用户名: 密码: 验证码:
腐殖活性污泥A~2/O系统脱氮除磷效果与反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然水体过量受纳氮、磷是造成“水体富营养化”的主要原因,从污水处理的可持续性、经济性等方面出发,生物法脱氮除磷都是最佳的选择。随着我国污水排放标准的日趋严格,很多已建污水处理厂已不能满足最新颁布的排放标准中对氮、磷的排放要求,而且大多数污水处理厂在实际运行中都存在碳源不足、生物脱氮除磷效果不稳定以及污泥产量高的问题。因此,研究和开发一种能够解决上述问题的生物脱氮除磷技术就显得尤为迫切。腐殖活性污泥技术作为近年来新开发的一种污水生物处理技术,能够提高活性污泥工艺生物脱氮除磷效率并降低污泥产量,有效地解决污水处理厂运行过程中存在的上述问题。
     本文构建了一种将腐殖活性污泥技术与A2/O工艺偶联的腐殖活性污泥A2/O(HS-A2/O)系统,并以其为研究对象,系统地研究了腐殖活性污泥对A2/O工艺脱氮除磷的促进作用和机理,通过对HS-A2/O系统的动力学分析,探讨了HS-A2/O系统的运行机制,考察了腐殖活性污泥培养池运行参数对A2/O工艺除污效能的影响,优化了腐殖活性污泥培养池运行参数。
     HS-A2/O系统处理生活污水的试验结果表明,腐殖活性污泥可有效强化A2/O工艺对TN的去除,TN去除率可提高10%,但是对COD和TP去除效果没有明显提高;与普通A2/O系统相比,HS-A2/O系统污泥产量减少了30%,剩余污泥中有机质含量降低了18.5%,腐殖酸含量提高了20.4%,产生的剩余污泥更加稳定。HS-A2/O系统处理低C/N比生活污水的试验结果表明,与普通A2/O工艺相比,TN和TP去除率提高了10%左右;污泥龄(SRT)延长至24d时,HS-A2/O系统依然表现出了很好的污染物去除效果,COD去除率保持在95.3%左右,TN和TP平均去除率可达到87.0%和90.5%。
     HS-A2/O系统中的腐殖活性污泥培养池运行参数对污染物去除效果有重要影响,试验结果表明:活性污泥对腐殖酸的吸附平衡符合弗兰德利希平衡公式,吸附过程符合二级吸附动力学方程,吸附动力学常数k2与微生物量之间存在很好的线性关系;溶解氧对活性污泥吸附腐殖酸的影响很小;延长HSR-HRT、增大HSR-R、升高温度及降低HSR-DO可提高培养池腐殖酸还原能力;腐殖活性污泥培养池的最佳运行控制参数HSR-R、HSR-DO、HSR-HRT及温度分别为10%、0mg/L、24h和20℃;在最佳运行控制参数条件下,HS-A2/O系统的COD、TN、TP去除率分别稳定在91%、83%、93%左右。
     腐殖活性污泥促进生物脱氮除磷的试验结果表明:腐殖活性污泥能够显著提升生物反硝化速率,迅速降低反硝化过程中的ORP,并提升反应结束时的pH值;通过增加厌氧水解VFAs生成量,提高聚磷菌内碳源合成量,可实现腐殖活性污泥对生物除磷的促进作用。HS-A2/O动力学分析表明,腐殖活性污泥提高了除缺氧池的1反硝化脱氮速率常数外,整个A2/O系统的脱氮除磷反应动力学常数。
Excess nitrogen and phosphorus discharged into natural water bodies isconsidered to be the most important reason for "eutrophication". From sustainabilityand cost-effective aspect of wastewater treatment, BNR technology is the bestoption. With increasingly stringent effluent standards of national urban sewage,many sewage treatment plants cannot meet the latest emissions requirements fornitrogen and phosphorus. The main problems that most of the sewage treatmentplants are facing in the actual operation are insufficient carbon, biological nitrogenand phosphorus removal efficiency instability and high sludge production.Therefore, research and development a BNR technology to solve these problems hasbecome particularly urgent. Humic activated sludge technique is a new biologicalwastewater treatment technology could improving activated sludge process nutrientand phosphorus removal efficiency and reduce sludge production, had substantialadvantages to solve the problems mentioned aboved.
     In this study, by coupling of humic activated sludge technique and A2/Oprocess developing a humic activated sludge A2/O system(HS-A2/O). This papersystematically studied the mechanism of humic activated sludge strengthening A2/Oprocess nitrogen and phosphorus removing efficiency. By dynamics analysis ofHS-A2/O system, explored the operating mechanism of HS-A2/O system.Investigated the effects of humic activated sludge reactor operating parameters onpollutant removal efficiency of A2/O process and optimized.
     Test results of HS-A2/O system treating domestic wastewater showed thathumic activated sludge can effectively enhance A2/O process10%TN removalefficiency, but COD and TP removal efficiency slightly improved. Compared sludgeproduction of HS-A2/O system and A2/O process, HS-A2/O system is lower about30%, residual sludge organic matter content of HS-A2/O system is18.5%lowerthan A2/O process, humic acid content is20.4%higher, resulting in a more stable.sludge. Compared biological phosphorus and nitrogen removal efficiency in lowC/N ratio domestic sewage treatment, HS-A2/O system TN and TP are higher about10%than A2/O process. When sludge retention time (SRT) extended to24d, HS-A2/O system showed a good performance on contaminant removal, COD, TNand TP removal efficiency maintained at about95.3%,87.0%and90.5%.
