用户名: 密码: 验证码:
玻璃微珠载体的制备与固定化酶条件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首先用分相法和填充法制作了两种多孔玻璃微珠FXBL和TCBL,用它们作为载体分别用物理吸附法、共价偶联法和重氮法固定了α-淀粉酶,在对它们的固定效果比较后,选取了共价偶联法进行了较详细的研究;确定了共价偶联α-淀粉酶的最佳固定条件、最佳应用条件和固定化酶的性质;并研究了多孔玻璃微珠制作条件对固定化酶的影响和多孔玻璃微珠对过氧化氢酶及谷氨酸脱羧酶的固定化效果,主要结果如下:
     (1)FXBL和TCBL的平均粒径分别为1.48mm和1.49mm:FXBL的侵蚀率为33.65%;FXBL和TCBL均有较好的强度,分别为32Kg/Cm~2和26Kg/Cm~2;FXBL和TCBL的吸水率分别是27.37%和25.32%;体积密度分别是1.34g/Cm~3和1.37g/Cm~3;显气孔率分别是33.60%和31.87%。
     (2)用γ-氨丙基三乙氧基硅烷处理微珠表面最佳时间为3h,活化烷基胺玻璃微珠TCBL和FXBL时戊二醛的最佳浓度分别为3%和2%
     (3)共价偶联法固定α-淀粉酶的最佳固定条件为:温度10℃;pH=6.2;给酶量TCBL为2.6g/L、FXBL为2.4g/L;时间12h。
     (4)共价偶联法固定α-淀粉酶的最佳应用条件为:温度75℃,TCBL固定化酶pH值为5.2、FXBL固定化酶为5.4,分别比自由酶的最适pH 6.0低0.8和0.6个pH单位。
     (5)固定化α-淀粉酶的性质:在80℃受热1h,固定化酶的活力下降小于7%,而自由酶活力则下降至63%;FXBL固定化酶和TCBL固定化酶分别使用5次和8次还可以保持60%的活力。
     (6)用TCBL作载体的固定化酶的总活力为357.39U/g,固定化活力回收率为39.79%,活力表现率为66.73%。用FXBL作载体的固定化酶的总活力为324.96U/g,固定化活力回收率为36.18%,活力表现率为54.25%。
     (7)580℃分相玻璃优于560℃,分相时间到36h后,分相对固定化酶活力影响不大;多孔玻璃用0.3 mol/L的KOH溶液扩孔3h是最理想;当盐酸的浓度为0.3mol/L时侵蚀成孔,固定化α-淀粉酶活力达到最大值。
     (8)多孔玻璃固定酶有一定通用性,主要取决于其表面的改性情况,本实验的表面实际为戊二醛,所以能被戊二醛交联的酶,就可用本载体制备固定化酶。
To begin with, two kinds of porous glass beads, FXBL and TCBL, were prepared by phase separation and stuffing salts. The beads were used as carrier for immobilizingα-amylase by aborption, convalent binding and diazotization-coupling methods. And meanwhile, the three methods were compared through effect of immobilization, so one of them, the convalent binding method, was picked out and studied in detail, then the optimal conditions of the immobilization and application are obtained. After then, the properties of immobilization ofα-amylase were studied . Secondly , effect of making porous glass bead process on immobilizedα-amylase was studied . Finally, porous glass beads were used as carrier for immobilizing catalase and glutamic acid decarboxylase, so the effectiveness of porous glass beads as carrier was verified. The main conclusion is followed as:
     (1) The mean diameter of FXBL is 1.48mm and TCBL is 1.49mm. Erosion Ratio of FXBL is 33.65%. In terms of FXBL and TCBL, Strength is 32 kg /cm~2 and 26kg /cm~2, and Water Absorption is 27.37% and 25.32%, and Bulk Density is 1.34 g/cm~3 and 1.37 g/cm~3, and Apparent Porosity is 33.60% and 31.87%.
