用户名: 密码: 验证码:
基于网格计算的分布式仿真关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式仿真技术以其灵活、高效和经济的特点在短短的几十年时间内得到了迅猛的发展,并广泛应用于航空、军事、社会经济及游戏娱乐等诸多领域,成为人们进行系统分析、设计、测试、试验、预测及操作训练的有力工具。分布式仿真技术已经成为了继理论研究和实验研究之外,人们认识和改造客观世界的第三种重要手段。高层体系结构(High Level Architecture,HLA)着眼于解决分布式仿真的互操作和可重用问题,已成为构建分布式仿真系统的事实标准。基于HLA的分布式仿真技术在众多领域都得到了广泛的应用。但是,随着仿真应用领域的不断扩大,仿真系统的规模和复杂度也不断提高,对计算资源、存储资源、通信资源以及专用仿真软硬件的要求也越来越高。传统基于HLA的仿真应用正越来越多地受到计算资源利用率相对低下、缺乏动态负载平衡能力和有效的安全机制、海量数据难以存储和及时有效处理等诸多问题的困扰,这已成为制约HLA在大规模分布式仿真领域进一步发展的瓶颈。近年来,网格技术和Web服务技术的出现,为解决传统HLA仿真应用存在的问题提供了一个新的途径,基于网格技术的HLA仿真技术逐渐成为了仿真领域的研究热点。本文利用网格服务相关技术,提出了一个用于构建大规模、跨网络的分布式应用的框架GADS,并就基于网格服务的分布式仿真系统的若干关键问题进行了深入研究和探讨。论文的主要研究内容包括:
     针对基于HLA的分布式仿真技术存在的不足,分析了当前流行的解决方案及其优缺点,确定了基于网格计算和Web服务的分布式仿真的研究方向,并设计了基于网格计算的分布式仿真框架GADS。该框架中创新性地引入了仿真代理层的概念,通过代理层的引入,提高了仿真的灵活性和性能。在GADS仿真框架的基础上,提出了基于GADS的分布式仿真系统构建方法和构建流程;并分析了基于GADS框架的分布式仿真交互运行过程。
     研究了GADS框架下的仿真任务调度服务及负载平衡策略。定义了基于主机负载平衡度及网络通信代价的仿真任务调度算法评价标准,并以此为目标函数设计了基于无向完全图UCG的仿真任务调度算法。在此基础上,针对大多数分布式仿真呈现出通信交互密集的特征,进一步提出了基于UCG的通信优先两级调度算法,并分析了该算法的优点及应用场合。针对动态调度问题,定义了系统负载平衡度概念及计算方式,并提出了GADS框架下的负载平衡策略。借助于GADS框架中引入的仿真代理层,对现有邦员迁移算法进行优化,设计了一个免冻结的仿真邦员迁移协议GFMP。该协议采用两阶段迁移的方式,并且在迁移过程中只需修改仿真代理的代理对象,仿真源节点和目标节点可以在一定的程度上重叠运行,从而无需在迁移过程中冻结整个仿真的执行,有效提高了实施负载平衡的效率。
     HLA时间管理作为分布式仿真开发过程中的可选服务,提供了多种时间管理策略,但都还不够成熟,存在着诸多问题。本文对流行的保守时间推进机制进行了全面研究,分析了基于时间前瞻量和GALT的保守时间推进算法的代价及死锁问题;并在重点分析经典的Frederick算法的基础上,设计了一个基于GALT的保守时间推进改进算法,该改进算法可以避免Frederick算法中出现的死锁问题。针对乐观时间推进策略,提出了检查点设置周期算法,该算法综合考虑了回滚概率和可能回滚长度两个因素,通过合理的检查点设置,实现了对常规乐观时间推进算法的性能优化。创新性地将向量时间引入到乐观时间推进机制研究中,并定义了向量时间更新策略,进而提出回滚向量的概念并利用经典仿真推进案例分析了基于向量时间的回滚算法,在此基础上设计了基于向量时间的分布式仿真乐观推进算法。
     鉴于HLA规范在仿真安全管理方面的缺失,在GADS框架下设计了分布式仿真安全体系结构,并给出了GADS框架下的安全策略。针对在开放网络中进行安全分布式仿真问题,提出了一个零副作用的组密钥更新算法,算法避免了基于树结构的密钥更新算法的弊端,在成员加入或退出时,可以在不影响其余组员的情况下更新组密钥。该算法不仅可以应用于基于GADS框架的分布式仿真中,也可以应用于其他所有需要安全组播通信的场景。另外,设计了一个基于可信计算的可信传输协议,用于在开放的网络环境下进行可信的数据传输,该协议可应用于邦员跨安全域迁移的情况,也适用于其他需要进行可信传输的场景。
     在GADS仿真框架的基础上,设计实现了一个分布式测试仿真系统,该系统作为2008年度总装重点试验项目主要内容,目前已经投入试运行,系统各项指标均达到标准,运行状况良好。目前该项目正在申请全军科技进步一等奖。
In less than several decade, distributed simulation has gained a rapid development for its flexibility, efficiency and economical characteristics and has been applied in many fields such as avigation, military, social economics, entertainment and so on. The distributed simulation has been taken as a powerful tool in system analysis, design, testing, experiments, forecasting and operation training. Distributed simulation has become the third important method to understand and transform the objective world besides theory research and experiment. With a view to resolve interoperability and reuseability of distributed simulation, HLA has become the IEEE standard to construct distributed simulation. Distributed simulation based on HLA is applied more and more in military, avigation, weather, industry control, bioengineering and many other fields. With the extending use of simulation application, the scale and complexity of simulation system has increased, at the same time, the requirements for computing resources, storage resources, communication resources and special simulation instruments have also increased. Simulation application based on HLA is bothered more and more by some problems like relative low efficiency of computing resource usage, lack of dynamic load balance capability, lack of effective security mechanism, difficulty to save and deal with the vast data in time and effectively, which have become the bottleneck to construct the large scale distributed simulation tasks exactly and efficiently. In recent years, the grid computing and web services technologies provide a new approach to solve those problems of the traditional simulation based on HLA. The research of Grid-based HLA simulation technology has become a hot issue in simulation field. To resolve the above problems of HLA, by using grid computing technology this dissertation proposes a GADS framework to construct large scale and across-network distributed application, researches and discusses some key problems thoroughly. The main innovation achievements are listed as follow.
