrodes. Electrochemistry Communications 2004;6:395.
    113. Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenkovic V, Ross PN, Markovic NM. CO surface electrochemistry on Pt-nanoparticles:A selective review. Electrochim Acta 2005;50:5144.
    114. Dabo I, Wieckowski A, Marzari N. Vibrational recognition of adsorption sites for CO on platinum and platinum-ruthenium surfaces. J Am Chem Soc 2007;129:11045.
    115. Rodriguez P, Feliu JM, Koper MTM. Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. Electrochemistry Communications 2009;11:1105.
    116. Ishibashi T-a, Onishi H. Vibrationally resonant sum-frequency generation spectral shape dependent on the interval between picosecond-visible and femtosecond-infrared laser pulses. Chem Phys Lett 2001;346:413.
    117. Lu GQ, Lagutchev A, Takeshita T, Behrens RL, Dana DD, Wieckowski A. Broadband Sum Frequency Generation Studies of Surface Intermediates Involved in Fuel Cell Electrocatalysis. In: Marc TMK (ed). Fuel Cell Catalysis,2009:375.
    118. vanderHam EWM, Vrehen QHF, Eliel ER. Self-dispersive sum-frequency generation at interfaces. Opt Lett 1996;21:1448.
    119. Weaver MJ. Raman and infrared spectroscopies as in situ probes of catalytic adsorbate chemistry at electrochemical and related metal-gas interfaces: some perspectives and prospects. Top Catal 1999;8:65.
    120.田中群,任斌,佘春兴,陈衍珍.电化学原位拉曼光谱的应用及进展.电化学1999;5:1.
    121.顾仁敖,曹佩根,姚建林.表面增强拉曼光谱在非水体系中的研究进展.光谱学与光谱分析1999;19:531.
    122. Weaver MJ. Surface-enhanced Raman spectroscopy as a versatile in situ probe of chemisorption in catalytic electrochemical and gaseous environments. J Raman Spectrosc 2002;33:309.
    123.余春兴.厦门大学硕士学位论文,2000.
    124.田中敬一.图解扫描电子显微镜:生物样品制备.科学出版社,1984.
    125. Ren B, Lin XF, Jiang YX, Cao PG, Xie Y, Huang QJ, et al. Optimizing detection sensitivity on surface-enhanced Raman scattering of transition-metal electrodes with confocal Raman microscopy. Appl Spectrosc 2003;57:419.
    126. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature, Phys Sci 1973;241:20.
    127.程光煦.拉曼布里渊散射—原理及应用:科学出版社,2001.
    128. Kamarudin SK, Daud WRW, Ho SL, Hasran UA. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J Power Sources 2007;163:743.
    129. Markovic NM, Ross PN. Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 2002;45:121.
    130.邵玉艳,尹鸽平,高云智.CO在Pt及其合金表面电化学氧化和吸附的理论研究.结构化学2004;23:1316~1324.
    131. Blyholder G. Molecular Orbital View of Chemisorbed Carbon Monoxide.J Phys Chem 1964;68:2772.
    132. Bylholder G, Sheets R. Platinum-carbon stretching frequency for chemisorbed carbon monoxide. J Phys Chem 1970;74:4335.
    133. Zhi-Pan L, Hu P. General trends in CO dissociation on transition metal surfaces.J Chem Phys 2001;114:8244.
    134. Roth JD, Chang SC, Weaver MJ. Infrared-Spectroscopy of Carbon-Monoxide Electrosorption on Platinum over Wide Potential Ranges-Delineation of Site Occupancy Changes and Nonlinear Band Frequency Potential Shifts.J Electroanal Chem 1990;288:285.
    135. Tornquist W, Guillaume F, Griffin GL. Vibrational behavior of carbon monxide adsorbed on platinum in nonacidic electrolytes. Langmuir 1987;3:477.
    136. Chang S-C, Weaver MJ. Coverage-dependent dipole coupling for carbon monoxide adsorbed at ordered platinum(111)-aqueous interfaces:Structural and electrochemical implications. J Chem Phys 1990;92:4582.
    137. Chen YX, Heinen M, Jusys Z, Behm RJ. Potential-induced COad island formation on a platinum thin-film electrode in the H-upd potential region. J Phys Chem C 2007;111:435.