     (2)It is 3h that the optimal bead surfaces treatment time byγ-aminopropyl triethoxy silane. It is 3% that the optimal concentration of glutaraldehyde which activates alkylamine glass beads TCBL's surface , so is 2% to FXBL.
     (3)The optimal conditions of the immobilization ofα-amylase , by convalent binding, is as followed: temperature is 10℃, pH is 6.2, the load of enzyme is 2. 6g/L(to TCBL) and 2. 4g/L(to FXBL) , time is 12h.
     (4)the optimal application conditions of theα-amylase that immobilized by convalent binding is as followed: temperature is 75℃, and temperature being 5℃higher than the freeα-amylase , pH is 5.2 (to TCBL )and 5.4 (to FXBL), and pH value reducing 0.6 (to TCBL) and 0.8 (to FXBL)unit than the freeα-amylase.
     (5)Fundamental properties of immobilizedα-amylase is as followed: If treating 1h at 80℃, the activity of immobilizedα-amylase would decline less than 7%, and the activity of freeα-amylase would be reduced to 63%, obviously, the thermal stability of immobiliziedα-amylase is excellent than freeα-amylase. After immobilized α-amylase is reused 5 (to FXBL) and 8 (to TCBL ) times , their activities can been kept about 60% .
     (6)Under the optimal immobilizing conditions, immobilizedα-amylase was obtained, and under the optimal applying conditions, the activity of immobiliziiedα-amylase was detected, and experimental results were as follows: the immobilizedα-amylase on TCBL has a total activity 357. 39U/g, a recovery rate 39. 79%, and an expression activity 66.73%. Similarly, they are 324.96U/g, 36.18%, 54. 25% on FXBL
     (7)Phase Separation at 580°C get the grab on 560℃, after 36h, the time of Phase Separation has little effect on activity of immobilizedα-amylase. Hole reamed by 0.3 mol/L potassium hydroxide solution is the most effective. After hole is eroded by 0. 3 mol/L hydrochloric acid solution , immobilizedα-amylase has the maximum activity.
     (8)Generality of porous glass as carrier is dependent on the state which their surfaces are. modified.
引文
[1]卓仁禧,罗毅,陶国良.固定化酶技术及其进展.离子交换与吸附[J].1994(5):446—453.
    [2]Malcata F.X.,Hill C.G.,Amundson C.H..Use of a lipase immobilized in a membrane reactor to hydrolyze the glycerides of butter oil[J].Biotechnol Bioeng,1991,38:854—867.
    [3]Lante A.,Crapisi A.,Pasini G.,etal.Immobilized Iaccase for must and wine processing[J].Annals of the New York Academy of Science,1992(672):558—566.
    [4]Bahar T.,Celebi S.S..Immobilization of glucoamylase on magnetic poly particles[J].J.Appl.Polym.Sci 1999,72(1):68—75.
    [5]陈辉,张剑波.固定化漆酶催化去除水中2,4-二氯苯酚[J].北京大学学报(自然科学板).2006(04):1-6.
    [6]Magofi E.,Reinhardt G.,Fleischer M.,et al.Thich film device for the detection of NO and oxygen in exhaust gases[J].Sensors and Actualors B.,2003,95:162—169.
    [7]罗开昆.磁性微球载体的合成及其对酶的固定化研究[D].2005:1.
    [8]张伟,杨秀山.酶的固定化技术及其应用.自然杂志[J].2000,22(5):282-283.
    [9]肖海军,贺筱蓉.固定化酶及其应用研究进展[J].生物学通报.2001(07):9-10.
    [10]Cao L,angen L,heldon RA.Immobilised enzymes:carrier—bound or carrier[J].Curr Opin Biotechn01.2003,14(4):385—393.
    [11]Mateo C,Palomo JM.A new mild cross—linking methodology to prepare cross—linke denzyme aggregates[J].Biotechnol Bioeng.2004,86(3):273-278.