     By analyzing and researching the shortcomings of traditional distributed simulation framework, an advanced GADS framework is introduced, using the creative concept of simulation agent layer in order to improve the flexibility and capability of simulation under the GADS framework, the construction flow and the simulation interaction of distributed simulation had also been discussed.
     The simulation task scheduling service and load balance scheme of GADS had been studied and a schedule evaluation standard based on load balance and network traffic condition had been defined here. Then, taking it as a target function, simulation task scheduling algorithm based on UCG(Undirected Complete Graph) was proposed. Aimed at the characteristics that most distributed simulations are communications intensive, a communications preferred two stage scheduling algorithm based on UCG has been designed, and furthermore its advantage and application situation had been analyzed . As to dynamic scheduling problem,the definition of system load balance degree has been forwarded, and taking this as the basis, the load balance strategy under GADS framework was developed. By introducing simulation agent layer into GADS framework, the existing federate migratioin algorithm has been optimized and a freeze free federate migration protocol GFMP, which could just change the agent target of simulation agent in transfer process to ensure simulation source node and destination node overlap to some extent, has been designed. It would result in no need for suspending simulation execution during migrating, which would improve the efficiency of the whole simulation.
     As an optional service in distributed simulation system, HLA time management service provided many time management strategies, which are not mature enough. This dissertation researched thoroughly the present popular conservative time advanced mechanism, took the conservative time advanced algorithm based on lookahead and GALT as a example and analyzed its overhead and deadlock problem,then based on the analysis of classical Frederick algorithm, a improved conservative time advanced algorithm based on GALT has been designed which could avoid the deadlock appearing in Frederick algorithm. Aimed at optimistic time advanced mechanism, a checkpoint setting algorithm has been proposed which considered both rollback probability and rollback distance and through reasonable setup of checkpoints, the performance optimization of routine optimistic time advanced mechanism could be realized. Vector time was introduced creatively into the study of optimistic time advanced mechanism. Vector time updating scheme has been defined, moreover the conception of rollback vector has been introduced and those rollback algorithm based on vector time had been analyzed by using classical simulation advancing examples. On this basis, distributed simulation optimistic time advanced algorithm based on vector time has been designed. Considering the deficiency of HLA standard in simulation security management, distributed simulation security system structure was designed under the GADS framework and the security strategy under GADS frame was proposed. Based on trusted platform technology, we propose a group rekeying scheme which is stateless, needs no key server (i.e. distributed) and remains zero side effect on other members in the same group no matter which kind of change in membership happens. This algorithm could be applied not only in distributed simulation on GADS framework, but also in the other situations that need security group communication. In addition, a trusted transfer protocol based on trusted computimg for data transmission in open network environment has been designed. This protocol could be applied in federation migration across domain situation and also in other situations needing trusted transmission.
