用户名: 密码: 验证码:
针铁矿/腐殖酸对典型抗生素的吸附及光解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素作为一种高效药物被广泛用于人和动物,以预防和治疗疾病,同时也作为饲料添加剂促进动物的生长。抗生素使用后,大部分抗生素药物以其母体或者活性代谢物的形式进入环境中,给人体健康和生态环境造成潜在的威胁。目前国内外学者对抗生素在环境中的环境化学行为已经展开了一些研究,但对抗生素在环境中的迁移和转化的认识依然不够充分,且对于抗生素在环境介质上的吸附机制,及在自然环境中发生的非生物转化认识依然不足。因此,本文以泰乐菌素(TYL)和磺胺二甲基嘧啶(SMT)为研究对象,考察了环境中大量存在的铁氧化物(针铁矿)和腐殖酸对抗生素的吸附特性及吸附机理,进而又考察了环境条件对针铁矿在可见光作用下对抗生素的催化降解的影响,最后研究了针铁矿与腐殖酸之间的微观界面作用对两种抗生素吸附和光降解的影响。论文取得的主要研究成果如下:
     1.系统研究了TYL和SMT在针铁矿上的吸附特性和吸附机制。研究发现:TYL和SMT在针铁矿上的吸附分别在5h和12h达到吸附平衡,且吸附动力学均可用二级动力学和扩散模型较好的拟合,且吸附速率随着初始浓度的增加逐渐降低,吸附过程主要包括外部扩散、界面层扩散以及孔内扩散。TYL在针铁矿上的吸附是一个自发的放热的过程而SMT在针铁矿上的吸附则是一个自发的吸热的过程。TYL和SMT在针铁矿上的吸附均是非线性的吸附且吸附受溶液pH和离子强度影响较大。TYL在针铁矿上的吸附主要受静电作用、氢键作用、离子交换和表面络合作用的影响,其中表面络合作用是主导吸附的关键因素。而SMT在针铁矿上的吸附主要受静电作用、范德华力、氢键作用、表面络合和π-π EDA的共用电子对作用共同主导。
     2. TYL和SMT在腐殖酸上吸附在24h均可达到吸附平衡,且吸附动力学可以用二级动力学和扩散模型较好的拟合,且吸附速率随着初始浓度的增加逐渐降低。TYL和SMT在腐殖酸上的吸附是一个自发的放热过程,吸附等温线可以用线性吸附模型和Freundlich模型较好的拟合;TYL和SMT在腐殖酸上的吸附与溶液pH值和离子强度有关,吸附均随着溶液pH值和离子强度的增加而减小。TYL在腐殖酸上的吸附主要受静电作用、疏水性作用、氢键作用、离子交换作用的影响,其中离子交换是主导吸附的关键因素。而SMT在腐殖酸上的吸附,主要受静电斥力、氢键作用力、离子交换、疏水性作用力和表面络合是主导。
     3. TYL和SMT在可见光的作用下有一定的自然降解能力,并且当有针铁矿存在时催化降解速率明显提高,且其光催化降解速率随着TYL和SMT初始浓度的增加减少,随着溶液离子强度的增加而减小,随着溶液中溶解性有机质(DOM)浓度的增加而增加,TYL的降解速率随着溶液pH值的增加先减小再增加而SMT的催化降解速率随着pH值的增加而逐渐减小。TYL和SMT在针铁矿上光解与其在针铁矿上的吸附及溶液中的溶解Fe3+浓度相关,其光催化可能包括均相反应和异相反应两个过程。且溶液中DOM的存在有助于光解作用,DOM的浓度越高,TYL和SMT的光解速率越大。因此在评估抗生素的环境风险时,应当综合考虑各种不同环境因素对抗生素在环境中转化过程的影响。
     4.针铁矿与腐殖酸之间的微观界面作用的研究,通过一系列表征(SEM、EDX、FTIR及拉曼光谱)研究了负载腐殖酸后的针铁矿。研究发现针铁矿通过其表面上的活性位点及活性基团和腐殖酸进行结合,这种结合方式以化学方式为主。通过研究负载腐殖酸后的针铁矿对两种抗生素的吸附及光催化降解特性,考察了针铁矿与腐殖酸之间的微观界面作用对抗生素在环境中迁移和转化的影响。研究发现当有腐殖酸存在时,针铁矿对抗生素的吸附速率和能力都明显提高,并且吸附随着负载腐殖酸浓度的增加而逐渐增加,负载腐殖酸后的针铁矿对抗生素的吸附主要表现为疏水性的分配作用、氢键作用、离子交换和表面络合机制为主。且腐殖酸的存在也有利于针铁矿对TYL和SMT的光解,负载腐殖酸后的针铁矿对TYL和SMT的催化降解效率随着复合物中腐殖酸浓度的增加逐渐增加。针铁矿与腐殖酸形成的复合物配体,在氧化TYL和SMT的同时针铁矿发生了溶解,生成了大量的Fe2+,Fe2+在液相中与腐殖酸可以再次进行络合,生成的配体可以再次参与氧化还原反应,又可形成高价铁的络合物,从而通过铁离子的循环促使光化学反应循环从而提高催化降解的效率。
Antibiotics were widely used in humans and animals to treat microbial infections, andalso as feed additive to promote growth of livestock animals. After administration of anantibiotic, a significant fraction is excreted in the parent form or its metabolite forms alongwith urine and feces, and then directly or indirectly reaches the aquatic and terrestrialenvironmental, which would pose a negative effect on aquatic and terrestrial organism andhuman health. Recently, many studies have been done about the environmental chemicalbehavior of antibiotics in the environments. However, few studies have been done about thetransport and transforation of antibioltics in the livestock farms, which are the major sourcesof antibiotics in the environments. Meanwhile the sorption mechanism of antibiotics in theenvironmental medium and the abiotic transformation in the natural environment is stillinsufficient. So tylosin (TYL) and sulfamethazine (SMT), the widely used veterinaryantibiotics were chosen as the sorbates. The sorption properties and sorption mechanism ofantibiotics on goethite and humic acid were investigated. The influences of environmentalfactors on the photodegradation of tylosin by goethite and the influence of the microcosmicinterfacial interaction between goethite and humic acid on the and transform of antibioltics inthe aqueous phase were also investigated. The main experiments and conclusions are asfollows:
     1.Sorption of TYL and SMT on goethite was systemaly measured using a batchtechnique. The results showed that the sorption of TYL and SMT could attain apparentequilibrium within5hrs and12hrs. The sorption rates for TYL and SMT decreased as theinitial concentration increased. The sorption process might be constituted with the initialboundary layer diffusion or external surface, then the intraparticle diffusion or pore diffusionstage and finally equilibrium stage related with the sorption on the interior surface of sorbent.Thermodynamics calculations revealed that the sorption of TYL on goethite was exothermaland spontaneous and SMT was endothermic and spontaneous. Sorption of TYL and SMTwere nonlinear and the sorption capacities were influenced by the pH and ionic strength. Thesorption mechanism of TYL might be related with surface complexation, electrostatic repulsion, and H-bonding on goethite. But for SMT the sorption mechanisms might involveVan der Waalsforce, electrostatic interactions, H-bonding, outer and inner-sphere complexesand π-π EDA interactions.