     Operation parameters of humic activated sludge reactor(HSR) have asignificant effect on contaminants removal efficiency of HS-A2/O system, testresults showed that: Absorption of humic acid by activated sludge conformed toFreundlich isotherm adsorption equation, adsorption process compliespseudo-second-order kinetic equation, adsorption kinetic constants has a goodlinear relationship with microbial biomass. Dissolved oxygen has little influence onactivated sludge adsorption of humic acid. Prolonged HSR-HRT, increasing HSR-R,elevated temperatures and reduced HSR-DO could improve HSR reducing humicacid capacity. HSR optimum HSR-R, HSR-DO, HSR-HRT and temperature are10%,0mg/L,24h and20℃. HS-A2/O system COD, TN, TP removal efficiency werestable at91%,83%,93%under optimum operational parameters.
     Test results of humic activated sludge promote biological nutrient removalshowed that:Humic activated sludge significantly enhance biological denitrificationrate, rapidly reduced ORP and improved pH value in the denitrification process. Byenhancing anaerobic hydrolysis generation amount of VFAs to promote PAOsinternal carbon source synthesis to realize humic activated sludge promotingbiological phosphorus removal.Kinetic analysis of HS-A2/O system showed thathumic activated sludge increased besides anoxic tank1denitrification constantsentire A2/O process kinetic constants
引文
[1]赵风亮.高效净化富营养化水体能源植物的筛选及其生理生态基础[D].杭州:浙江大学博士学位论文,2012:32-34.
    [2]张季平.20世90年代以来的生态社会主义研究[D].呼和浩特:内蒙古大学博士学位论文,2012:41-48.
    [3]种云霄,胡洪营.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备.2003,4(2):36-40.
    [4]王谦,咸水平.大型水生植物修复重金属污染水体研究进展[J].环境污科学与技术.2010,33(5):96-99.
    [5]环保部.《2012年中国环境公报》.
    [6]张杰平.跨流域调水补偿制度创新研究[D].武汉:武汉大学博士学位论文,2012:17-21.
    [7]陈宏观.沿海地区生态环境评价及生态建设研究[D].南京:南京林业大学博士学位论文,2012:25-28.
    [8]李欣.环境政策研究[D].北京:财政部财政科学研究所博士学位论文,2012:31-35.
    [9]陈龙珠,王军.面向流域治理的农村环境政策与综合治理对策综述[J].北方经济.2010,21:32-36.
    [10]李永刚.密云水库浮游生物底栖动物群落结构及生物多样性研究[D].北京:中国农业科学院硕士学位论文,2013:18-22.
    [11]李伟峰,毛劲乔.基于地理分区及神经网络的湖泊水库富营养化研究[J].环境科学.2011,11:3200-3206.
    [12]梁箐,彭晓春,贺涛.湖库型饮用水水源地污染防治对策研究[J].广东农业科学.2009,07:87-90.
    [13]刘路.基于水质模型的区域污染控制研究[D].上海:东华大学博士学位论文,2012:24-26.
    [14]王小雷.集中式饮用水源地污染防治与对策研究[J].黑龙江环境通报.2012,04:18-21.
    [15]揣小明.我国湖泊富营养化和营养物磷基准与控制标准研究[D].南京:南京大学博士学位论文,2011:13-16.
    [16]李子成,邓义祥,郑丙辉.中国湖库营养状态现状调查分析[J].环境科学与技术.2012, S1:209-213.
    [17]陆洪省,曹晓强,昭日格图,等.水体富营养化控制的研究进展[J].环境研究与监测.2012,01:71-73.
    [18]朱丽楠,管涤,王永军,等.典型湖库富营养化的模糊综合评价研究[J].长江流域资源与环境.2012,09:1131-1137.
    [19]环保部.《全国重点流域水污染防治规划(2011-2015)》.
    [20]宋宁慧,卜元卿,单正军.农药对地表水污染状况的研究[J].生态与农村环境学报.2010,160(S1):135-143.
    [21]宋洪远.同步推进工业化、城镇化和农业现代化面临的挑战与选择[J].经济研究参考.2012,28:19-28.
    [22]李魏武,陶涛,邹鹰.太湖流域水资源可持续利用评价研究[J].环境科学与管理.2013,04:55-60.
    [23]吴国华.我国节能减排的理性思考—基于“十一五”节能减排目标完成情况的分析[J].山东财政学院.2009,02:7-12.
    [24]马妍,白艳英,于秀玲,等.完善清洁生产法规体系促进“十二五”节能减排[J].环境保护.2010,12:29-31.
    [25]王雪峰.中水回用市场化推广工作的分析与研究[J].中国西部科技.2013,09:78-80.
    [26]环保部.《全国城镇污水处理设施等重点减排工程公告》,2012.
    [27]仇保兴.我国城镇污水处理发展的状况和面临的挑战[J].给水排水.2010,2:1-8.
    [28]“十一五”规划目标提前完成城镇污水处理能力翻番[J].给水排水.2010,6:45-46.
    [29]杨勇,王玉玥,王琪,等.我国城镇污水处理厂建设及运行现状分析[J].给水排水.2011,08:35-38.
    [30]许世伟,张荣兵,顾剑,等.城镇污水处理厂升级改造工程对水质的改善作用探讨[J].给水排水.2010,07:42-45.
    [31]张辰,谭学军.城镇污水处理厂升级改造的有关问题[J].中国给水排水.2008,24:23-27.
    [32]沈晓铃,李大成,孔建明,等. A2/O工艺在污水处理厂一级A题标改造中的应用[J].中国给水排水.2011,08:44-46.
    [33]朱云鹏,彭永臻,王继苗,等.改良A2/O分段进水工艺污水处理厂改造[J].中国给水排水.2012,07:22-26.
    [34]静贺,邱勇,沈童刚,等.城市污水处理厂进水动态特性及其影响研究[J].给水排水.2010,08:35-38.
    [35]许世伟,张荣兵,顾剑,等.大型城市污水处理厂活性污泥法污泥膨胀防控对策[J].给水排水.2010,11:43-45.
    [36]陈中颖,刘爱萍,刘永,等.中国城镇污水处理厂运行状况调查分析[J].环境污染与防治.2009,09:99-102.