     On the basis of GADS simulation framework, a distributed testing simulation system was realized, which is one of the key experiment program of national defense in 2008 and has been put into preoperation. All performance parameters in this system have met the standard and the system is executed in satisfactory working order. This program is on the application for the first prize of Army Science and Technology Progress.
引文
[1] Edward D Lazowska , Marc R. Benioff. Computational Science: Ensuring America‘s Competitiveness (Report to The President) [R]. USA: President's Information Technology Advisory Committee (PITAC),May 27,2005.
    [2]周彦,戴剑伟,HLA仿真程序设计,电子工业出版社,2002
    [3]李伯虎,柴旭东,毛媛.现代仿真技术发展中的两个热点——ADS,SBA[J].系统仿真学报,2001,13(1):101-105.
    [4]李伯虎,柴旭东,杨明等.现代建模与仿真技术的发展[A].中国科学技术前沿(中国工程院版,第六卷)[C].北京:高等教育出版社,2003.
    [5]燕雪峰.面向MDA的分布交互仿真系统关键技术研究[D].北京:北京理工大学,2005
    [6]李伯虎,柴旭东.现代建模与仿真技术发展中的几个焦点[J].系统仿真学报,2004,16(9):1871-1878
    [7]李伯虎,等. SBA支撑环境技术的研究[J].系统仿真学报,2004,16(2):181-185.
    [8] Richard M Fujimoto. Parallel and Distributed Simulation Systems [C]. Proceedings of the 2001 Winter Simulation Conference.
    [9] IEEE-SA Standards Board. IEEE Standard for Information Technology - Protocol for Distributed Interactive Simulation Application. IEEE Std 1278-1993.
    [10] IEEE-SA Standard Board. IEEE Standard for Distributed Interactive Simulation-Application Protocols. IEEE Std 1278-1995.
    [11] IEEE-SA Standards Board. IEEE Standard for Distributed Interactive Simulation - Communication Services and Profiles. IEEE Std 1278.2-1995.
    [12] IEEE-SA Standards Board. IEEE Recommended Practice for Distributed Interactive Simulation-Exercise Management and Feedback. IEEE Std 1278.3-1996.
    [13] IEEE-SA Standards Board. IEEE Standard for Distributed Interactive Simulation-ApplicationProtocols. IEEE Std 1278.1a-1998.
    [14] IEEE-SA Standards Board. IEEE Std 1516-2000 , IEEE Standard for Modeling and Simulation(M&S) High Level Architecture(HLA) - Framework and Rules. Sep,2000.
    [15] IEEE-SA Standards Board. IEEE Std 1516.1-2000, Draft Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) - Federation Interface Specification. Apr, 2000.
    [16] IEEE-SA Standards Board. IEEE Std 1516.2-2000, Draft Standard for Modeling and Simulation(M&S) High Level Architecture(HLA) - Object Model Template(OMT) Specification. Apr, 2000.
    [17]何明,裘杭萍.基于XMSF的建模与仿真研究[J].系统仿真学报,2005,17(5):1032-1036.
    [18]魏洪涛,石峰,李群,王维平.网格计算在军事仿真中的应用.系统仿真学报[J].M.ar2005,17(3):746一750.
    [19] Ian Foster,Carl Kesselman. The Grid2: Blueprint for a New Computing Infrastructure[M]. published by Elsevier Inc. 2004.
    [20] S Brunett,D Davis,T Gottschalk,et al. Implementing distributed synthetic forces simulations in metacomputing environments[C]. Proceedings of the Heterogeneous Computing Workshop,pp.29- 42. IEEE Computer Society Press,1998.
    [21] K Zajac, A Tirado-Ramos, Z Zhao, et al. Grid Services for HLA-based Distributed Simulation Frameworks[C]. 1st European Across Grids Conference,Spain,Feb.2003.147-154.
    [22] K Zajac,M Bubak,M Malawski, et al. Towards a grid management system for HLA-based interactive simulations[C]. In Proceedings of Seventh IEEE International Symposium on Distributed Simulation and Real Time Applications(DS-RT 2003),pages 4-11,Delft,The Netherlands,October 2003.
    [23] Yong Xie,Yong Meng Teo,Wentong Cai, et al. Service Provisioning for HLA-based Distributed Simulation on the Grid. Proceeding of the Workshop on Principles of Advanced and Distributed Simulation(PADS’05),IEEE 2005.
    [24] W Zong,Y Wang,W Cai, et al. Grid Services and Service Discovery for HLA-based Distributed Simulation and Real Time Applications,2004.