    138. Heinen M, Chen YX, Jusys Z, Behm RJ. Room temperature COad desorption/exchange kinetics on pt electrodes-A combined in situ IR and mass spectrometry study. Chemphyschem 2007;8:2484.
    139. Persson BNJ, Ryberg R. Vibrational line shapes of low-frequency adsorbate modes:CO on Pt(111). Phys Rev B 1989;40:10273.
    140.Baro AM, Ibach H. New study of CO adsorption at low temperature (90 K) on Pt (111) by EELS. J Chem Phys 1979;71:4812.
    141. Severson MW, Russell A, Campbell D, Russell JW. Vibrational coupling in carbon monoxide adlayers on a platinum electrode. Langmuir 1987;3:202.
    142. Tobin RG, Richards PL. An infrared emission study of the molecule-substrate mode of CO on Pt(111). Surf Sci 1987;179:387.
    143. Hoge D, Tuhaus M, Schweizer E, Bradshaw AM. The metal-carbon stretch in the vibrational spectrum of CO adsorbed on Pt{111}. Chem Phys Lett 1988;151:230.
    144. Baily CJ, Surman M, Russell AE. Investigation of the CO induced lifting of the (1 x 2) reconstruction on Pt{110} using synchrotron far-infrared RAIRS. Surf Sci 2003;523:111.
    145. Hammaker RM, Francis SA, Eischens RP. Infrared study of intermolecular interactions for carbon monoxide chemisorbed on platinum. Spectrochim Acta 1965;21:1295.
    146. Crossley A, King DA. Infrared spectra for co isotopes chemisorbed on Pt "111":Evidence for strong absorbate coupling interactions. Surf Sci 1977;68:528.
    147. Mahan GD, Lucas AA. Collective vibrational modes of adsorbed CO.J Chem Phys 1978;68:1344.
    148. Persson BNJ, Ryberg R. Vibrational interaction between molecules adsorbed on a metal surface: The dipole-dipole interaction. Phys Rev B 1981;24:6954.
    149. Hirschmugl CJ, Williams GP. Chemical shifts and coupling interactions for the bonding vibrational modes for CO/Cu(111) and (100) surfaces. Phys Rev B 1995;52:14177.
    150. Ueba H. Chemical effects on vibrational properties of adsorbed molecules on metal surfaces: Coverage dependence. Surf Sci 1987;188:421.
    151. Curulla D, Linke R, Clotet A, Ricart JM, Niemantsverdriet JW. A density functional study of the adsorption of CO on Rh(111). Physical Chemistry Chemical Physics 2002;4:5372.
    152. Linke R, Curulla D, Hopstaken MJP, Niemantsverdriet JW. CO/Rh(111):Vibrational frequency shifts and lateral interactions in adsorbate layers.J Chem Phys 2001;115:8209.
    153. Tang C, Zou S, Severson MW, Weaver MJ. Coverage-dependent infrared spectroscopy of carbon monoxide on Iridium(111) in aqueous solution:A benchmark comparison between chemisorption in ordered electrochemical and ultrahigh-vacuum environments. J Phys Chem B 1998;102:8796.
    154. Hoshi N, Bae IT, Scherson DA. In situ infrared reflection absorption spectroscopic studies of coadsorption of CO with underpotential-deposited lead on Pt(111) in an aqueous acidic solution. J Phys Chem B 2000;104:6049.
    155. Severson MW, Weaver MJ. Nanoscale island formation during oxidation of carbon monoxide adlayers at ordered electrochemical interfaces: A dipole-coupling analysis of coverage-dependent infrared spectra. Langmuir 1998;14:5603.
    156. Greenler RG, Leibsle FM, Sorbello RS. Interaction of CO molecules adsorbed on stepped platinum surfaces. Phys Rev B 1985;32:8431.
    157. Jakob P, Persson BNJ. Dephasing of localized and delocalized vibrational modes:CO adsorbed on Ru(001). Phys Rev B 1997;56:10644.
    158. Murray CA, Bodoff S. Depolarization effects in Raman scattering from cyanide on silver-island films. Phys Rev B 1985;32:671.
    159. Tang C, Zou SZ, Severson MW, Weaver MJ. Infrared spectroscopy of mixed nitric-oxide-carbon-monoxide adlayers on ordered iridium(111) in aqueous solution:A model study of coadsorbate vibrational interactions. J Phys Chem B 1998;102:8546.