    [37]张万里,蒋岚岚,陈秋萍,等.无锡市城镇污水处理厂题标改造措施及效果[J].中国给水排水.2010,02:23-27.
    [38]郑兴灿,尚巍,孙永利,等.城镇污水处理厂一级A稳定达标的工艺流程分析与建议[J].给水排水.2009,05:24-28.
    [39]金波,李宝新.城市污水处理厂污泥的综合利用探讨[J].环境科学与管理.2010,05:106-109.
    [40]余杰,田宁宁,王凯军.城市污水厂污泥处理与处置技术的新思路[J].中国给水排水.2008,06:11-14.
    [41]刘智晓,崔福义,秦姝兰,等.腐殖活性污泥技术的除污效能及除臭效果[J].中国给水排水.2007,23(14):18-22.
    [42]尹军,赵可.腐殖活性污泥工艺在日本和韩国的应用[J].中国给水排水.2007,23(4):101-104.
    [43]尹军,赵可,宋伟华.韩国龙仁粪便及畜产废水处理系统的设计和运行[J].给水排水.2007,33(9):44-46.
    [44] Kononova M M, Alexandrova I V. Formation of humic acids during plant residuehumification and their nature[J]. Geoderma.1973,9(3):157-164.
    [45] D Gondar, R Lopez. Characterization and acid base properties of fulvic and humicacids isolated from two horizons of an ombrotrophic peat bog[J]. Geoderma.2005,126(3-4):367-374.
    [46] Mengchang He, Yehong Shi. Characterization of humic acids extracted from thesediments of the various rivers and lakes in China[J]. Journal of EnvironmentalSciences.2008,20(11):1294-1299.
    [47] Patrakov, F Yu, Schastlivtsev, et al. Characterization of brown coal humic andfulvic acids by IR spectroscopy[J]. Solid Fuel Chemistry.2010,44(5):293-298.
    [48]宋海燕,尹友谊,宋建中.不同来源腐殖酸的化学组成与结构研究[J].华南师范大学学报(自然科学版).2009,123(1):61-66.
    [49] Nasir Saqib, Sarfaraz, Tahira B, et al. Structural elucidation of humic acidsextracted from Pakistani lignite using spectroscopic and thermal degradativetechniques[J]. Fuel Processing Technology.2009,5(92):983-951.
    [50] Kholodov V A, Konstantinov A I. The carbon distribution among the functionalgroups of humic acids isolated by sequential alkaline extraction from gray forestsoil[J]. Eurasian Soil Science.2009,11(42):1229-1233.
    [51] Chukov S N, Golubkov M S, Derek F, et al. Intrahorizon differentiation of thestructural functional parameters of the humic acids from a typical chernozem[J].Eurasian Soil Science.2010,11(43):1255-1262.
    [52] Amir S, Hafidi M. Structural characterization of humic acids, extracted fromsewage sludge during composting, by thermochemolysis gas chromategraphymass spectrometry[J]. Process Biochemistry.2006,2(41):410-422.
    [53]李丽,冉勇,盛国英,等.超滤分级研究腐殖酸的结构组成[J].腐殖酸.2004,04:387-394.
    [54] H R Schulten. The three-dimensional structure of humic substances and soilorganic matter studied by computational analytical chemistry[J]. Fresenius’Journal of Analytical Chemistry.1995,35(1):62-73.
    [55] Bruccoleri A G, Sorenson B T, Langford C H T. Molecular modeling of humicsubstances[J]. Humic substances.2005,39(23):1149-1153.
    [56] E.A. Ghabbour, G. Davies. Molecular Details and Applications in Land and WaterConservation[J]. Humic Substances.2005,5:1429-1433.
    [57]李会杰.腐殖酸和富里酸的提取与表征研究[D].武汉:华东科技大学硕士学位论文,2012:24-27.
    [58] Busato JG, Zandonadi DB, Chukov S N, et al. Humic substances isolated fromresidues of sugar cane industry as root growth promoter[J]. Scientia Agricola.2010,67:206-212.
    [59] Weng L, Van Riemsdijk WH, Sarfaraz, et al. Effects of fulvic and humic acids onarsenate adsorption to Goethite: rxperiments and modelling[J]. Environ. Sci.Technol.2009,19(43):7198-7204.
    [60]张晋京,窦森.土壤胡敏素研究进展[J].生态学报.2008,28(9):1299-1239.
    [61]李凯,窦森.不同类型土壤胡敏素组成的研究[J].水土保持学报.2008,03:116-119.
    [62]张晋京,王帅,窦森,等.土壤胡敏素对铜离子的吸附作用及其影响因素[J].环境科学学报.2008,12:2527-2533.
    [63]许志诚,罗微,洪义国,等.腐殖质在环境污染物生物降解中的作用研究进展[J].微生物学通报.2006,6:122-127.
    [64]曹静,李永慧,李玉成,等.腐殖质还原菌的筛选及其对污染物的生物降解[J].应用与环境生物学报.2013,19(3):506-510.
    [65] Dries J, Bastiaens L. Effect of humic acids on heavy metal removal by zero-valentiron in batch and continuous flow column systems[J]. Water Res.2005,39(15):31-40.
    [66] Sumayya Saied, Azhar Siddique. Study of the heavy metal pollution treatmentpotential of the coal generated humic acid[J]. Lifescience Global,2005,1:69-74.
    [67] Shubin Yang, Jun Hu, Huang Shuai, et al. Mutual Effects of Pb(II) and HumicAcid Adsorption on Multiwalled Carbon Nanotubes/Polyacrylamide Compositesfrom Aqueous Solutions[J]. Environ. Sci. Technol.,2011,45(8):3621–3627
    [68] N. Calace, D. Deriu. Adsorption Isotherms and Breakthrough Curves to StudyHow Humic Acids Influence Heavy Metal Soil Interactions[J]. Water, Air, andSoil Pollution.2009,204(1-4):373-383.