    [25] E L White and J M Pullen. Adapting Legacy Computational Software for XMSF[C]. FallSimulation Interoperability Workshop.03F-SIW-112,Fall Simulation Interoperability Workshop,Orlano,FL,2003.
    [26] K L Morse,D L Drake and R P Brunton. Web enabling and RTI– an XMSF profile[C]. In proceedings of the IEEE 2003 European Simulation Interoperability Workshop , number 03E-SIW-046,2003.
    [27] H Jin,Y Pan,N Xiao and J Sun. Service-Oriented Runtime Infrastructure on Grid[C]. GCC 2004 Workshops,LNCS 3252,2004.736-743.
    [28] J B Fitzgibbons,R Fujimoto,D Fellig,, et al. IDSim: An extensible framework for interoperable distributed simulation[C]. In proceedings of the IEEE International Conference on Web Services (ICWS2004),pages 532-539,2004.
    [29]王江云,彭晓源,王行仁.基于网格技术的先进分布仿真协同环境[J].计算机工程,2004-4,30(8):98-108.
    [30]张童,刘云生,张传富等.开放网格服务体系结构OGSA及其仿真应用[J].计算机仿真,2004-9,21(9):105-108.
    [31]魏洪涛,石峰,李群等.网格计算在军事仿真中的应用[J] ,系统仿真学报,2005-5.17(3):746-750.
    [32] Wei Wu,Zhong Zhou,Shaofeng Wang, et al. Aegis: A Simulation Grid Oriented to Large-Scale Distributed Simulation[C]. GCC 2004,LNCS 3251,2004. 413-422.
    [33] G Theodoropoulos,S J Turner,W Cai, et al. Large Scale Distributed Simulation on the Grid[C]. EPSRC e-Science Sster Project GR/S82862/01,2003.
    [34] Simon J E Taylor,J Mark Pullen,George V Popescu, et al. Panel on Distributed Simulation and the Grid[C]. Proceedings of the Eighth IEEE International Symposium on Distributed Simulation and Real-Time Applications(DS-RT’04),IEEE 2003.
    [35] J Mark Pullena,Ryan Bruntonb,Don Brutzmanc, et al. Using Web Services to integrate heterogeneous simulations in a grid environment[J]. Future Generation Computer Systems 21,2005,97-106.
    [36] Bjorn Moller,Staffan Lof,LinkPing. Mixing Service Oriented and High Level Architectures inSupport of the GIG[C]. Interservice/Industry Training, Simulation, and education Conference(IITSEC) 2005.
    [37] D. Chen, S. J. Turner, and W. Cai. A framework for robust HLA-based distributed simulations[C]. In Proceedings of 20th IEEE/ACM/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS 2006), pages 183–192. IEEE Computer Society, 2006.
    [38] Ke Pan, Stephen John Turner, Wentong Cai, et al. A Service Oriented HLA RTI on the Grid, 2007 IEEE International Conference on Web Services(ICWS 2007),2007
    [39] Y. Xie, Y. M. Teo, W. Cai, et al. Service provisioning for hla-based distributed simulation on the grid[C]. In 19th IEEE/ACM/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS 2005), 282–291, Monterey, California, USA, June 2005.
    [40]李飞,杨放春,苏森,分布式Web服务QoS注册中的高效负载均衡方法[J].电子与信息学报, 2009,31(5):1022-1025
    [41] Pauline A.W., Albert G.B., Peter H. Advanced distributed simulation: a review of developments and their implication for data collection and analysis[J]. Simulation Practice and Theory. 2000(8):201-231.
    [42]岳昆,王晓玲,周傲英. Web服务核心支撑技术:研究综述[J].软件学报,2004,15(3):428-442.
    [43] Xu L.J., Peng X.Y. SSB:A Grid-based Infrastructure for HLA Systems[A]. In Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)[C] .2006.68-73.
    [44] Li B.H., Chai X.D., Zhu W.H.,et al. Research and Implementation on Collaborative, Simulation Grid Platform[R]. SCSC, San Jose, USA, 2004.
    [45] Zajac K., Tirado R.A., Zhao Z., et al. Grid Service for HLA-based Distributed Simulation Frameworks[A]. Proceedings of First European Across Grids Conference[C]. Santiago de Compostela, Spain, 2003.147-154.
    [46] DS-Grid: Large Scale Distributed Simulation on the Grid e-Science Sister Project[EB/OL]. http://www.cs.bham.ac.uk/research/projects/dsgrid/,2005-12.
    [47] Mark K. Overview of the DOD High Level Architecture [EB/OL].http://www.dmso.mil, 2005-12.
    [48] Judith S.D., Richard M.F., The DoD High Level Architecture: An Updata[A]. Proceedings of the 1998 Winter Simulation Conference[C]. Washington, DC, 1998.