     2.The apparent equilibration times of sorption of TYL and SMT on humic acid were24hrs and the sorption rates for TYL and SMT decreased as the initial concentrationincreased. The sorption of TYL and SMT on humic acid was fitted by Linear and Freundlichmodels and the sorption was exothermal and spontaneous. Sorption of TYL and SMT wereobvious influenced by the pH and ionic strength and sorption were decreased with theincrease of pH and ionic strength. The main factors for sorption of TYL on humic acid werehydrophobic interaction, H-bonding and ion exchange but ionic exchange might dominate thesorption. The sorption mechanism of SMT on humic acid might be related to hydrophobicinteractions, surface complexation, electrostatic repulsion, and H-bonding.
     3.TYL and SMT could be degradation under the action of visible light in the natureenvironment, but when goethite existed the rate of catalytic degradation increasedsignificantly. The photodegradation rate of TYL and SMT decreased with the increase ofinitial concentrations and ionic strength, but the photodegradation rate of TYL and SMTincreased with the increase of concentrations of DOM. For TYL the photodegradation ratewas primarily decreased and then increased with the the increase of pH, but for SMT it wasdecreased all the time with the increase of pH. The photodegradation of TYL and SMT ongoethite might be related to the sorption of antibiotics on goethite and the soluble Fe3+concentration in the solution and the degradation process included the homogeneous reactionin the solution and the heterogeneous reaction at goethite surface. The DOM in the solutioncould promote the photodegradation of TYL and SMT by goethite. It should be noted toassess the influence of environmental factors on the transforation of TYL and SMT in theenvironment.
     4.The microcosmic interfacial interactions mechanism between goethite and humicacid were investigated the characterization of SEM, EDX, FTIR and Raman spectroscopy. Itcould be found that goethite could combined with humic acid through the surface active sites and active group and the combination is priority with chemical methods. The influence ofmicrocosmic interfacial interaction between goethite and humic acid on the transport andtransforation of antibioltics in the aqueous phase were also investigated the sorption andphotocatalysis of TYL and SMT by the complex of goethite and humic acid. It could be foundthat sorption rate and capacity of TYL and SMT on goethite increased significantly in thepresence of humic acid and the sorption rate and capacity increased with the increasedconcentrations of humic acid in the complexs. The sorption mechanism of TYL and SMT onthe complex might be related to hydrophobic interactions, H-bonding, ion exchange andsurface complexation. The presence of humic acids was conducive to the photolysis of TYLand SMT by goethite and the catalytic degradation efficiency of TYL and SMT increased withthe increase of concentration of humic acid in the complex. The ligand of goethite and humicacid could generate Fe2+into the liquid phase when the catalytic degradation of TYL andSMT by the complex of goethite and humic acid. The Fe2+could combined with humic acidand the oxidation for its ligands, which could improve the efficiency of catalytic degradationform high iron complex compound through the cycling of iron ions.
引文
[1]王兰.抗生素污染现状及对环境微生态的影响[J].药物生物技术,2006,(2):144-148.
    [2]王丽平,顾国平,章明奎.抗生素残留对农产品安全与生态环境的影响[J].安徽农学通报,2007,(2):74-76.
    [3] Jiang L, Hu X, Xu T, et al. Prevalence of antibiotic resistance genes and their relationshipwith antibiotics in the Huangpu River and the drinking water sources, Shanghai, China [J].Science of the Total Environment,2013,458(2):67-72.
    [4] Ternes T A. Occurrence of drugs in German sewage treatment plants and rivers [J]. WaterResearch,1998,32(11):3245-3260.
    [5] Zhang R, Tang J, Li J, et al. Occurrence and risks of antibiotics in the coastal aquaticenvironment of the Yellow Sea, North China [J]. Science of the Total Environment,2013,450:197-204.
    [6] Schwartz T, Kohnen W, Jansen B, et al. Detection of antibiotic-resistant bacteria and theirresistance genes in wastewater, surface water, and drinking water biofilms [J]. FEMSMicrobiol Ecol,2003,43(3):325-335.
    [7] Pomati F, Netting A G, Calamari D, et al. Effects of erythromycin, tetracycline andibuprofen on the growth of Synechocystis sp and Lemna minor [J]. Aquatic Toxicology,2004,67(4):387-396.
    [8] Wollenberger L, Halling-Sorensen B, Kusk K O. Acute and chronic toxicity of veterinaryantibiotics to Daphnia magna [J]. Chemosphere,2000,40(7):723-730.
    [9] Robinson A A, Belden J B, Lydy M J. Toxicity of fluoroquinolone antibiotics to aquaticorganisms [J]. Environmental Toxicology and Chemistry,2005,24(2):423-430.
    [10] Hernando M D, Mezcua M, Fernandez-Alba A R, et al. Environmental risk assessment ofpharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta,2006,69(2):334-342.
    [11] Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils-a review [J]. Journal ofPlant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde,2003,166(2):145-167.
    [12] Zielezny Y, Groeneweg J, Vereecken H, et al. Impact of sulfadiazine andchlorotetracycline on soil bacterial community structure and respiratory activity [J]. Soil BiolBiochem,2006,38(8):2372-2380.
    [13] Liu F, Ying G-G, Tao R, et al. Effects of six selected antibiotics on plant growth and soilmicrobial and enzymatic activities [J]. Environmental Pollution,2009,157(5):1636-1642.
    [14]王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性[J].生态学报,2006,(1):265-270.
    [15] Van Dijck P, Van De Voorde H. Sensitivity of environmental microorganisms toantimicrobial agents [J]. Appl Environ Microbiol,1976,31(3):332-336.