    [12]蒋治良,莫琪,李森.酶的固定化及应用[J].广西化工.1996(10):9—11.
    [13]郭勇.酶工程[M].北京:中国轻工业出版社.1994:159—161.
    [14]钱军民,张兴.酶固定化载体材料研究进展[J].化工新材料.2002,30(10).21-24.
    [15]Wood ward J..Immobilized Cells and Emzymes:A Practical Approach[M].IRL,PRESS,1985,2-17.
    [16]Zaborsky O.R..Immobilized emzymes[M].OH,USA:CRC Press 1974,175.
    [17]石成利,染忠友,李春红.纳米多孔功能玻璃研究进展[J].建筑玻璃与工业玻璃,2005(1):22—24.
    [18]作花济夫.玻璃手册[M].蒋国栋译.北京:中国建材工业出版社,1985:816.
    [19]Brabara,Krajewska.Application of chitin and chitosan basded materials for enzyme immobilizations[J].Enzyme and Microbial
    ??Techn,2004(35):126.
    [20]Bullockc.Immoblilized enzyme[J].Sci Prongress,1995(78):119.
    [21]Chaplin M F,Bucke C,Enzyme technology[M].Cambridge:Cambridge University Press.1990:107.
    [22]Pskin A K.Therapeutic of immobilized enzymes[J].NATO ASL SERE,1993(252):191.
    [23]胥焕岩,王升高.多孔玻璃的性质、用途和制备[J].武汉化工学院学报,2003,22(1):40—43.
    [24]西北轻工业学院主编.玻璃工艺学[M].北京:中国轻工业出版社,1982:57-58.
    [25]牧岛亮男,镜野照雄.高硅氧玻璃分相机理的研究[J].材料科学,1959(6):49.
    [26]W.福格尔.玻璃化学[M].谢于深译.北京:中国轻工业出版社,1988:97-123.
    [27]王曼莉.玻璃分相的研究和应用[J].玻璃与搪瓷,1987(2):41-43.
    [28]Hammel J j.Glass composition and method of making[P].U.S.Pat.3834911.1974-09-10.
    [29]Howell B F,Simmous J H.Research on the principle of production of ceramics glass[J].Amceram Bull,1975(54):707.
    [30]袁启华,罗大兵,雷丽文.载体多孔玻璃微珠的制备及应用[J].硅酸盐通报,2000(3):52.
    [31]牧岛亮男,镜野照雄.微孔材料孔径影响因素探讨[J].窑业协会志,1968(76):245.
    [32]刘世权,卢君强.影响多孔玻璃孔结构的因素[J].硅酸盐通报,2000(2):13—15.
    [33]王倩,孙航.宏性多孔玻璃载体颗粒的制备[J].四川大学学报,2002(5):99—103.
    [34]作花济夫.玻璃非晶态科学[M].北京:中国建筑工业出版社,1986:159—171.
    [35]焦紫良.溶胶-凝胶法制备多孔玻璃及其在光纤传感器中的应用研究[D].武汉:武汉工业大学材料学院,1995.
    [36]作花济夫.玻璃手册[M].蒋国栋译.北京:中国建材工业出版社,1985:817.
    [37]周玉华,王树生等.固定化酶用微孔玻璃的研究[J].硅酸盐学报,1984(6):193—196.
    [38]黄熙怀.微孔玻璃的制造[J].硅酸盐学报,1989(2):38—44.
    [39]刘海燕,杨更亮.一种简化的重氮化法制备固定化酶的载体合成方法[J].离子交换与吸附,2002,18(3):205-210.
    [40]郭杰炎,蔡武城.微生物酶[M].北京:科学出版社,1986:146—150.
    [41]王璋.食品酶学[M].北京:中国轻工业出版社,1990:139.
    [42]胡欣洁,邓斌,胡泳.微生物α-淀粉酶的研究进展[J].中国防伪,2005(9):58—60.
    [43]李清华.淀粉酶测定难以标准化[J].临床检验杂志,1996,14(5):267—268.