    [49] MAK High Performance RTI. 2006. http://www.mak.com/products/rti.php.2008-10.
    [50] Pitch pRTI. 2009.http://www.pitch.se/products/pitch-prti/pitch-prti-overvies.html. 2008-10
    [51]刘步权,王怀民,姚益平.层次式仿真运行支撑环境StarLink中的关键技术[J].软件学报,2004,15(1):9-16.
    [52]吕良权,周忠,吴威等. DVE-RTI:一个基于组播技术的分布交互仿真运行基础机构[J].计算机研究与发展,2004,41(5):828-834.
    [53] R.M.Fujimoto. Parallel and Distributed Simulation Systems[M]. John Wiley and Sons, Inc.,2000.
    [54] M.D.Lethewrood,.D.Gunter. Ground Vehicle Modeling and Simulation of Military Vehicles Using High Performance Computing. Parallel Computing[J].Jan.2001,27(1-2):109-140.
    [55] N.Fujimoto, K. Hagihara. A Comparison Among Grid Scheduling Algorithms for Independent Coarse-Grained Tasks. 2004 Symposium on Applications and the Internet-Workshops(SAINT 2004). Tokyo,Japan, Jan.2004.
    [56] Rajkumar Buyya. Service and Utility Oriented Distributed Computing Systems: Challenges and Opportunities for Modeling and Simulation Communities. 41st Annual Simulation Symposium, 2008.
    [57]于守健,何丰.基于接口匹配的Web服务自动组合.计算机科学,2007.34(3):61-68.
    [58]王志武.基于网格的DSS模型服务管理.博士学位论文.华中科技大学,2007.
    [59] Wan Hu, Yang Qing, Yu Ming-hui, et al. Grid-based Platform for Disaser Response Plan Simulation Over Internet. Simulation Modeling Practice and Theory. 2008:16(3),379-386.
    [60]刘小虎,蒋从锋,王乘.基于网格的分布式虚拟环境仿真.计算机工程与应用. 2007,43(29),110-113
    [61] I.Foster, Karl Czajkowski, Donald F.Ferguson, et al. Modeling and Managing State in Distributed Systems: The Role of OGSI and WSRF. Proceedings of the IEEE, VOL.93(3), March 2005.
    [62] IBM Redbook, Workload Management with LoadLeveler, http://www.redbooks.ibm.com/redbooks/pdfs/sg246038.pdf, current 2005-2.
    [63] W.Gentzsch, Sun Grid Engine: towards creating a compute power grid, Proc. Of the 1st IEEE/ACM Int’l Symposium on CCGrid, 35-36,2001.
    [64]余海燕,查礼,李伟,一种面向服务的网格作业管理机制,计算机研究与发展,40(11):1170-1174, 2003.
    [65] N.Spring, R.Wolski, Application level scheduling of gene sequence comparison on metacomputers. Proc. Of the 12th ACM international conference on Supercomputing, Melbourne, Australia, 1998.
    [66] R.Buyya, D.Abramson, Nimrod/G, et al. An Architecture for a Resource Management and Scheduling System in a Global Computational Grid, In Proceeding of the International Conference on High Performance Computing in Asia-Pacific Region, Beijing, 2000.
    [67] D.Arnold, J.Dongarra, The netsolve environment: Progressing towards the seamless grid. In Proceeding of the International Conference on Parallel Processing, Toronto, Canada, 2000.
    [68] J.E.Biegel, J.J. Davern, Genetic algorithms and job shop scheduling. Computer&Industrial Engineering, 19(1-4):81-91,1990.
    [69] I.Ahmad, K.Dhodhi, Multiprocessor scheduling in a genetic paradigm. Parallel Computing, 22(3):395-406,1996.
    [70] Tracy D.Braun, Howard Jay Siegel, Noah Beck, A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems, Journal of Parallel and Distributed Computing, 61:810-837,2001.
    [71] R.F.Freund, M.Gherrity. Scheduling resources in multi-user, heterogeneous, computing environments with SmartNet, HCW’98,184-199, March 1998.
    [72] T.D.Braun, H.J.Siegel, A comparison study of static mapping heuristics for a class of meta-tasks on heterogeneous computing systems. Preceeding of the 8th Heterogeneous Computing Workshop, 15-29,1999.
    [73] K.Steinh, A. Albrecht, C.K. Wong, Two simulated annealing-based heuristics for the job shop scheduling problem. European Jouranl of Operational Research, 118(3):524-548,1999.