    [16] Kumar K, Thompson A, Singh A K, et al. Enzyme-linked immunosorbent assay forultratrace determination of antibiotics in aqueous samples (vol33, pg250,2004)[J]. Journalof Environmental Quality,2004,33(2):797-801.
    [17] Migliore L, Cozzolino S, Fiori M. Phytotoxicity to and uptake of enrofloxacin in cropplants [J]. Chemosphere,2003,52(7):1233-1244.
    [18] Heilig S, Lee P, Breslow L. Curtailing antibiotic use in agriculture [J]. Western Journal ofMedicine,2002,176(1):9-11.
    [19] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposurepathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J].Chemosphere,2006,65(5):725-729.
    [20]肖希龙.兽药的发展和管理[J][J].中国禽业导刊,1999,(1):13-16.
    [21]张许科,刘兴金.国内外兽药发展趋势及对策[J].中国畜牧兽医文摘,2003,(1):6-8.
    [22] Richardson B J, Larn P K S, Martin M. Emerging chemicals of concern: Pharmaceuticalsand personal care products (PPCPs) in Asia, with particular reference to Southern China [J].Marine Pollution Bulletin,2005,50(9):913-920.
    [23]张许科,刘兴金.国内外兽药发展趋势及对策[J].中国家禽,2002,(7):4-7.
    [24] Mellon M. G. B C, Benbrook K. L., Et Al. Hogging it: estimates of antimicrobial abusein livestock [M]. Cambridge,MA: UCS Publications,2000.
    [25] Torniainen K, Tammilehto S, Ulvi V. The effect of pH, buffer type and drugconcentration on the photodegradation of ciprofloxacin [J]. Int J Pharm,1996,132(1–2):53-61.
    [26] Diaz-Cruz M S, De Alda M J L, Barcelo D. Environmental behavior and analysis ofveterinary and human drugs in soils, sediments and sludge [J]. Trac-Trends in AnalyticalChemistry,2003,22(6):340-351.
    [27] R W P, L T R. Chlortetracycline in soil amended with poultry manure [J]. CanadianJournal of Soil Science,1981,61(1):161-163.
    [28] Hamscher G, Sczesny S, Hoper H, et al. Determination of persistent tetracycline residuesin soil fertilized with liquid manure by high-performance liquid chromatography withelectrospray ionization tandem mass spectrometry [J]. Anal Chem,2002,74(7):1509-1518.
    [29] Campagnolo E R, Johnson K R, Karpati A, et al. Antimicrobial residues in animal wasteand water resources proximal to large-scale swine and poultry feeding operations [J]. Scienceof the Total Environment,2002,299(1-3):89-95.
    [30] Morales-Munoz S, Luque-Garcia J L, De Castro M D L. Continuous microwave-assistedextraction coupled with derivatization and fluorimetric monitoring for the determination offluoroquinolone antibacterial agents from soil samples [J]. Journal of Chromatography A,2004,1059(1-2):25-31.
    [31] Paul A K, Banerjee A K. Antifungal actinomycetes in soils of West Bengal [J]. HindustanAntibiot Bull,1984,26(1-2):18-22.
    [32] Aga D S, O'connor S, Ensley S, et al. Determination of the persistence of tetracyclineantibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbentassay and liquid chromatography-mass spectrometry [J]. Journal of Agricultural and FoodChemistry,2005,53(18):7165-7171.
    [33]何家香.原料乳中抗生素残留的现状与对策[J].当代畜禽养殖业,2003,(8):53-54.
    [34]周启星,罗义,王美娥.抗生素的环境残留、生态毒性及抗性基因污染[J].生态毒理学报,2007,(3):243-251.
    [35] Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquaticenvironment [J]. Science of the Total Environment,1999,225(1-2):109-118.
    [36] Zuccato E, Castiglioni S, Fanelli R. Identification of the pharmaceuticals for human usecontaminating the Italian aquatic environment [J]. Journal of Hazardous Materials,2005,122(3):205-209.
    [37] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and otherorganic wastewater contaminants in US streams,1999-2000: A national reconnaissance [J].Environmental Science&Technology,2002,36(6):1202-1211.
    [38] Till A E. Comment on "pharmaceuticals, hormones, and other organic wastewatercontaminants in US streams,1999-2000: A national reconnaissance"[J]. EnvironmentalScience&Technology,2003,37(5):1052-1063.
    [39]姜蕾,陈书怡,杨蓉,等.长江三角洲地区典型废水中抗生素的初步分析[J].环境化学,2008,(3):371-374.
    [40]叶计朋,邹世春,张干,等.典型抗生素类药物在珠江三角洲水体中的污染特征[J].生态环境,2007,(2):384-388.
    [41] Erickson B E. Analyzing the ignored environmental [J]. Environmental Science&Technology,2002,36(7):140-145.
    [42] Tong L, Li P, Wang Y, et al. Analysis of veterinary antibiotic residues in swinewastewater and environmental water samples using optimized SPE-LC/MS/MS [J].Chemosphere,2009,74(8):1090-1097.
    [43] Hu X, Zhou Q, Luo Y. Occurrence and source analysis of typical veterinary antibiotics inmanure, soil, vegetables and groundwater from organic vegetable bases, northern China [J].Environmental Pollution,2010,158(9):2992-2998.
    [44] Zhang Q, Yang C, Dang Z, et al. Sorption of Tylosin on Agricultural Soils [J]. SoilScience,2011,176(8):407-412.
    [45]郑春田,李德发,王若军,等.泰乐菌素在肉仔鸡日粮中的应用及药残分析[J].黑龙江畜牧兽医,1999,(10):15-16.
    [46]王海洲.泰乐菌素在养殖业中的应用[J].畜禽业,2002,(6):18.
    [47] Aarestrup F M, Carstensen B. Effect of tylosin used as a growth promoter on theoccurrence of macrolide-resistant Enterococci and Staphylococci in pigs [J]. Microbial DrugResistance-Mechanisms Epidemiology and Disease,1998,4(4):307-312.
    [48] Guo X, Yang C, Dang Z, et al. Sorption thermodynamics and kinetics properties oftylosin and sulfamethazine on goethite [J]. Chemical Engineering Journal,2013,223:59-67.
    [49] Kolz A C, Ong S K, Moorman T B. Sorption of tylosin onto swine manure [J].Chemosphere,2005,60(2):284-289.
    [50] Sassman S A, Sarmah A K, Lee L S. Sorption of tylosin A, D, and A-aldol anddegradation of tylosin A in soils [J]. Environmental Toxicology and Chemistry,2007,26(8):1629-1635.