    [69]吴鹏,赵怡,洪义国,等.南海北部海域底泥微生物的腐殖质还原性能研究[J].生态环境学报.2011,01:132-136.
    [70] Adachi M, Yamamoto R, Shimomura T, Miya A. Microbial fuel cells with amediator polymer modified anode[J]. Electrochemistry.2010,78(10):814-816.
    [71] Bird LJ, Bonnefoy V, Newman DK. Bioenergetic challenges of microbial ironmetabolisms[J]. Trends Microbiol.2011,19(7):330-340.
    [72] Fredrickson JK, Kostandarithes HM, Alvarez, et al. Reduction of Fe(III), Cr(VI),U(VI), and Tc(VII) by Deinococcus radiodurans R1[J]. Appl Environ Microbiol.2000,66(5):2006-2011.
    [73] Gavrilov SN, Lloyd JR. Slobodkin AI Fe(III) oxide reduction by a gram positivethermophile: physiological mechanisms for dissimilatory reduction of poorlycrystalline Fe(III) oxide by a thermophilic gram-positive bacterium Carboxydothermus ferrireducens[J]. Geomicrobiol.2012,29(9):804-819.
    [74]栾富波,谢丽,李俊,等.腐殖酸的氧化还原行为及其研究进展[J].化学通报.2008,11:833-837.
    [75] Virginia Hernández-Montoyaa, Luis H. Alvarezb, et al. Reduction of quinone andnon-quinone redox functional groups in different humic acid samples byGeobacter sulfurreducens[J]. Geoderma.2012,183-184:25-31.
    [76] Claudia M. Martínez, Luis H. Alvarez. Simultaneous biodegradation of phenoland carbon tetrachloride mediated by humic acids[J]. Biodegradation.2012,23(5):635-644.
    [77] Jian Suna, Wanjun Li, Cui Wang, et al. Redox mediator enhanced simultaneousdecolor-ization of azo dye and bioelectricity generation in air-cathode microbialfuel cell[J]. Bioresource Technology.2013,142:407-414.
    [78] Deepak Pant, Gilbert Van Bogaert. A review of the substrates used in microbialfuel cells (MFCs) for sustainable energy production[J]. Bioresource Technology.2010,101(6):1533-1543.
    [79] Lovley D R, Coates J D. Humic substances as electron acceptors for microbialrespiration[J]. Nature.1996,382:445-448.
    [80] Coates J D, Ellis D J, Roden E, et al. Recovery of humics reducing bacteria from adiversity of sedimentary environments[J]. Appl Environ Microbiol.1999,64:1540-1509.
    [81] Cervantes F J, Bok Frank. Reduction of humic substances by halorespiring,sulphate reducing and methanogenic microorganisms[J]. EnvironmentalMicrobiology.2002,4:51-57.
    [82]武春媛,李芳柏,周顺桂.腐殖质呼吸作用及其生态学意义[J].生态学报.2009,29(3):1535-1542.
    [83] Eric E.Roden. Extracellular electron transfer through microbial reduction ofsolid-phase humic substances[J]. Nature Geo science.2010,3:417-421.
    [84] Durelle T. Scott, Diane M. McKnight. Quinone Moieties Act as ElectronAcceptors in the Reduction of Humic Substances by Humics ReducingMicroorganisms[J]. Environ. Sci. Technol.1998,32(19):2984-2989.
    [85] Loice M.Ojwang. Environmental Conditions That Influence the Ability of HumicAcids to Induce Permeability in Model Biomembranes[J]. Environ. Sci. Technol.2013,47(15):8280-8287.
    [86] Michael Aeschbacher, Michael Sander. Electrochemical Analysis of Proton andElectron Transfer Equilibria of the Reducible Moieties in Humic Acids[J].Environ. Sci. Technol.2010,45(19):8385-8389.
    [87] Michael Aeschbacher, Michael Sander. Novel Electrochemical Approach toAssess the Redox Rroperties of Humic Substances[J]. Environ. Sci. Technol.2010,44(1):87-93.
    [88] Michael Aeschbacher, Daniele Vergari. Electrochemical analysis of proton andelectron transfer equilibria of the reducible moieties in humic acids[J].Environmental Science&Technology.2013,45(19):83-85.
    [89] Kawahigashi M, Fujitake N. The shape of humic-acid in solution as observed bysmall-angle x-ray-scattering[J]. Soil Science and Plant Nutrition.1995,41(2):363-366.
    [90] Keller.J.K, P.B.Weisenhorn. Humic acids as electron acceptors in wetlanddecomposition[J]. Soil Biology&Biochemistry.2009,(41):1518-1522.
    [91] Z Struyk, G Sposito. Redox properties of standard humic acids[J]. Geoderma.2001,(3-4):329-346.
    [92] Frank P. Van der Zee, Francisco J. Cervantes, et al. Impact and application ofelectron shuttles on the redox (bio)transformation of contaminants: A review[J].Biotechnology Advances.2009,27(3):256-277.
    [93] Wu G Y, Li F B. Humic respiration and its ecological significance[J]. ActaEcologica Sinica.2009,29(3):1535-1542.
    [94] Kazuya Watanabe, Mike Manefield. Electron shuttles in biotechnology[J]. CurrentOpinion in Biotechnology,2009,20(6):633-641.
    [95] Ehrlich H L. Are gram positive bacteria capable of electron transfer across theircell wall without an externally available electron shuttle[J]. Geobiology.2008,6(3):220-224.
    [96] Kim H.Tan,张彩凤,闫降凤,等.腐殖质的性质和分布[J].腐殖酸.2010,02:28-35.
    [97] De la Rosa, J M,Santos. Metal binding by humic acids in recent sediments fromthe SW Iberian coastal area[J]. Coastal and Shelf Science.2010,4(96):478-485
    [98] Hee Parka, Dane Lamba. Role of organic amendments on enhanced bio-remediation of heavy metal(loid) contaminated soils[J]. Journal of HazardousMaterials.2011,185(2-3):549-574.