    [74] H. Kasahara, S.Narita, Practical multi-processing scheduling algorithms for efficient parallel processing, IEEE Transection Computer, 33(10):1023-1029,1984.
    [75] M.Shang, S.Sun, et al., An Efficient Parallel Scheduling Algorithm of Dependent Task Graphs. Preceeding of the 4th International Conference on Parallel and Distributed Computing, Applications and Technologies, 2003.
    [76] M.Wu, W. Shu, Efficient Local Search for DAG Scheduling, IEEE Transactions on Parallel and Distributed Systems, 12(6):617-627, 2001.
    [77] R.S. Oliveira, J.S.Fraga, Fixed Priority Scheduling of Tasks with Arbitrary Precedence Constraints in Distributed Hard Real-Time Systems, Journal of Systems Architecture, 46(9):991-1004, 2000.
    [78] G.J.Woeginger, A Comment on Scheduling on Uniform Machines under Chain-Type Precedence Constraints. Operations Research Letters, 26(1):107-109, 2000
    [79] W Cai,S J Turner and H Zhao. A Load Management System for Running HLA-based Distributed Simulations over the Grid[C]. Proceedings of the 6th IEEE International Symposium on Distributed Simulation and Real Time Application,Oct. 2002.7-14.
    [80] W. Cai, S. J. Turner, and H. Zhao. A load management system for running hla-based distributed simulations over the grid[C]. In DS-RT’02: Proceedings of the Sixth IEEE International Workshop on Distributed Simulation and Real-Time Applications, page 7, Washington, DC, USA, 2002.
    [81] G. Tan and K. C. Lim. Load distribution services in hla[C]. In Proceedings of the 8th IEEE International Symposium on Distributed Simulation and Real-Time Applications, pages 133–141, 2004.
    [82] Z. Yuan, W. Cai, M. Y. H. Low, et al. Federate migration in hla-based simulation[C]. In Workshop on HLA-Based Distributed Simulation on the Grid in the 4th International Conference Computational Science (ICCS 2004), pages 856–864, Krakw, Poland, June 2004.
    [83] G. Tan, A. Persson, and R. Ayani. HLA federate migration[C]. In Proceedings of the 38th Annual Simulation Symposium (ANSS05), pages 243–250, Washington, USA, 2005.
    [84] K. Zajac, M. Bubak, M. Malawski, et al. Execution and migration management of hla-basedinteractive simulations on the grid[J]. In PPAM, pages 872–879, 2003.
    [85] J. Lüthi and S. Grossmann. The resource sharing system: dynamic federate mapping for hla-based distributed simulation[C]. In PADS’01: Proceedings of the fifteenth workshop on Parallel and distributed simulation, pages 91–98, Washington, DC, USA, 2001.
    [86] Azzedine Boukerche, Robson Eduardo De Grande. Optimized Federate Migration for Large-Scale HLA-based Simulations[C]. In Proceedings of the 12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications, page227-239, 2008.
    [87] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process migration[J]. ACM Comput. Surv., 32(3):241–299, 2000.
    [88] Zengxiang Li, Wentong Cai, Stephen John Turner and Ke Pan. Federate Migration in a Service Oriented HLA RTI[C]. In 11th IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT 2007) , 113-121,Nov 2007
    [89] Li Fei, Yang Fang-chun, Su Sen, Efficient Load-Balance in Distributed Qos Registry for Web Service[J]. Journal of Electronics & Information, 2009,30(5):1022-1025
    [90] Fu Yanfang, Fengju Kang, Jianghua Qi, Research of dynamic scheduling method for the air-to-ground warfare simulation system based on grid[J]. Simulation Modelling Practice and Theory, 2010, 18(8): 1116-1129
    [91] Yanfang Fu; Yan Fan, Research of the Simulation Grid System Based on Multiagent Dynamic Scheduling[C] . Computer Modeling and Simulation, 2010. ICCMS '10. Second International Conference on Volume: 3 Digital Object Identifier.2010 : 392– 395
    [92]黄长俊,杨晓辉.网格计算中Min-min和Max-min的分析和比较.福建电脑,2009,8:67-68.
    [93]薛庆吉,李春艳.一个改进的Min-Min网格任务调度算法[J].武汉理工大学学报, 2009.6,37(3):379-381.
    [94]何川.网格中任务调度算法研究[J].电脑知识与技术,2009.6,5(28):5044-5046.
    [95] D.Lu, Y.Qiao,P.A.Dinda, Characterizing and Predicting TCP Throughput on the Wide Area Network, Technical Report NWU-CS-04-24, Department of Computer Science, Northwestern University, Apr. 2004.