    [51]赵方.磺胺二甲基嘧啶的微波与微生物降解研究[D];郑州大学,2012.
    [52] Guo X, Yang C, Dang Z, et al. Sorption thermodynamics and kinetics properties oftylosin and sulfamethazine on goethite [J]. Chemical Engineering Journal,2013,223(0):59-67.
    [53] Lin C-E, Chang C-C, Lin W-C. Migration behavior and separation of sulfonamides incapillary zone electrophoresis II. Positively charged species at low pH [J]. Journal ofChromatography A,1997,759(1–2):203-209.
    [54] Yang K, Xing B. Adsorption of Organic Compounds by Carbon Nanomaterials inAqueous Phase: Polanyi Theory and Its Application [J]. Chem Rev,2010,110(10):5989-6008.
    [55]戴树桂.环境化学[M].北京:高等教育出版社,1995.
    [56] Sun H, Song Q, Luo P, et al. Sorption of phenanthrene on single-walled carbonnanotubes modified by DOM: effects of DOM molecular weight and contact time [J].Environmental Science-Processes&Impacts,2013,15(1):307-314.
    [57] Rajkumar P, Kumar P S, Kirupha S D, et al. Adsorption of Pb(II) ions onto surfacemodified Guazuma ulmifolia seeds and batch adsorber design [J]. Environ Prog SustainEnergy,2013,32(2):307-316.
    [58] Li B, Zhang T. Removal mechanisms and kinetics of trace tetracycline by two types ofactivated sludge treating freshwater sewage and saline sewage [J]. Environmental Science andPollution Research,2013,20(5):3024-3033.
    [59] Zhang Q, Yang C, Dang Z, et al. Sorption of Tylosin on Agricultural Soils [J]. SoilScience,2011,176(8):407-1210.1097/SS.0b013e3182247420.
    [60] Wu Q, Li Z, Hong H, et al. Desorption of ciprofloxacin from clay mineral surfaces [J].Water Research,2013,47(1):259-268.
    [61] Thiele-Bruhn S, Beck I C. Effects of sulfonamide and tetracycline antibiotics on soilmicrobial activity and microbial biomass [J]. Chemosphere,2005,59(4):457-465.
    [62] Thiele-Bruhn S, Seibicke T, Schulten H R, et al. Sorption of sulfonamide pharmaceuticalantibiotics on whole soils and particle-size fractions [J]. Journal of Environmental Quality,2004,33(4):1331-1342.
    [63]章明奎,王丽平,郑顺安.两种外源抗生素在农业土壤中的吸附与迁移特性[J].生态学报,2008,(2):761-766.
    [64] Gao J, Pedersen J A. Sorption of Sulfonamide Antimicrobial Agents to Humic Acid-ClayComplexes [J]. Journal of Environmental Quality,2010,39(1):228-235.
    [65] Ter Laak T L, Gebbink W A, Tolls J. The effect of pH and ionic strength on the sorptionof sulfachloropyridazine, tylosin, and oxytetracycline to soil [J]. Environmental Toxicologyand Chemistry,2006,25(4):904-911.
    [66] Zhang Q, Yang C, Huang W, et al. Sorption of tylosin on clay minerals [J]. Chemosphere,2013,93(9):2180-2186.
    [67] Wu Z, Xiang H, Kim T, et al. Surface properties of submicrometer silica spheresmodified with aminopropyltriethoxysilane and phenyltriethoxysilane [J]. Journal of Colloidand Interface Science,2006,304(1):119-124.
    [68] Wu X L, Zhao D, Yang S T. Impact of solution chemistry conditions on the sorptionbehavior of Cu(II) on Lin'an montmorillonite [J]. Desalination,2011,269(1-3):84-91.
    [69]吴志坚,刘海宁,张慧芳.离子强度对吸附影响机理的研究进展[J].环境化学,2010,(6):997-1003.
    [70]张劲强,董元华.阳离子强度和阳离子类型对诺氟沙星土壤吸附的影响[J].环境科学,2007,(10):2383-2388.
    [71] Teixido M, Pignatello J J, Beltran J L, et al. Speciation of the Ionizable AntibioticSulfamethazine on Black Carbon (Biochar)[J]. Environmental Science&Technology,2011,45(23):10020-10027.
    [72] Zhao Y, Gu X, Gao S, et al. Adsorption of tetracycline (TC) onto montmorillonite:Cations and humic acid effects [J]. Geoderma,2012,183:12-18.
    [73] Kumar S, Rawat N, Kar A S, et al. Effect of humic acid on sorption of technetium byalumina [J]. Journal of Hazardous Materials,2011,192(3):1040-1045.
    [74] Sibley S D, Pedersen J A. Interaction of the macrolide antimicrobial clarithromycin withdissolved humic acid [J]. Environmental Science&Technology,2008,42(2):422-428.
    [75] Gu C, Karthikeyan K G, Sibley S D, et al. Complexation of the antibiotic tetracyclinewith humic acid [J]. Chemosphere,2007,66(8):1494-5101.
    [76] Natalia V. Kaminskaia B S, and Stephen J. Lippard*. Hydrolysis of β-Lactam AntibioticsCatalyzed by Dinuclear Zinc(II) Complexes: Functional Mimics of Metallo-β-lactamases [J].Journal of the American Chemical Society,2000,(122):6411-6422.
    [77]陈兆坤,胡昌勤.头孢菌素类抗生素的降解机制[J].国外医药(抗生素分册),2004,(6):249-252.
    [78] Ching-Hua Huang J E R, Kristen L. Smeby, Karen Pinkston, David L. Sedlak.Assessment of Potential Antibiotic Contaminants in Water and Preliminary OccurrenceAnalysis [J]. Water Resources UPdat,2001,120(1):30-40.
    [79] Loftin K A, Adams C D, Meyer M T, et al. Effects of ionic strength, temperature, and pHon degradation of selected antibiotics [J]. Journal of Environmental Quality,2008,37(2):378-386.
    [80] Burhenne J, Ludwig M, Nikoloudis P, et al. Photolytic degradation of fluoroquinolonecarboxylic acids in aqueous solution.1. Primary photoproducts and half-lives [J].Environmental Science and Pollution Research,1997,4(1):10-15.
    [81] Werner J J, Arnold W A, Mcneill K. Water hardness as a photochemical parameter:Tetracycline photolysis as a function of calcium concentration, magnesium concentration, andpH [J]. Environmental Science&Technology,2006,40(23):7236-7341.