    160. Kunimatsu K, Seki H, Golden WG, Gordon JG, Philpott MR. A study of the gold/cyanide solution interface by in situ polarization-modulated fourier transform infrared reflection absorption spectroscopy. Langmuir 1988;4:337.
    161. Chang S-C, Weaver MJ. (No)Coverage-and potential-dependent binding geometries of carbon monoxide at ordered low-index platinum-and rhodium-aqueous interfaces: comparisons with adsorption in corresponding metal-vacuum environments. Surf Sci 1990;238:142.
    162. Iwasita T, Nart FC. In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 1997;55:271.
    163. Bare SR, Hofmann P, King DA. Vibrational studies of the surface phases of CO on Pt{110} at 300 K. Surf Sci 1984;144:347.
    164. Kobayashi T, Babu PK, Gancs L, Chung JH, Oldfield E, Wieckowski A. An NMR determination of CO diffusion on platinum electrocatalysts. J Am Chem Soc 2005;127:14164.
    165. Severson MW, Stuhlmann C, Villegas I, Weaver MJ. Dipole-dipole coupling effects upon infrared spectroscopy of compressed electrochemical adlayers:Application to the Pt(111)/CO system. J Chem Phys 1995;103:9832.
    166. Weaver MJ. Electrostatic-field effects on adsorbate bonding and structure at metal surfaces: parallels between electrochemical and vacuum systems. Appl Surf Sci 1993;67:147.
    167. Heinen M, Chen YX, Jusys Z, Behm RJ. CO adsorption kinetics and adlayer build-up studied by combined ATR-FTIR spectroscopy and on-line DEMS under continuous flow conditions. Electrochim Acta 2007;53:1279.
    168. Davies JC, Nielsen RM, Thomsen LB, Chorkendorff I, Logadottir A, Lodziana Z, et al. CO desorption rate dependence on CO partial pressure over platinum fuel cell catalysts. Fuel Cells 2004;4:309.
    169. Brown GM, Hope GA. In-situ spectroscopic evidence for the adsorption of SO2-4 ions at a copper electrode in sulfuric acid solution. J Electroanal Chem 1995;382:179.
    170. Li X, Heryadi D, Gewirth AA. Electroreduction Activity of Hydrogen Peroxide on Pt and Au Electrodes. Langmuir 2005;21:9251.
    171. Zhang Y, Gao XP, Weaver MJ. Nature of Surface Bonding on Voltammetrically Oxidized Noble-Metals in Aqueous-Media as Probed by Real-Time Surface-Enhanced Raman-Spectroscopy. J Phys Chem 1993;97:8656.
    172. Bernasek SL, Lenz K, Poelsema B, Comsa G. Formation of islands consisting of repelling adsorbates. Surf Sci 1987;183:L319.
    173. Lenz K, Poelsema B, Bernasek SL, Comsa G. Lateral distribution of coadsorbed H and CO on Pt(111) studied by teas. Surf Sci 1987;189-190:431.
    174. Hoge D, Tuhaus M, Bradshaw AM. Island formation during CO/H coadsorption on Pt{111} studred by IR reflection-absorption spectroscopy. Surf Sci 1988;207:L935.
    175. Roeterdink WG, Bonn M, Olsen RA. The CO-H interaction on Pt(111) studied using temperature programmed vibrational sum frequency generation. Chem Phys Lett 2005;412:482.
    176. Barth JV. Transport of adsorbates at metal surfaces: From thermal migration to hot precursors. Surface Science Reports 2000;40:75.
    177. Domke KF, Zhang D, Pettinger B. Toward Raman Fingerprints of Single Dye Molecules at Atomically Smooth Au(111). JAm Chem Soc 2006;128:14721.
    178. Lambert DK. Vibrational Stark effect of adsorbates at electrochemical interfaces. Electrochimica Acta 1996;41:623.
    179. Headgordon M, Tully JC. Electric-Field Effects on Chemisorption and Vibrational-Relaxation of Co on Cu(100). Chem Phys 1993;175:37.
    180. Lozovoi AY, Alavi A. Reconstruction of charged surfaces:General trends and a case study of Pt(110) and Au(110). Phys Rev B 2003;68:245416.
    181. Wasileski SA, Weaver MJ, Koper MTM. Potential-dependent chemisorption of carbon monoxide on platinum electrodes:new insight from quantum-chemical calculations combined with vibrational spectroscopy. J Electroanal Chem 2001;500:344.