    [96] P.Messina, S.Brunett,D.Davis, et al., Distributed Interactive Simulation for Synthetic Forces.Proceedings of the 6th Heterogeneous Computing Workshop, 1997.
    [97]刘晓建,大规模分布式仿真信息传输延迟技术研究,工学博士学位论文,国法科技大学研究生院,2003.
    [98]黄健,黄柯棣.HLA中的时间管理.计算机仿真,2000,17(4):69-73.
    [99]刘步全.分布式仿真运行支撑平台中时间管理服务的研究[博士论文].国防科学技术大学,2004.4.
    [100]姚新宇,黄柯棣.基于HLA时间管理的实时时间控制和乐观时间同步算法设计.国防科技大学学报,1999,21(6):54-57
    [101]欧阳伶俐,宋星,卿杜政等. HLA时间管理与PDES仿真算法研究.系统仿真学报,2000,12(3):237-240
    [102]钟海荣,王召福,金士尧等.基于组播组的联邦时间推进策略.系统仿真学报,2003,15(3):417-420
    [103]廖利云,龚光红.组播技术及其在RTI通信中的应用.系统仿真学报,2003,15(7):1021-1023
    [104] Jefferson D. Virtual Time.[J]. ACM Transactions on Programming Languages and Systems,1985.Vol.7(3),p.404-425.
    [105] Lamport,L. Time,clocks,and the ordering of events in a distributed system.Communication.ACM 21,7(July 1978),558-565.
    [106] K.M.Chandy and J.Lamport, Distributed Snapshots:Determining Global States of Distributed Systems, ACM Transactions on Computer Systems,Vol.3,No.1,pp.63-75,1985
    [107]刘步权,王怀民,姚益平. RTI中乐观推进机制的实现.软件学报.2004,Vol.15,No.3.pp.338-347.
    [108] M.Raynal, M.Singhal, Logical Time:Capturing Causality in Distributed Systems.IEEE Computer,1996.29(2):p.49-56.
    [109] Bu-Sung Lee,Wentong Cai,Junlan Zhou. A Causality Based Time management mechanism for federated simulation[A].Proc.of PADS 2001[C]:83~90.
    [110] Anish Arora,Sandeep Kulkarni,Murat Demirbas, Resettable vector clocks,Proceedings of thenineteenth annual ACM symposium on Principles of distributed computing,p.269-278,July 16-19,2000,Portland,Oregon,United States.
    [111] Sibsankar Haldar,Paul Vitányi, Bounded concurrent timestamp systems using vector clocks,Journal of the ACM(JACM),v.49 n.1,p.101-126,January 2002.
    [112] Herve Avril,Carl Tropper,. On Rolling Back and Checkpointing in Time Warp. IEEE Transactions on PARALLEL AND DISTRIBUTED SYSTEMS, VOL.12, NO.11,November 2001.P.1105-1120.
    [113]严海蓉,孙国基,张亚崇,钟联炯,基于HLA的乐观时间同步的实现研究[J],系统仿真学报,Vol.16,No.2,2004.2,pp.281-283.
    [114] S.R.Das and R.M.Fujimoto. An adaptive memory management protocol for Time Warp parallel simulation.In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,p201-210,1994.5
    [115] Fabian Gomes,Brian Unger,John Cleary,Steve Franks. MULTIPLEXED STATE SAVING FOR BOUNDED ROLLBACK.Proceedings of the 1997 Winter Simulation Conference,P.460-467,1997
    [116] Prakash and Subramanian.R.Filter: An algorithm for reducing cascaded rollbacks in optimistic distributed simulations.In Proceedings of the 24th Annual Simulation Symposium,p.123–132.1991.
    [117] Madisetti,V.K,Walrand,J,and Messerschmitt, et al. A rollback algorithm for optimistic distributed simulation systems. In Proceedings of the 1988 Winter Simulation Conferences,p.296–305.1988.
    [118] Rajaei,H.,Ayani,R,and Thorelli, et al. The Local Time Warp approach to parallel simulation.In Proceedings of the Seventh Workshop on Parallel and Distributed Simulation,p.119–126.1993.
    [119] C. D. Carothers, R.M. Fujimoto, R. M.Weatherly, and A. L.Wilson. Design and implementation of HLA time management in the RTI Version F.0. In Winter Simulation Conference, pages 373–380, 1997.
    [120] R. M. Fujimoto. Lookahead in parallel discrete event simulation. In International Conference on Parallel Processing, Volume 3, pages 34–41, 1988.
    [121] D. M. Nicol. The cost of conservative synchronization in parallel discrete event simulations. Journal of the Association for Computing Machinery, 40(2):304–333, 1993.