    [82] Andreozzi R, Caprio V, Ciniglia C, et al. Antibiotics in the environment: Occurrence inItalian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin [J].Environmental Science&Technology,2004,38(24):6832-6838.
    [83] Boreen A L, Arnold W A, Mcneill K. Photochemical fate of sulfa drugs in the aquaticenvironment: Sulfa drugs containing five-membered heterocyclic groups [J]. EnvironmentalScience&Technology,2004,38(14):3933-3940.
    [84] Edhlund B L, Arnold W A, Mcneill K. Aquatic photochemistry of nitrofuran antibiotics[J]. Environmental Science&Technology,2006,40(17):5422-5427.
    [85] Werner J J, Chintapalli M, Lundeen R A, et al. Environmental photochemistry of tylosin:Efficient, reversible photoisomerization to a less-active isomer, followed by photolysis [J].Journal of Agricultural and Food Chemistry,2007,55(17):7062-7068.
    [86] Miller P L, Chin Y P. Indirect photolysis promoted by natural and engineered wetlandwater constituents: Processes leading to alachlor degradation [J]. Environmental Science&Technology,2005,39(12):4454-4462.
    [87] Ter Halle A, Richard C. Simulated solar light irradiation of mesotrione in natural waters[J]. Environmental Science&Technology,2006,40(12):3842-3847.
    [88] Halladja S, Amine-Khodja A, Ter Halle A, et al. Photolysis of fluometuron in thepresence of natural water constituents [J]. Chemosphere,2007,69(10):1647-1654.
    [89] Van Rozendaal E L M. Environmental Organic Chemistry [M]. Wageningen Universiteit,2002.
    [90] Zhu X D, Wang Y J, Sun R J, et al. Photocatalytic degradation of tetracycline in aqueoussolution by nanosized TiO2[J]. Chemosphere,2013,92(8):925-932.
    [91] Calza P, Medana C, Pazzi M, et al. Photocatalytic transformations of sulphonamides ontitanium dioxide [J]. Applied Catalysis B-Environmental,2004,53(1):63-69.
    [92] Lam M W, Young C J, Mabury S A. Aqueous photochemical reaction kinetics andtransformations of fluoxetine [J]. Environmental Science&Technology,2005,39(2):513-522.
    [93]葛林科,张思玉,谢晴,等.抗生素在水环境中的光化学行为[J].中国科学:化学,2010,(2):124-135.
    [94]阳海,安太成,李桂英,等.光催化技术降解水中环境药物的研究进展[J].生态环境学报,2010,(4):991-999.
    [95] Fisher J M, Reese J G, Pellechia P J, et al. Role of Fe(III), phosphate, dissolved organicmatter, and nitrate during the photodegradation of domoic acid in the marine environment [J].Environmental Science&Technology,2006,40(7):2200-2205.
    [96] Garbin J R, Milori D M B P, Simoes M L, et al. Influence of humic substances on thephotolysis of aqueous pesticide residues [J]. Chemosphere,2007,66(9):1692-1698.
    [97] Hassett J P. Chemistry-Dissolved natural organic matter as a microreactor [J]. Science(80-),2006,311(5768):1723-1724.
    [98]刘伟,王慧,陈小军,等.抗生素在环境中降解的研究进展[J].动物医学进展,2009,(3):89-94.
    [99]张从良,王岩,王福安.磺胺嘧啶在水中的微生物降解研究[J].生态环境,2007,(6):1679-1682.
    [100] Watanabe N, Harter T H, Bergamaschi B A. Environmental occurrence and shallowground water detection of the antibiotic monensin from dairy farms [J]. Journal ofEnvironmental Quality,2008,37(5):78-85.
    [101] Vieno N, Tuhkanen T, Kronberg L. Elimination of pharmaceuticals in sewage treatmentplants in Finland [J]. Water Research,2007,41(5):1001-1012.
    [102] Goebel A, Mcardell C S, Joss A, et al. Fate of sulfonamides, macrolides, andtrimethoprim in different wastewater treatment technologies [J]. Science of the TotalEnvironment,2007,372(2-3):361-371.
    [103] Mohring S A I, Strzysch I, Fernandes M R, et al. Degradation and Elimination ofVarious Sulfonamides during Anaerobic Fermentation: A Promising Step on the Way toSustainable Pharmacy?[J]. Environmental Science&Technology,2009,43(7):2569-2574.
    [104] Boxall A B A, Fogg L A, Blackwell P A, et al. Veterinary medicines in the environment[J]. Reviews of Environmental Contamination and Toxicology, Vol180,2004,180:1-91.
    [105] Lai H-T, Hou J-H. Light and microbial effects on the transformation of foursulfonamides in eel pond water and sediment [J]. Aquaculture,2008,283(1-4):50-55.
    [106] Armstrong C R, Wood S A. Effect of fulvic acid on neodymium uptake by goethite [J].Journal of Colloid and Interface Science,2012,387:228-233.
    [107] Brigante M, Zanini G, Avena M. Effect of humic acids on the adsorption of paraquat bygoethite [J]. Journal of Hazardous Materials,2010,184(1-3):241-247.
    [108] Christophi C A, Axe L. Competition of Cd, Cu, and Pb adsorption on goethite [J].Journal of Environmental Engineering-Asce,2000,126(1):66-74.
    [109] Granados-Correa F, Corral-Capulin N G, Olguin M T, et al. Comparison of the Cd(II)adsorption processes between boehmite (gamma-AlOOH) and goethite (alpha-FeOOH)[J].Chemical Engineering Journal,2011,171(3):1027-1034.
    [110] Luengo C, Brigante M, Avena M. Adsorption kinetics of phosphate and arsenate ongoethite. A comparative study [J]. Journal of Colloid and Interface Science,2007,311(2):354-360.
    [111] Zhao Y, Geng J, Wang X, et al. Adsorption of tetracycline onto goethite in the presenceof metal cations and humic substances [J]. Journal of Colloid and Interface Science,2011,361(1):247-251.
    [112] Goldberg M C, Cunningham K M, Weiner E R. Aquatic photolysis: photolytic redoxreactions between goethite and adsorbed organic acids in aqueous solutions [J]. Journal ofPhotochemistry and Photobiology A: Chemistry,1993,73(2):105-120.
    [113] Guanglong L, Shuijiao L, Duanwei Z, et al. Photodegradation of aniline by goethitedoped with boron under ultraviolet and visible light irradiation [J]. Materials ResearchBulletin,2011,46(8):1290-1295.