    [99] Ting Wanga, Wen Liua, Zhang Xiaoyu, et al. Influence of pH, ionic strength andhumic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanatenanotubes[J]. Chemical Engineering Journal.2013,11(15):366-374.
    [100] Uripto Trisno Santoso, Sri Juari Santosa. Characterization of sorbent producedthrough immobilization of humic acid on chitosan using glutaraldehyde as cross-linking agent and Pb(II) ion as active site protector[J]. Indonesian Journal ofChemistry.2010,10(3):245-249.
    [101] Kim H.Tan,张彩凤.关于腐殖酸的议题[J].腐殖酸.2009,05:32-37.
    [102] Carlson HK, Iavarone AT. Surface multiheme c-type cytochromes fromThermincola potens and implications for respiratory metal reduction by Gram-positive bacteria[J]. Proc Natl Acad Sci U S A.2012,109(5):1702-1707.
    [103] Chen BY, Hsueh CC. Unveiling characteristics of dye-bearing microbial fuel cellsfor energy and materials recycling: redox mediators[J]. Int J Hydrog Energy.2013,03:13-20.
    [104] Hatch JL, Finneran KT. Influence of reduced electron shuttling compounds onbiological H2production in the fermentative pure culture Clostridiumbeijerinckii[J]. Curr Microbiol.2008,56(3):268-273.
    [105] Huang D Y, Zhuang L. Comparison of dissolved organic matter from sewagesludge and sludge compost as electron shuttles for enhancing Fe(III)bioreduction[J]. Soil Sediments.2010,10(4):722-729.
    [106]马明广,周敏,蒋煜峰,等.不溶性腐殖酸对重金属离子的吸附研究[J].安全与环境学报.2006,03:68-71.
    [107]李静萍,郑李纯,陈锋,等.提取腐殖酸后的残渣对Cu2+的吸附性能研究[J].化学通报.2010,08:719-723.
    [108]李静萍,陈峰,王晓强,等.天祝褐煤腐殖酸对Cr6+吸附性能研究[J].离子交换与吸附.2011,05:460-467.
    [109] Lu H, Zhou J, Feng K, et al. Enhanced biodecolorization of azo dyes byanthraquinone-2-sulfonate immobilized covalently in polyurethane foam[J].Bioresour Technol.2010,101(18):7196-7199.
    [110] Watanabe K, Manefield M. Electron shuttles in biotechnology[J]. Curr OpinBiotechnol.2009,20(6):633-641.
    [111] Yuan SZ. Enhanced bio-decolorization of azo dyes by quinone functionalizedceramsites under saline conditions[J]. Process Biochem.2013,47(2):312-318.
    [112] Su Y, Zhang Y, Xu JH, et al. Enhanced bio-decolorization of azo dyes byco-immobilized quinone-reducing consortium and anthraquinone[J]. BioresourTechnol.2009,100(12):2982-2987.
    [113]李颖.水体中重金属、腐殖酸和粘土颗粒物之间的相互作用研究[D].济南:山东大学硕士学位论文,2010:19-23.
    [114] Guangfei Liu, Jiti Zhou, Da Zhang, et al. Accelerated removal of Sudan dye byShewanella oneidensis MR-1in the presence of quinones and humic acids[J].World Journal of Microbiology and Biotechnology.2013,29(90):1723-1730.
    [115] Cervantes FJ, Martínez CM. Kinetics during the redox biotransformation ofpollutants mediated by immobilized and soluble humic acids[J]. Appl MicrobiolBiotechnol.2012,35(11):723-728.
    [116] Chen H, Xu H, Heinze TM. Decolorization of water and oil-soluble azo dyes byLactobacillus acidophilus and Lactobacillus fermentum[J]. Ind MicrobiolBiotechnol.2009,36:1459-1466.
    [117] Li T, Guthrie JT. Colour removal from aqueous solutions of metal-complex azodyes using bacterial cells of Shewanella strain J18143[J]. Bioresour Technol.2010,101:4291-4295.
    [118] Van der Zee FP, Cervantes F J. Impact and application of electron shuttles on theredox biotransformation of contaminants: a review[J]. Biotechnol Adv.2009,27:256-277.
    [119]王竟,苏妍彦,李丽华,等.共固定化醌还原菌群与蒽醌促进偶氮染料生物脱色[J].大连理工大学学报.2011,51(02):174-179.
    [120] Jing W, Lihua L, Jiti Z, Hong L, et al. Enhanced biodecolorization of azo dyes byelectropolymerization-immobilized redox mediator[J]. Hazard Mater.2009,168(2-3):1098-1104.
    [121] Jianbo Guo, Huijuan Liu, Li Shan, et al. The structure activity relationship of non-dissolved redox mediators during azo dye bio-decolorization processes[J].Bioresource Technology.2012,112(05):350-354.
    [122] Guangfei Liu, Jiti Zhou, Bo Li, et al. Accelerated removal of Sudan dye byShewanella oneidensis MR-1in the presence of quinones and humic acids[J].World Journal of Microbiology and Biotechnology.2013,29(9):1723-1730.
    [123] Christian J. Sund, Sun McMasters, et al. Effect of electron mediators on currentgeneration and fermentation in a microbial fuel cell[J]. Applied Microbiology andBiotechnology.2007,76(3):561-568.
    [124] MC Costa, S Mota. Anthraquinone-2,6-disulfonate (AQDS) as a catalyst toenhance the reductive decolourisation of the azo dyes Reactive Red2and CongoRed under anaerobic conditions[J]. Bioresource Technology.2010,101(1):105-110.
    [125] AB Dos Santos, FJ Cervantes. Effect of redox mediator, AQDS, on thedecolourisation of a reactive azo dye containing triazine group in a thermophilicanaerobic EGSB reactor[J]. Enzyme and Microbial Technology.2003,33(7):942-951.