    182. Lozovoi AY, Alavi A. Vibrational frequencies of CO on Pt(111) in electric field: A periodic DFT study.J Electroanal Chem 2007;607:140.
    183. Ferre DC, Niemantsverdriet JW. Vibrational Stark tuning rates from periodic DFT calculations: CO/Pt(111). Electrochim Acta 2008;53:2897.
    184. Duong HT, Rigsby MA, Zhou WP, Wieckowski A. Oxygen reduction catalysis of the Pt3Co alloy in alkaline and acidic media studied by x-ray photoelectron Spectroscopy and electrochemical methods. J Phys Chem C 2007;111:13460.
    185. Yang YF, Denuault G. Scanning electrochemical microscopy (SECM): study of the formation and reduction of oxides on platinum electrode surfaces in Na2SO4 solution (pH=7).J Electroanal Chem 1998;443:273.
    186. Chang SC, Weaver MJ. Coverage-Dependent and Potential-Dependent Binding Geometries of Carbon-Monoxide at Ordered Low-Index Platinum Aqueous and Rhodium Aqueous Interfaces Comparisons with Adsorption in Corresponding Metal Vacuum Environments. Surf Sci 1990;238:142.
    187. Wasileski SA, Weaver MJ, Koper MTM. Potential-dependent chemisorption of carbon monoxide on platinum electrodes:new insight from quantum-chemical calculations combined with vibrational spectroscopy. Journal of Electroanalytical Chemistry 2001;500:344.
    188. Cuesta A. Measurement of the surface charge density of CO-saturated Pt(111) electrodes as a function of potential:the potential of zero charge of Pt(111). Surf Sci 2004;572:11.
    189. Wasileski SA, Koper MTM, Weaver MJ. Metal electrode-chemisorbate bonding: General influence of surface bond polarization on field-dependent binding energetics and vibrational frequencies. J Chem Phys 2001; 115:8193.
    190. Wasileski SA, Koper MTM, Weaver MJ. Field-dependent electrode-chemisorbate bonding: Sensitivity of vibrational stark effect and binding energetics to nature of surface coordination.J Am Chem Soc 2002;124:2796.
    191. Deshlahra P, Wolf EE, Schneider WE A Periodic Density Functional Theory Analysis of CO Chemisorption on Pt(111) in the Presence of Uniform Electric Fields. Journal of Physical Chemistry A 2009;113:4125.
    192. Jacobsen J, Hammer B, Jacobsen KW, No/rskov JK. Electronic structure, total energies, and STM images of clean and oxygen-covered Al(111). Phys Rev B 1995;52:14954.
    193. Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 1993;48:13115.
    194. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169.
    195. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996;77:3865.
    196. Blochl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953.
    197. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999;59:1758.
    198. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13:5188.
    199. Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 1989;40:3616.
    200. Garcia-Hernandez M, Curulla D, Clotet A, Illas F. Reliability of the cluster model approach to the Stark tuning rate of adsorbates on metal surfaces: CO and OH-on Pt(lll). J Chem Phys 2000;113:364.
    201. Koper MTM, van Santen RA. Electric field effects on CO and NO adsorption at the Pt(111) surface. J Electroanal Chem 1999;476:64.
    202. Hammer B, Norskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, et al. The CO/Pt(111) Puzzle. The Journal of Physical Chemistry B 2001; 105:4018.
    203. Kita H, Shimazu K, Kunimatsu K. Electrochemical oxidation of CO on Pt in acidic and alkaline solutions:Part I. voltammetric study on the adsorbed species and effects of aging and Sn(IV) pretreatment. Journal of Electroanalytical Chemistry 1988;241:163.
    204. Kunimatsu K, Seki H, Golden WG, Gordon JG, Philpott MR. Carbon monoxide adsorption on a platinum electrode studied by polarization-modulated FT-IR reflection-absorption spectroscopy:Ⅱ. Carbon monoxide adsorbed at a potential in the hydrogen region and its oxidation in acids. Langmuir 1986;2:464.
    205. Chang SC, Weaver MJ. In situ infrared spectroscopy of carbon monoxide adsorbed at ordered platinum(100)-aqueous interfaces: double-layer effects upon the adsorbate binding geometry. The Journal of Physical Chemistry 1990;94:5095.