    [114] Li Y, Yue Q, Gao B. Adsorption kinetics and desorption of Cu(II) and Zn(II) fromaqueous solution onto humic acid [J]. Journal of Hazardous Materials,2010,178(1-3):455-461.
    [115] Minella M, Merlo M P, Maurino V, et al. Transformation of2,4,6-trimethylphenol andfurfuryl alcohol, photosensitised by Aldrich humic acids subject to different filtrationprocedures [J]. Chemosphere,2013,90(2):306-311.
    [116] Cornell R M, Posner A M, Quirk J P. Kinetics and mechanisms of the acid dissolution ofgoethite ([alpha]-FeOOH)[J]. Journal of Inorganic and Nuclear Chemistry,1976,38(3):563-567.
    [117] Gaboriaud F, Ehrhardt J. Effects of different crystal faces on the surface charge ofcolloidal goethite (alpha-FeOOH) particles: An experimental and modeling study [J].Geochimica Et Cosmochimica Acta,2003,67(5):967-983.
    [118] Garcia-Sanchez,A., et al. Heavy metal adsorption by different minerals: application tothe remediation of polluted soils [M]. Kidlington, ROYAUME-UNI: Elsevier,1999.
    [119] Villalobos M, Leckie J O. Surface Complexation Modeling and FTIR Study ofCarbonate Adsorption to Goethite [J]. Journal of Colloid and Interface Science,2001,235(1):15-32.
    [120] Scholz F, Schwudke D, St Sser R, et al. The Interaction of Prussian Blue and DissolvedHexacyanoferrate Ions with Goethite (α-FeOOH) Studied to Assess the Chemical Stabilityand Physical Mobility of Prussian Blue in Soils [J]. Ecotoxicology and Environmental Safety,2001,49(3):245-254.
    [121] Lackovic K, Angove M J, Wells J D, et al. Modeling the adsorption of Cd(II) ontogoethite in the presence of citric acid [J]. Journal of Colloid and Interface Science,2004,269(1):37-45.
    [122] Krehula S, Music S. Influence of cobalt ions on the precipitation of goethite in highlyalkaline media [J]. Clay Minerals,2008,43(1):95-105.
    [123] Davidson L E, Shaw S, Benning L G. The kinetics and mechanisms of schwertmannitetransformation to goethite and hematite under alkaline conditions [J]. American Mineralogist,2008,93(8-9):1326-1337.
    [124] Kuo C-Y, Wu C-H, Wu J-Y. Adsorption of direct dyes from aqueous solutions by carbonnanotubes: Determination of equilibrium, kinetics and thermodynamics parameters [J].Journal of Colloid and Interface Science,2008,327(2):308-315.
    [125] Shen X-E, Shan X-Q, Dong D-M, et al. Kinetics and thermodynamics of sorption ofnitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes [J]. Journalof Colloid and Interface Science,2009,330(1):1-8.
    [126] Shi K, Wang X, Guo Z, et al. Se(IV) sorption on TiO2: Sorption kinetics and surfacecomplexation modeling [J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2009,349(1–3):90-95.
    [127] Zhang Q, Deng S, Yu G, et al. Removal of perfluorooctane sulfonate from aqueoussolution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism [J].Bioresource Technology,2011,102(3):2265-2271.
    [128] Tanis E, Hanna K, Emmanuel E. Experimental and modeling studies of sorption oftetracycline onto iron oxides-coated quartz [J]. Colloids and Surfaces a-Physicochemical andEngineering Aspects,2008,327(1-3):57-63.
    [129] Lu C, Liu C, Su F. Sorption kinetics, thermodynamics and competition of Ni2+fromaqueous solutions onto surface oxidized carbon nanotubes [J]. Desalination,2009,249(1):18-23.
    [130] Yang G P, Zhang Z B. Adsorption of dibenzothiophene on marine sediments treated by asequential procedure [J]. Journal of Colloid and Interface Science,1997,192(2):398-407.
    [131] Aksu Z, Karabayir G. Comparison of biosorption properties of different kinds of fungifor the removal of Gryfalan Black RL metal-complex dye [J]. Bioresource Technology,2008,99(16):7730-7741.
    [132] Al-Ghouti M, Khraisheh M A M, Ahmad M N M, et al. Thermodynamic behaviour andthe effect of temperature on the removal of dyes from aqueous solution using modifieddiatomite: A kinetic study [J]. Journal of Colloid and Interface Science,2005,287(1):6-13.
    [133] Ho Y S, Ng J C Y, Mckay G. Kinetics of pollutant sorption by biosorbents: Review [J].Separation and Purification Methods,2000,29(2):189-232.
    [134] Sukul P, Lamshoeft M, Zuehlke S, et al. Sorption and desorption of sulfadiazine in soiland soil-manure systems [J]. Chemosphere,2008,73(8):1344-1350.
    [135] Gao J A, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals[J]. Environmental Science&Technology,2005,39(24):9509-9516.
    [136] Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soilsorption of sulfamethazine [J]. Chemosphere,2009,76(4):558-564.
    [137] Tolls J. Sorption of veterinary pharmaceuticals in soils: A review [J]. EnvironmentalScience&Technology,2001,35(17):3397-3406.
    [138] Thiele S. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by along-term differently fertilized loess Chernozem [J]. Journal of Plant Nutrition and SoilScience,2000,163(6):589-594.
    [139] Langhammer J P. Untersuchungen zum Verbleib antimikrobiell wirksamer Arzneistoffeals Rückst nde in Gülle und im landwirtschaftlichen Umfeld [M].1989.
    [140] Gu C, Karthikeyan K G. Interaction of tetracycline with aluminum and iron hydrousoxides [J]. Environmental Science&Technology,2005,39(8):2660-2667.
    [141] Nomura K, Rykov A, Mitsui T, et al. Characterization of perovskite related oxides bynuclear resonance in elastic scattering of synchrotron radiation (vol255, pg187,2003)[J].Journal of Radioanalytical and Nuclear Chemistry,2003,256(3):609-613.
    [142] Shahwan T, Erten H N. Temperature effects in barium sorption on natural kaolinite andchlorite-illite clays [J]. Journal of Radioanalytical and Nuclear Chemistry,2004,260(1):43-48.
    [143] Xu D, Tan X L, Chen C L, et al. Adsorption of Pb(II) from aqueous solution to MX-80bentonite: Effect of pH, ionic strength, foreign ions and temperature [J]. Applied Clay Science,2008,41(1–2):37-46.