    [126] J rg Rau, Hans-Joachim Knackmuss. Effects of different quinoid redox mediatorson the anaerobic reduction of azo dyes by bacteria[J]. Environ. Sci. Technol..2002,36(7):1497-1504.
    [127] Cervantes FJ, Martínez CM, Gonzalez Estrella J, et al. Kinetics during the redoxbiotransformation of pollutants mediated by immobilized and soluble humicacids[J]. Appl Microbiol Biotechnol.2013,97(6):2671-2698.
    [128] Francisco J. Cervantes, Jorge GE, Arturo Márquez, et al. Immobilized humicsubstances on an anion exchange resin and their role on the redoxbiotransformation of contaminants[J]. Bioresource Tech.2011,102(2):2097-2100.
    [129] Madeline Vargas, Kazem Kashefi. Microbiological evidence for Fe(III) reductionon early Earth[J]. Letters to Nature.1998,39(5):65-67.
    [130] Derek R.Lovley. Role of Humic-Bound lron as an Electron Transfer Agent inDissimilatory Fe(III) Reduction[J]. Appl. Environ. Microbiol.1999,65:4252-4254.
    [131] Maren Emmerich, Andreas Kappler. Absence of humic substance reduction by theacidophilic Fe(III)-reducing strain Acidiphilium SJH: implications for its Fe(III)reduction mechanism and for the stimulation of natural organohalogenformation[J]. Biogeochemistry.2012,109(1-3):219-231.
    [132] Eric E, Roden D, Robert G, et al. Kinetics of microbial Fe(III) oxide reduction infreshwater wetland sediments[J]. Limnol Oceanogr.2002,47(1):198-211.
    [133] Andreas Kappler, Marcus. Electron shuttling via humic acids in microbial iron(III)reduction in a freshwater sediment[J]. FEMS Microbiology Ecology.2004,47(1):85-92.
    [134] Li Xie, Chi Shang, Zhang Jiaqi, et al. Role of Humic Acid and Quinone ModelCompounds in Bromate Reduction by Zerovalent Iron[J]. Environ. Sci. Technol.,2005,39(4):1092-1100.
    [135] Edward J. O. Effects of Electron Transfer Mediators on the Bio-reduction ofLepidocrocite (γ-FeOOH) by Shewanella putrefaciens CN32[J]. Environ. Sci.Technol.,2008,42(18):6876-6882.
    [136] Bond D.R., Holmes D.E., Tender L.M., et al. Electrodc-reducing microorganismsthat harvest cnergy from marinc sediments[J]. Science.2002,295:483-485.
    [137] Nepomnyashchaya YN, Slobodkina GB. Moorella humiferrea a thermo-philicanaerobic bacterium capable of growth via electron shuttling between humic acidand Fe(III)[J]. Int JSyst Evol Microbiol.2012,62(3):613-617
    [138] Perminova IV, Karpiouk L. Preparation and use of humic coatings covalentlybound to silica gel for Np(V) and Pu(V) sequestration[J]. Alloy Compd.2007,(444–445):512-517.
    [139] Slepova TV. Carboxydothermus siderophilus a thermophilic, hydrogenogenic,carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hotspring[J]. Syst Evol Microbiol.2009,59(2):213-219.
    [140] Lipson DA, Jha M. Reduction of Fe(III) and humic substances plays a major rolein anaerobic respiration in an Arctic peat soil[J]. Geophys Res.2010,115:1029-1032.
    [141] Lovley DR, Kashefi K. Reduction of humic substances and Fe(III) byhyperthermophilic microorganisms[J]. Chem Geol.2000,169(3-4):289-298.
    [142] Dominic A. Brose, Bruce R. James. Oxidation Reduction Transformations ofChromium in Aerobic Soils and the Role of Electron-Shuttling Quinones[J].Environ. Sci. Technol.,2010,44(24):9438-9444.
    [143] Yiguo Hong, Peng Wu, Wei Zhao, et al. Humic analog AQDS and AQS as anelectron mediator can enhance chromate reduction by Bacillus sp. strain3C3Findout how to access preview-only content[J]. Applied Microbiology andBiotechnology.2012,93(6):2661-2668.
    [144] Jian Hua Chen, Qing Lin Liu, Wende Tian, et al. Adsorption mechanism of Cu(II)ions from aqueous solution by glutaraldehyde crosslinked humic acidimmobilized sodium alginate porous membrane adsorbent[J]. ChemicalEngineering Journal.2011,173(2):511-519.
    [145] Manfred Wolf, Andreas Kappler. Effects of Humic Substances and Quinones atLow Concentrations on Ferrihydrite Reduction by Geobacter metallireducens[J].Environ. Sci. Technol..2009,43(15):5679-5685.
    [146]王文燕,全向春,何孟常,等. Fe(III)微生物还原机理及其研究进展[J].环境污染与防治.2006,28(02):174-179.
    [147] Maria S. Jiménez. Characterization of metal–humic acid complexes by poly-acrylamide gel electrophoresis–laser ablation-inductively coupled plasma massspectrometry[J]. Analytica Chimica Acta.2010,676(1-2):9-14.
    [148] Felix Maurer, Iso Christl. Reduction and Reoxidation of Humic Acid: Influenceon Speciation of Cadmium and Silver[J]. Environ. Sci. Technol.2012,46(16):8808-8816.
    [149] Sven N. Hobbiea. Humic substance-mediated Fe(III) reduction by a fermentingBacillus strain from the alkaline gut of a humus-feeding scarab beetle larva[J].Systematic and Applied Microbiology.2012,35(4):226-232.
    [150] J. Ian Van Trumpa. Humic acid-oxidizing, nitrate-reducing bacteria in agriculturalsoils[J]. Systematic and Applied Microbiology.2011,2:44-11.
    [151] Qin Li, XiaoTian Xu. Comparison of two adsorbents for the removal ofpentavalent arsenic from aqueous solutions[J]. Journal of EnvironmentalManagement.2012,98:98-106.