    206. Akemann W, Friedrich KA, Stimming U. Potential-dependence of CO adlayer structures on Pt(111) electrodes in acid solution:Evidence for a site selective charge transfer. J Chem Phys 2000; 113:6864.
    207. Lopez-Cudero A, Cuesta A, Gutierrez C. Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 2:Pt(100).J Electroanal Chem 2006;586:204.
    208. Markovic NM, Lucas CA, Grgur BN, Ross PN. Surface Electrochemistry of CO and H2/CO Mixtures at Pt(100) Interface: Electrode Kinetics and Interfacial Structures. The Journal of Physical Chemistry B 1999;103:9616.
    209. Markovic NM, Lucas CA, Grgur BN, Ross PN. Surface Electrochemistry of CO and H2/CO Mixtures at Pt(100) Interface:Electrode Kinetics and Interfacial Structures.J Phys Chem B 1999;103:9616.
    210. Batista EA, Iwasita T, Vielstich W. Mechanism of Stationary Bulk CO Oxidation on Pt(111) Electrodes. The Journal of Physical Chemistry B 2004; 108:14216.
    211. Strmcnik DS, Tripkovic DV, van der Vliet D, Chang KC, Komanicky V, You H, et al. Unique Activity of Platinum Adislands in the CO Electrooxidation Reaction. J Am Chem Soc 2008;130:15332.
    212. Sato T, Kunimatsu K, Uchida H, Watanabe M. Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods-Part 1. ATR-FTIRAS spectra of CO adsorbed on highly dispersed Pt catalyst on carbon black and carbon un-supported Pt black. Electrochim Acta 2007;53:1265.
    213. Kunimatsu K, Sato T, Uchida H, Watanabe M. Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods:Oxidation of CO adsorbed on carbon-supported pt catalyst and unsupported Pt black. Langmuir 2008;24:3590.
    214. Kunimatsu K, Sato T, Uchida H, Watanabe M. Role of terrace/step edge sites in CO adsorption/oxidation on a polycrystalline Pt electrode studied by in situ ATR-FTIR method. Electrochim Acta 2008;53:6104.
    215. Zhang P, Chen YX, Cai J, Liang SZ, Li JF, Wang A, et al. An Electrochemical in Situ Surface-Enhanced Raman Spectroscopic Study of Carbon Monoxide Chemisorption at a Gold Core-Platinum Shell Nanoparticle Electrode with a Flow Cell. JPhys Chem C 2009;113:17518.
    216. Persson BNJ, Ryberg R. Vibrational line shapes of low-frequency adsorbate modes:CO on Pt(111). Physical Review B 1989;40:10273.
    217. Zhang P, Cai J, Chen Y-X, Tang Z-Q, Chen D, Yang J, et al. Potential-Dependent Chemisorption of Carbon Monoxide at a Gold Core-Platinum Shell Nanoparticle Electrode: A Combined Study by Electrochemical in Situ Surface-Enhanced Raman Spectroscopy and Density Functional Theory. J Phys Chem C 2010;114:403.
    218. Ren XM, Zelenay P, Thomas S, Davey J, Gottesfeld S. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J Power Sources 2000;86:111.
    219. Antolini E. Catalysts for direct ethanol fuel cells. J Power Sources 2007;170:1.
    220. Yu EH, Scott K, Reeve RW. A study of the anodic oxidation of methanol on Pt in alkaline solutions. J Electroanal Chem 2003;547:17.
    221. Xu CW, Cheng LQ, Shen PK, Liu YL. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 2007;9:997.
    222. Tripkovic AV, Popovic KD, Lovic JD, Jovanovic VM, Kowal A. Methanol oxidation at platinum electrodes in alkaline solution: comparison between supported catalysts and model systems.J Electroanal Chem 2004;572:119.
    223. Zhang Y, Weaver MJ. Application of Surface-Enhanced Raman-Spectroscopy to Organic Electrocatalytic Systems-Decomposition and Electrooxidation of Methanol and Formic-Acid on Gold and Platinum-Film Electrodes. Langmuir 1993;9:1397.
    224. Mrozek MF, Weaver MJ. Periodic trends in monoatomic chemisorbate bonding on platinum-group and other noble-metal electrodes as probed by surface-enhanced raman spectroscopy. J Am Chem Soc 2000; 122:150.
    225.黎子辉,沈培康.燃料电池用钯基电催化剂的研究进展.电池2009;39:167.