    [44]陈瑜,马莉.CNP—G3法与PNP—G法测定α-淀粉酶的比较[J].陕西中医学院学报,2005,28(4):68—69.
    [45]李剑芳,邬敏辰.α-淀粉酶测定方法的探讨[J].江苏食品与发酵,1996(3):8—10.
    [46]吴京平.天然复方促进剂对α-淀粉酶酶学性质的影响[J].食品油粮科技,2003,(5):1-4.
    [47]魏铁麒,奚新伟,毕建文.固体发酵法生产α-淀粉酶的研究[J].生物技术,1997(6):27—29.
    [48]张丽萍,徐岩,金建中,酸性α-淀粉酶的研究与应用[J].酿酒,2002,29(3):19—21.
    [49]姚卫蓉,姚惠源.复合淀粉酶酶解生淀粉机理探讨[J].工业微生物,2005,34(4):15—24.
    [50]方祥,黄胜乔,刘少颜.α-淀粉酶制备微孔淀粉技术的研究[J].研究与探讨,2005,26(1):59—62.
    [51]朱祥瑞,徐俊良.家蚕丝素固定α-淀粉酶的制备及其理化特性[J].浙江大学学报(农业与生命科学版),2002,28(1):64—69.
    [52]高春光,刘滇生,赵永祥.溶胶—凝胶法固定α-淀粉酶的研究[J].化学与生物工程,2005(7):36—37.
    [53]吴颉,王君.磁性聚乙烯醇缩丁醛微球固定化α-淀粉酶[J].精细化工,2003,20(3):143—145.
    [54]祝美云,艾志录.海藻酸钙明胶联合固定化α-淀粉酶[J].食品科学,2004,25(2):64—68.
    [55]刘峥,蒋先民.壳聚糖与丙烯腈接枝共聚物的制备及固定α-淀粉酶研究[J].离子交换与吸附,2001,17(3):256—262.
    [56]何琳,林贤福.α-淀粉酶在阴离子化PET表面的自组装膜及其AFM研究[J].化学学报,2002,(60):377—381.
    [57]谈启明,唐南龙.胶粉末孔分布的测定[J].硅酸盐通报,1993,6:55—59.
    [58]王倩,孙航.宏性多孔玻璃载体颗粒的制备[J].四川大学学报,2002(5):101.
    [59]国家质量技术监督局.G.B/T3810.1-16—2006[M].北京:中国标准出版社,2006.78—81
    [60]西北轻工业学院.玻璃工艺分析实验[M].咸阳:校编教材,1985:63.
    [61]耿谦.硅酸盐岩相学[M].北京:中国轻工业出版社,1994:414—415.
    [62]张龙翔,张庭芳,李令媛.生化实验方法和技术[M].北京:高等教育出版社,1981:371.
    [63]邵瑜.酸碱滴定法测定戊二醛含量的方法的改进[J].中国卫生检验杂志,2004,14(3):377.
    [64]中山大学生物系生化微生物学教研室.生化技术导论[M].北京:人民教
    ??育出版社,1978.
    [65]西北轻工业学院.玻璃工艺学[M].北京:轻工业出版社,1982,10.
    [66]西北农业大学.基础生物化学实验指导[M].宝鸡:陕西科学技术出版社,1986.92—93.
    [67]陈军,陆新等.固定化过氧化氢酶的制备及其抗氧化作用[J].化学研究与应用,2006,18(6):737—739.
    [68]波钦诺·XH著,荆家海等译.植物生物化学分析方法[M].北京:科学出版社,1981:90—100.
    [69]林少琴,吴若红.壳聚糖固定谷氨酸脱羧酶的研究[J].药物生物技术,2005,12(2):101—105.
    [70]Tsushida T,Murai T.Conversion of glutamic acid to γ—aminobutyric acid in tea leaves under anaerobic conditions[J].Agric Biochem,1987,51(11):2865.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700