    [152] Francisco J. Cervantesa, Ana Rosa Mancillaa. Anaerobic degradation of benzeneby enriched consortia with humic acids as terminal electron acceptors[J]. Journalof Hazardous Materials.2011,195:201-207.
    [153] Liping Huanga, John M. Reganb. Electron transfer mechanisms, new applications,and performance of biocathode microbial fuel cells[J]. Bioresource Tech.2011,102(1):316-323.
    [154] Sander A.B. Weelink, Wim Van Doesburg. A strictly anaerobic betaproteo-bacterium Georgfuchsia toluolica degrades aromatic compounds with Fe(III),Mn(IV) or nitrate as an electron acceptor[J]. FEMS Microbiology Ecology.2009,70(3):575-585.
    [155] COATES John D, COLE Kimberly A. Diversity and ubiquity of bacteria capableof utilizing humic substances as electron donors for anaerobic respiration[J].Applied Environmental microbiology.2002,68(5):2445-2452.
    [156] Clicerio A. Effects of different quinoid redox mediators on the removal ofsulphide and nitrate via denitrification[J]. Chemosphere.2007,69(11):1722-1726.
    [157] Huijuan Liu, Jianbo Guo. Catalyzing denitrification of paracoccus versutus byimmobilized1,5-dichloroanthraquinone[J]. Biodegradation June.2012,23(3):399-405.
    [158] Zhenhua Xi. Study the catalyzing mechanism of dissolved redox mediators on bindenitrification by metabolic inhibitors[J]. Bioresource Technology.2013,140:22-27.
    [159] Guoxin Hu, Zhiguo Sun, Yanxi Zhu, et al. Novel Process of SimultaneousRemoval of SO2and NO2by Sodium Humate Solution[J]. Environ. Sci. Technol.,2010,44(17):6712-6717.
    [160] Zhenhua Xi, Jianbo Guo, Jing Lian, et al. Study the catalyzing mechanism ofdissolved redox mediators on bio-denitrification by metabolic inhibitors[J].Bioresource Technology.2013,140:22-27.
    [161] Zhenhua Xi, Haifeng Du, Meng Zhao, et al. Effective and characteristics ofanthraquinone-2,6-disulfonate (AQDS) on denitrification by Paracoccus versutussp.GW1[J]. Environmental Technology.2013,34(17):2563-2570.
    [162] Jianbo Guo, Li Kang, Jingliang Yang, et al. Study on a novel non-dissolved redoxmediator catalyzing biological denitrification (RMBDN) technology[J]. Bioresource Technology.2010,101(11):4238-4241.
    [163]黄丹.介体强化苯酚厌氧降解研究[D].大连:大连理工大学硕士学位论文,2013:78-84.
    [164]沈为荣.含腐殖酸还原菌驯化污泥降解污染物的机理研究[D].杭州:浙江大学硕士学位论文,2007:89-95.
    [165] Zhang Jie, Dai Jiulan, Yin Tingting, et al. Adsorptionand desorption of divalentmercury on humic acidsand fulvic acids extracted from typical soils in China[J].Physico-chemical and Engineering Aspects.2009,08:21-26.
    [166]陈春羽,王定勇.水溶性有机质对土壤及底泥中汞吸附行为的影响[J].环境科学学报.2009,02:312-317.
    [167]张孟孟,戴九兰,王仁卿.溶解性有机质对土壤中汞吸附迁移及生物有效性影响的研究进展[J].环境污染与防治.2011,05:95-99.
    [168] Haibo Li. Effective and characteristics of anthraquinone-2,6-disulfonate (AQDS)on denitrification by Paracoccus versutus sp.GW1[J]. Environmental Technology.2013,34(17):255-261.
    [169] Xue Yang, Maoan Du, Li Bai, et al. Improved volatile fatty acids production fromproteins of sewage sludge with anthraquinone-2,6-disulfonate (AQDS) underanaerobic condition[J]. Bioresour Technol.2012,103(1):494-497.
    [170] Francisco J. Cervantes. Selective enrichment of Geobacter sulfurreducens fromanaerobic granular sludge with quinones as terminal electron acceptors[J].Biotechnology Letters.2003,25(1):39-43.
    [171] Francisco J. Cervantes, Wouter Dijksma, Tuan Duong-Dac, et al. AnaerobicMineralization of Toluene by Enriched Sediments with Quinones and Humus asTerminal Electron Acceptors[J]. Appl Environ Microbiol.2001,67(10):4471-4478.
    [172] Hui Chen, Ronny Berndtsson, Mingguang Ma, et al. Characterization ofinsolubilized humic acid and its sorption behaviors[J]. Environmental Geology.2009,57(8):1847-1853.
    [173] Francisco J. Cervantes, Ana Rosa Mancilla. Anaerobic degradation of benzene byenriched consortia with humic acids as terminal electron acceptors[J]. Journal ofHazardous Materials.2011,195(15):201-207.
    [174] Li L. Enhancement of nitroaromatic compounds anaerobic biotransformationusing a novel immobilized redox mediator prepared by electropolymerization[J].Bioresour Technol.2008,99(15):6908-6916.
    [175] Li L. Anaerobic biotransformation of azo dye using polypyrrole/anthraquinone-disulphonate modified active carbon felt as a novel immobilized redoxmediator[J]. Sep Purif Technol.2009,66(2):375-382.
    [176] Ma C. Decolorization of Orange I under alkaline and anaerobic conditions by anewly isolated humus-reducing bacterium, Planococcus sp. MC01[J]. Int Bio-deterior Biodegrad.2013,83:17-24.
    [177] Claudia M Martínez, Francisco J Cervantes. Simultaneous biodegradation ofphenol and carbon tetrachloride mediated by humic acids[J]. BiodegradationSeptember.2012,23(5):635-644.
    [178] Anders Thygesena, Finn Willy Poulsenb. The effect of different substrates andhumic acid on power generation in microbial fuel cell operation[J]. BioresourceTechnology.2009,100(3):1186-1191.