    226. Chen XM, Lin ZJ, Jia TT, Cai ZM, Huang XL, Jiang YQ, et al. A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation. Anal Chim Acta 2009;650:54.
    227. Feng C, Guo L, Shen Z, Gong J, Li X-Y, Liu C, et al. Synthesis of short palladium nanoparticle chains and their application in catalysis. Solid State Sci 2008;10:i327.
    228. Bradshaw AM, Hoffmann FM. The chemisorption of carbon monoxide on palladium single crystal surfaces: IR spectroscopic evidence for localised site adsorption. Surf Sci 1978;72:513.
    229. Kunimatsu K. Adsorption of carbon monoxide on a smooth palladium electrode: an in-situ infrared spectroscopic study. J Phys Chem 1984;88:2195.
    230. Caram JA, Gutierrez C. Cyclic voltammetric and potential-modulated reflectance study of the electroadsorption of CO, methanol and ethanol on a palladium electrode in acid and alkaline media. J Electroanal Chem 1993;344:313.
    231. Czerwinski A. The adsorption of carbon oxides on a palladium electrode from acidic solution.J Electroanal Chem 1994;379:487.
    232. Zou SZ, Gomez R, Weaver MJ. Coverage-dependent infrared spectroscopy of carbon monoxide on palladium(100) in aqueous solution: Adlayer phase transitions and electrooxidation pathways. Langmuir 1998;15:2931.
    233. Weaver MJ. Binding sites and vibrational frequencies for dilute carbon monoxide and nitric oxide adlayers in electrochemical versus ultrahigh-vacuum environments: the roles of double-layer solvation. Surf Sci 1999;437:215.
    234. Weaver MJ, Zou SZ, Tang C. A concerted assessment of potential-dependent vibrational frequencies for nitric oxide and carbon monoxide adlayers on low-index platinum-group surfaces in electrochemical compared with ultrahigh vacuum environments: Structural and electrostatic implications. J Chem Phys 1999;111:368.
    235. Zou SZ, Gomez R, Weaver MJ. Infrared spectroscopy of carbon monoxide and nitric oxide on palladium(111) in aqueous solution: unexpected adlayer structural differences between electrochemical and ultrahigh-vacuum interfaces. J Electroanal Chem 1999;474:155.
    236. Lu G-Q, Sun S-G, Cai L-R, Chen S-P, Tian Z-W, Shiu K-K. In Situ FTIR Spectroscopic Studies of Adsorption of CO, SCN-, and Poly(o-phenylenediamine) on Electrodes of Nanometer Thin Films of Pt, Pd, and Rh: Abnormal Infrared Effects (AIREs). Langmuir 2000; 16:778.
    237. Pronkin S, Wandlowski T. ATR-SEIRAS--an approach to probe the reactivity of Pd-modified quasi-single crystal gold film electrodes. Surf Sci 2004;573:109.
    238. Tarasevich MR, Bogdanovskaya VA, Grafov BM, Zagudaeva NM, Rybalka KV, Kapustin AV, et al. Electrocatalytic properties of binary systems based on platinum and palladium in the reaction of oxidation of hydrogen poisoned by carbon monoxide. Russian Journal of Electrochemistry 2005;41:746.
    239. Leung LWH, Weaver MJ. Extending surface-enhanced raman spectroscopy to transition-metal surfaces:carbon monoxide adsorption and electrooxidation on platinum-and palladium-coated gold electrodes. J Am Chem Soc 1987;109:5113.
    240. Zou SZ, Weaver MJ. Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes: Chemical bonding versus electrostatic field effects. J Phys Chem 1996;100:4237.
    241. Hoffmann FM. Infrared reflection-absorption spectroscopy of adsorbed molecules. Surf Sci Rep 1983;3:107.
    242. Liu Z, Yang ZL, Cui L, Ren B, Tian ZQ. Electrochemically roughened palladium electrodes for surface-enhanced Raman spectroscopy: Methodology, mechanism, and application. J Phys Chem C 2007:111:1770.
    243. Anderson AB, Awad MK. Factors determining carbon monoxide adsorption sites on palladium and platinum(100) and (111) surfaces:theoretical study. JAm Chem Soc 1985;107:7854.
    244. Jiang YX, Li JF, Wu DY, Yang ZL, Ren B, Hu JW, et al. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy. Chem Commun 2007:4608.