    [144] Lyubchik S I, Lyubchik A I, Galushko O L, et al. Kinetics and thermodynamics of theCr(III) adsorption on the activated carbon from co-mingled wastes [J]. Colloids and SurfacesA: Physicochemical and Engineering Aspects,2004,242(1):151-158.
    [145] Randall S R, Sherman D M, Ragnarsdottir K V, et al. The mechanism of cadmiumsurface complexation on iron oxyhydroxide minerals [J]. Geochimica Et Cosmochimica Acta,1999,63(19-20):2971-2987.
    [146] Gschwend P M, Schwarzenbach R P. Physical chemistry of organic compounds in themarine environment [J]. Marine Chemistry,1992,39(1–3):187-207.
    [147] Yang W, Zheng F, Lu Y, et al. Adsorption Interaction of Tetracyclines with PorousSynthetic Resins [J]. Industrial&Engineering Chemistry Research,2011,50(24):13892-13898.
    [148] Gao Y, Li Y, Zhang L, et al. Adsorption and removal of tetracycline antibiotics fromaqueous solution by graphene oxide [J]. Journal of Colloid and Interface Science,2012,368:540-546.
    [149] Carda-Broch S, Berthod A. Countercurrent chromatography for the measurement of thehydrophobicity of sulfonamide amphoteric compounds [J]. Chromatographia,2004,59(1-2):79-87.
    [150] Pils J R V, Laird D A. Sorption of tetracycline and chlortetracycline on K-andCa-saturated soil clays, humic substances, and clay-humic complexes [J]. EnvironmentalScience&Technology,2007,41(6):1928-1933.
    [151] Richter M K, Sander M, Krauss M, et al. Cation Binding of Antimicrobial Sulfathiazoleto Leonardite Humic Acid [J]. Environmental Science&Technology,2009,43(17):6632-6638.
    [152] Wangsuo W, Qiaohui F, Junzheng X, et al. Sorption-desorption of Th(IV) on attapulgite:effects of pH, ionic strength and temperature [J]. Applied Radiation and Isotopes,2007,65(10):1108-1114.
    [153] Gu B, Schmitt J, Chen Z, et al. Adsorption and desorption of different organic matterfractions on iron oxide [J]. Geochimica Et Cosmochimica Acta,1995,59(2):219-229.
    [154] Zazzi A, Jakobsson A-M, Wold S. Ni(II) sorption on natural chlorite [J]. AppliedGeochemistry,2012,27(6):1189-1193.
    [155] Westall J C, Jones J D, Turner G D, et al. Models for Association of Metal Ions withHeterogeneous Environmental Sorbents.1. Complexation of Co(II) by Leonardite HumicAcid as a Function of pH and NaClO4Concentration [J]. Environmental Science&Technology,1995,29(4):951-959.
    [156] Kershaw J R, Barrass G, Gray D, et al. Process effects on the nature of coal liquefactionproducts [J]. Fuel,1980,59(6):413-418.
    [157] Anderson G K, Phipps A K. Hydrogen-deuterium exchange reactions catalyzed byzerovalent phosphinepalladium complexes [J]. Journal of Organometallic Chemistry,1984,266(1): c15-c8.
    [158] Wheeler S E, Houk K N. Substituent Effects in Cation/pi Interactions and ElectrostaticPotentials above the Centers of Substituted Benzenes Are Due Primarily to Through-SpaceEffects of the Substituents [J]. Journal of the American Chemical Society,2009,131(9):3126-3132.
    [159] Wijnja H, Pignatello J J, Malekani K. Formation of pi-pi complexes betweenphenanthrene and model pi-acceptor humic subunits [J]. Journal of Environmental Quality,2004,33(1):265-275.
    [160] Ji L, Chen W, Duan L, et al. Mechanisms for strong adsorption of tetracycline to carbonnanotubes: A comparative study using activated carbon and graphite as adsorbents [J].Environmental Science&Technology,2009,43(7):2322-2327.
    [161] Kulshrestha P, Giese R F, Aga D S. Investigating the molecular interactions ofoxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil [J].Environmental Science&Technology,2004,38(15):4097-4105.
    [162]郭凌,卜玉山,张曼,等.煤基腐殖酸对外源砷胁迫下玉米生长及生理性状的影响[J].环境工程学报,2014,(2):758-766.
    [163]杨立,何晨余.活性炭吸附腐殖酸的分段等温吸附模拟及热力学研究[J].水处理技术,2014,(1):29-32.
    [164] Schulten H R. The three-dimensional structure of humic substances and soil organicmatter studied by computational analytical chemistry [J]. Fresenius J Anal Chem,1995,351(1):62-73.
    [165] Wu P X, Zhang Q, Dai Y P, et al. Adsorption of Cu(II), Cd(II) and Cr(III) ions fromaqueous solutions on humic acid modified Ca-montmorillonite [J]. Geoderma,2011,164(3-4):215-219.
    [166] Leone V, Iovino P, Salvestrini S, et al. Sorption of non-ionic organic pollutants onto ahumic acids-zeolitic tuff adduct: Thermodynamic aspects [J]. Chemosphere,2014,95:75-80.
    [167] Zhao J, Wang Z, Ghosh S, et al. Phenanthrene binding by humic acid-protein complexesas studied by passive dosing technique [J]. Environmental Pollution,2014,184:145-153.
    [168] Allen-King R M, Grathwohl P, Ball W P. New modeling paradigms for the sorption ofhydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, androcks [J]. Adv Water Resour,2002,25(8–12):985-1016.
    [169] Chi F H, Amy G L. Kinetic study on the sorption of dissolved natural organic matteronto different aquifer materials: the effects of hydrophobicity and functional groups [J].Journal of Colloid and Interface Science,2004,274(2):380-91.
    [170] Li J, Werth C J. Slow desorption mechanisms of volatile organic chemical mixtures insoil and sediment micropores [J]. Environmental Science&Technology,2004,38(2):440-448.
    [171] Li J, Fu J, Xiang X, et al. Kinetics, equilibrium, and mechanisms of sorption anddesorption of17alpha-ethinyl estradiol in two natural soils and their organic fractions [J].Science of the Total Environment,2013,452:404-410.
    [172] Chakraborty R, Karmakar S, Mukherjee S, et al. Kinetic evaluation of chromium(VI)sorption by water lettuce (Pistia)[J]. Water Science and Technology,2014,69(1):195-201.