    [179] Chunyuan Wu, Li Zhuang, Lin Li, et al. Corynebacterium humireducens sp. nov.,an alkaliphilic, humic acid reducing bacterium isolated from a microbial fuelcell[J]. IJSEM.2010,61(4):882-887.
    [180] X Tang, Z Du, H Li, et al. Anodic electron shuttle mechanism based on1-hydroxy-4aminoanthraquinone in microbial fuel cells[J]. Electrochem Commun.2010,12(8):1140-1143.
    [181] Liping Huang, Shaoan Cheng, Tengfei Li, et al. Reducing organic loads inwastewater effluents from paper recycling plants using microbial fuel cells[J].Environmental Technology.2009,30(5):499-504.
    [182] Komal Solankia, Sindhu Subramanianb. Microbial fuel cells for azo dye treatmentwith electricity generation: A review[J]. Bioresource Technology.2013,131:564-571.
    [183] Ko, S L Khil Kovtun. Effect of admixtures of lower alcohols on the properties ofhumic acid salts in dispersed fuel systems[J]. Solid Fuel Chemistry.2010,2(44):94-102.
    [184] Liping Huang, Irini Angelidaki. Effect of humic acids on electricity generationintegrated with xylose degradation in microbial fuel cells[J]. Biotechnology andBioengineering.2008,100(3):413-422.
    [185]赵可,尹军,王立军,等.腐殖土强化SBR工艺运行效能试验[J].哈尔滨工业大学学报.2009,04:81-84.
    [186]尹军,魏宏艳,赵可,等.低温条件下内置腐殖土填料SBR系统处理糠醛废水[J].环境工程学报.2012,06:1121-1124.
    [187]尹军,刘亮,赵可,等.不同温度对SBR腐殖活性污泥系统运行效能的影[J].环境工程学报.2011,05:7-10.
    [188]吴敏,朱睿,魏传银,等.腐殖土对活性污泥中重金属形态分布的影响[J].同济大学学报.2010,02:263-267.
    [189]金成英夫.腐植質を用いた活性泥法[A].日本:国土館大学工学部,2000:657-661.
    [190]宫本知.微生物による排水浄化法一一自然浄化法一リアクタ一バイオシステムによる排水処理技術、環境浄化、チッソ環境エンジニアリング(株)[M].日本:国土館大学工学部,2000:238-244
    [191]内水護博士《自然と輪廻》1986年(株)漫画社、《自然観と「土」》1986年(財)自然農法研究開発センター(株)漫画社、《自然観と「水」》1987年(株)漫画社[C].日本:国土館大学工学部,2000:188-194.
    [192]金成英夫.長崎市小江原処理場の改造に伴う特徴―発生汚泥量の極めて少ない腐植活性汚泥法[C].腐植活性汚泥文献集,国土館大学工学部,2000:185-191.
    [193] Suqing Wu, Qinyan Yue, Peng Xu, et al. Preparation of ultra-lightweight sludgeceramics (ULSC) and application for pharmaceutical advanced wastewatertreatment in a biological aerobic filter(BAF)[J]. Bioresource Technology.2011,102(3):2296-2300.
    [194] Laure M. Desplanda, Tony Vancov, Michel Aragno, et al. Diversity of microbialcommunities in an attached-growth system using Bauxsol pellets for wastewatertreatment[J]. Science of The Total Environment.2012,433(1):383-389.
    [195] Si Zhang, Ang Li. Performance of enhanced biological SBR process for anilinetreatment by mycelial pellet as biomass carrier[J]. Bioresource Technology.2011,102(6):4360-4365.
    [196] Faisal Ibney Haia,Kazuo Yamamotoa. Bioaugmented membrane bioreactor (MBR)with a GAC-packed zone for high rate textile wastewater treatment[J]. WaterResearch.2011,45(6):2199-2206.
    [197] Qiaoling Liu, Yufen Zhou, Ke Sun, et al. Application of MBR for hospitalwastewater treatment in China[J]. Desalination.2010,250(2):605-608.
    [198] Davor Dolara, Meritxell Grosb. Removal of emerging contaminants frommunicipal wastewater with an integrated membrane system, MBR–RO[J]. Journalof Hazardous Materials.2012,(239-240):64-69.
    [199] Lubomira Kovalova, Hansruedi Siegrist. Hospital Wastewater Treatment byMembrane Bioreactor: Performance and Efficiency for Organic MicropollutantElimination[J]. Environ. Sci. Technol..2012,46(3):1536-1545.
    [200]国家环境保护总局.水和废水监测分析方法[M].中国环境科学出版社,2002.
    [201]曹雪梅. A2/O工艺反硝化除磷的实现及性能的研究[D].哈尔滨:哈尔滨工业大学,2007:45-51.
    [202] Mario Esparza-Soto, Paul Westerhoff. Biosorption of humic and fulvic acids tolive activated sludge biomass[J]. Water Research.2003,37(10):2301-2310.
    [203]姜兆武,镰田进,黑木学,等.应用自然净化法RBS技术处理高浓度有机污水[C].中国水污染治理技术装备论文集第十五期.2008:789-793.
    [204]徐永志. A2/O-BAF系统深度脱氮除磷[D].北京:北京工业大学,2012:67-72.
    [205]王建龙,彭永臻,王淑莹.污泥龄对A2/O工艺脱氮除磷效果的影响[J].环境工程.2007,25(1):16-18.
    [206]邱慎初,丁堂堂.探讨城市污水生物处理出水的总磷达标问题[J].中国给水排水.2002,18(9):25-27.
    [207]张建.水解酸化强化A2/O工艺除磷效能的研究[D].哈尔滨:哈尔滨工业大学,2010,88-93.
    [208]葛士建,彭永臻,张亮,等.改良UCT分段进水脱氮除磷工艺性能及物料平衡[J].化工学报.2010,61(4):1009-1017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700