    245. Spendelow JS, Babu PK, Wieckowski A. Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium. Current Opinion in Solid State & Materials Science 2005;9:37.
    246. Kuk ST, Wieckowski A. Methanol electrooxidation on platinum spontaneously deposited on unsupported and carbon-supported ruthenium nanoparticles. J Power Sources 2005;141:1.
    247. Park S, Wieckowski A, Weaver MJ. Electrochemical infrared characterization of CO domains on ruthenium-decorated platinum nanoparticles. J Am Chem Soc 2003; 125:2282.
    248. Park S, Babu PK, Wieckowski A, Weaver MJ. Electrochemical infrared characterization of CO domains on ruthenium decorated platinum nanoparticles.225th National Meeting of the American-Chemical-Society. New Orleans, La,2003:80.
    249. Babu PK, Kim HS, Oldfield E, Wieckowski A. Electronic alterations caused by ruthenium in Pt-Ru alloy nanoparticles as revealed by electrochemical NMR. J Phys Chem B 2003;107:7595.
    250. Waszczuk P, Lu GQ, Wieckowski A, Lu C, Rice C, Masel RI. UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochim Acta 2002;47:3637.
    251. Watanabe M, Motoo S. Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 1975;60:267.
    252. Frelink T, Visscher W, van Veen JAR. On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 1995;335:353.
    253. Lin WF, Iwasita T, Vielstich W. Catalysis of CO Electrooxidation at Pt, Ru, and PtRu Alloy. An in Situ FTIR Study. J Phys Chem B 1999;103:3250.
    254. Yang HZ, Yang YQ, Zou SZ. Surface-enhanced Raman spectroscopic evidence of methanol oxidation on ruthenium electrodes. J Phys Chem B 2006; 110:17296.
    255. Jin JM, Lin WF, Christensen PA. The effects of the specific adsorption of anion on the reactivity of the Ru(0001) surface towards CO adsorption and oxidation:in situ FTIRS studies. Phys Chem Chem Phys 2008;10:3774.
    256. Mo YB, Cai WB, Dong JA, Carey PR, Scherson DA. In situ surface enhanced raman scattering of ruthenium dioxide films in acid electrolytes. Electrochemical and Solid State Letters 2001;4:E37.
    257. Lin XF, Ren B, Tian ZQ. Electrochemical and surface-enhanced Raman spectroscopic studies on the adsorption and electrooxidation of C-1 molecules on a roughened Rh electrode. J Phys Chem B 2004;108:981.
    258. Chang SC, Weaver MJ. The Characterization of Carbon-Monoxide Electrosorbed on Ordered Rhodium(100) by Insitu Infrared-Spectroscopy.J Electroanal Chem 1990;285:263.
    259. Gomez R, Orts J, Feliu JM, Clavilier J, Klein LH. The role of surface crystalline heterogeneities in the electrooxidation of carbon monoxide adsorbed on Rh(111) electrodes in sulphuric acid solutions. J Electroanal Chem 1997;432:1.
    260. Housmans THM, Feliu JM, Koper MTM. CO oxidation on stepped Rh[n (111)x111)] single crystal electrodes: a voltammetric study. J Electroanal Chem 2004;572:79.
    261. Housmans THM, Koper MTM. CO oxidation on stepped Rh[n(111) x (111)] single crystal electrodes:a chronoamperometric study. J Electroanal Chem 2005,575:39.
    262:Luo H, Weaver MJ. A versatile surface Raman spectroelectrochemical flow cell: applications to chemisorbate kinetics. J Electroanal Chem 2001;501:141.
    263. Yong; X, Li X-q, Ren B, Tian Z-q. Adsorption Behavior of CO at the Ultrathin Rh and Pt Film Electrode. Electrochemistry 2001;7:66-70.
    264. Zhang CJ, Hu P, Lee MH. A density functional theory study on the interaction between chemisorbed CO and S on Rh(111). Surf Sci 1999;432:305.
    265. Birgersson M, Almbladh CO, Borg M, Andersen JN. Density-functional theory applied to Rh(111) and CO/Rh(111) systems:Geometries, energies, and chemical shifts. Phys Rev B 2003;67.
    266. Chan HYH, Zou SZ, Weaver MJ. Mechanistic differences between electrochemical and gas-phase thermal oxidation of platinum-group transition metals as discerned by surface-enhanced raman spectroscopy. J Phys Chem B 1999;103:11141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700