    [173]吴应琴,蒋煜峰,马明广,等.不溶性腐殖酸对水中对硝基苯胺吸附行为的研究[J].西北师范大学学报(自然科学版),2006,(3):62-65.
    [174]魏沙平,李红陵,陈飞霞,等.土壤腐殖酸对毒死蜱的吸附[J].环境科学学报,2007,(10):1675-1680.
    [175] Accinelli C, Hashim M, Epifani R, et al. Effects of the antimicrobial agentsulfamethazine on metolachlor persistence and sorption in soil [J]. Chemosphere,2006,63(9):1539-1545.
    [176] Jeong C Y, Wang J J, Dodla S K, et al. Effect of Biochar Amendment on TylosinAdsorption-Desorption and Transport in Two Different Soils [J]. Journal of EnvironmentalQuality,2012,41(4):1185-1192.
    [177] Ramaswamy J, Prasher S O, Patel R M. Sorption and desorption of salinomycin sodiumin clay, loamy sand, and sandy soils [J]. Environ Monit Assess,2012,184(9):5363-5369.
    [178]杨琛,黄伟林,傅家谟,等.不同类型的原煤对疏水性有机污染物的吸附与解吸[J].环境科学,2004,25(6):145-149.
    [179] Von Oepen B, Kordel W, Klein W. Sorption of nonpolar and polar compounds to soils:Processes, measurements and experience with the applicability of the modifiedOECD-guideline106[J]. Chemosphere,1991,22(3-4):285-304.
    [180] Essington M E, Lee J, Seo Y. Adsorption of Antibiotics by Montmorillonite andKaolinite [J]. Soil Sci Soc Am J,2010,74(5):1577-1588.
    [181]吴志坚,刘海宁,张慧芳.离子强度对吸附影响机理的研究进展[J].环境化学,2010,6(29):997-1001.
    [182] Hayes K F, Papelis C, Leckie J O. Modeling ionic strength effects on anion adsorptionat hydrous oxide/solution interfaces [J]. Journal of Colloid and Interface Science,1988,125(2):717-726.
    [183]张倩,杨琛,党志,等.泰乐菌素在华南地区农业土壤上的吸附动力学和热力学特性[J].环境科学研究,2010,(8):1019-1024.
    [184] Rabolle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox,oxytetracycline and tylosin in soil [J]. Chemosphere,2000,40(7):715-722.
    [185] Ou X, Quan X, Chen S, et al. Atrazine photodegradation in aqueous solution induced byinteraction of humic acids and iron: Photoformation of Iron(II) and hydrogen peroxide [J].Journal of Agricultural and Food Chemistry,2007,55(21):8650-8656.
    [186] Ge L, Chen J, Lin J, et al. Light-Source-Dependent Effects of Main Water Constituentson Photodegradation of Phenicol Antibiotics: Mechanism and Kinetics [J]. EnvironmentalScience&Technology,2009,43(9):3101-3107.
    [187]孙振亚,祝春水,龚文琪.铁(氢)氧化物矿物对有机污染物的光催化氧化作用[J].矿物学报,2003,(4):341-348.
    [188]郭学涛,杨琛,曾晓明,等.环境因素对针铁矿光解泰乐菌素的影响[J].中国环境科学,2014,(2):364-370.
    [189] Kwan W P, Voelker B M. Rates of hydroxyl radical generation and organic compoundoxidation in mineral-catalyzed Fenton-like systems [J]. Environmental Science&Technology,2003,37(6):1150-1158.
    [190] Kwan W P, Voelker B M. Influence of electrostatics on the oxidation rates of organiccompounds in heterogeneous Fenton systems [J]. Environmental Science&Technology,2004,38(12):3425-3431.
    [191]牟柏林,李芳菲,侯天意,等.天然沸石对提高TiO2光催化活性的作用[J].吉林大学学报(地球科学版),2006,(4):668-672.
    [192]王利平,蔡华,陈毅忠,等. Fenton试剂深度处理印染废水的研究[J].中国给水排水,2010,(7):90-92.
    [193] Watts R J, Foget M K, Kong S H, et al. Hydrogen peroxide decomposition in modelsubsurface systems [J]. Journal of Hazardous Materials,1999,69(2):229-243.
    [194] Chen J, Rulkens W H, Bruning H. Photochemical elimination of phenols and cod inindustrial wastewaters [J]. Water Science and Technology,1997,35(4):231-238.
    [195] Batchu S R, Panditi V R, Gardinali P R. Photodegradation of sulfonamide antibiotics insimulated and natural sunlight: Implications for their environmental fate [J]. Journal ofEnvironmental Science and Health Part B-Pesticides Food Contaminants and AgriculturalWastes,2014,49(3):200-211.
    [196] Leal J F, Esteves V I, Santos E B H. BDE-209: Kinetic Studies and Effect of HumicSubstances on Photodegradation in Water [J]. Environmental Science&Technology,2013,47(24):14010-14017.
    [197] Lopez-Granada G, Barceinas-Sanchez J D O, Lopez R, et al. High temperature stabilityof anatase in titania-alumina semiconductors with enhanced photodegradation of2,4-dichlorophenoxyacetic acid [J]. Journal of Hazardous Materials,2013,263:84-92.
    [198] Perisa M, Babic S, Skoric I, et al. Photodegradation of sulfonamides and their N(4)-acetylated metabolites in water by simulated sunlight irradiation: kinetics andidentification of photoproducts [J]. Environmental Science and Pollution Research,2013,20(12):8934-8946.
    [199] Gao P, Ng K, Sun D D. Sulfonated graphene oxide-ZnO-Ag photocatalyst for fastphotodegradation and disinfection under visible light [J]. Journal of Hazardous Materials,2013,262:826-835.
    [200] Wang X, Wu Z, Wang Y, et al. Adsorption-photodegradation of humic acid in water byusing ZnO coupled TiO2/bamboo charcoal under visible light irradiation [J]. Journal ofHazardous Materials,2013,262:16-24.
    [201] Fu H, Quan X, Liu Z, et al. Photoinduced transformation of HCH in the presence ofdissolved organic matter and enhanced photoreactive activity of humate-coated945; Fe2O3[M]. Washington, DC, ETATS-UNIS: American Chemical Society,2004.
    [202] Abate G, Masini J C. Adsorption of atrazine, hydroxyatrazine, deethylatrazine, anddeisopropylatrazine onto Fe(III) polyhydroxy cations intercalated vermiculite andmontmorillonite [J]. Journal of Agricultural and Food Chemistry,2005,53(5):1612-1619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700