    [122] Ouyang LL, Song X, Qing DZ, Hao JB, Wang J. Research of time management in HLA and simulation algorithms of PDES. Journal of System Simulation, 2000,12(3):237~240, 2000.
    [123] MA Yun-long, WANG Jian. Study on Real-time Simulation Technology of Traffic Situation Based on RTI[J].2008,20(22):6129~6132.
    [124] LIU Bu-Quan, WANG Huai-Min, YAO Yi-Ping. A Non-Deadlock Time Management Algorithm[J]. Journal of Software. 2003, 14(09), 1515~1522.
    [125] LIU Bu-Quan, WANG Huai-Min, YAO Yi-Ping. esearch on Deadlock in the HLA Time Management[J]. ACTA ELECTRONICA SINICA. 2006,34(11):2038~2042.
    [126] C. Lee, J. Stepanek, C. Raghavendra, and K. Bellman. Time management in active networks. In 3rd International Workshop on Active Middleware Services, August 6, 2001.
    [127] F. Mattern. Efficient distributed snapshots and global virtual time algorithms for non-FIFO systems. J. Parallel and Distributed Computing, 18(4):423–434, August 1993.
    [128] C. Pham and R. Bagrodia. Building parallel timeconstrained HLA federates: A case study with the PARSEC parallel simulation language. 1997.
    [129] G. Riley, R. Fujimoto, and M. Ammar. Network aware time management and event distribution. Technical Report GITCC-00-11, Georgia Institute of Technology, 2000.
    [130] J. Steinman, C. Lee, L. Wilson, and D. Nichol. Global virtual time and distributed synchronization. In IEEE 9thWorkshop on Parallel and Distributed Simulation, pages 139–148, June 14–16 1995. Lake Placid, NY.
    [131] V.Welch, F.Siebenlist, I.Foster, et al. Security for grid services, 21th International Symposium on High Performance Distributed Computing, (HPDC-12), IEEE Press, 2003.
    [132] Heng He, Li Chen, Pingpeng Yuan, et al. A Security Architecture for Grid-Based Distributed Simulation Platform, In Proceedings of 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 207-212, 2008
    [133] Jin Hai. ChinaGrid: Making Grid Computing a Reality .In International Conference of Asian Digital Libraries,LNCS 3334:13-24. Springer-Verlag, Shanghai, China,2004.
    [134] Meng Xianguo, Li Jimin, Zhu Yuanchang, et al. Proposal for Security Extensions for HLA RTIin Distributed Environment, In Proceedings of The Eighth International Conference on Electronic Measurement and Instruments(ICEMI' 2007),228-231,2007.
    [135] Filsinger, J., and H. O. Lubbes. System Security Approach for the High Level Architecture (HLA). In Proceedings of the 14th Workshop on Standards for Interoperability of Distributed Simulation (Winter). 1996.
    [136] Andrews D., Proposal for the Performance Impact of SecProxy security protection on a HLA ederation, Honours proposal, Bachelor of Computing, University of Ballarat, 2002.
    [137] Kent S, Atkinson R. Security architecture for the Internet protocol. RFC2401,1998.
    [138] M. Lees, B. Logan, T. Oguara, and G. Theodoropoulos, Simulating Agent-Based Systems with HLA: The case of SIM_AGENT -- Part II., Proceedings of the 2003 European Simulation Interoperability Workshop, 2003.
    [139] Yong Zhang, Hui Zhang and Xia-Mu Niu, The Key Management of the Encrypted Database Based on XML, International Journal of Innovative Computing, Information and Control, vol.5, no.7, pp.1919-1926, 2009.
    [140] B. Briscoe and I. Fairman,‘‘NARK: Receiver-Based Multicast Non-Repudiation and Key Management’’, in Proc. of the First ACM Conference on E-commerce (EC), Denver, CO, November 1999.
    [141] B. Briscoe,‘‘MARKS: Zero Side Effect Multicast Key Management Using Arbitrarily Revealed Key Sequences’’, in Proc. of First International Workshop on Networked Group Communication (NGC), Pisa, Italy, November 1999.
    [142] Hui-Feng Huang, Kuo-Ching Liu and Hsin-Wei Wang, A New Design of Cryptographic Key Management for HIPAA Privacy and Security Regulations, International Journal of Innovative Computing, Information and Control, vol.5, no.11(A), pp.3923-3932, 2009.
    [143] Yu-Li Lin and Chien-Lung Hsu, Cryptanalysis and Improvement of a Hierarchical Key Management Scheme for Access Control in the Mobile Agent, ICIC Express Letters, vol.4, no.1, pp.183-188, 2010.
    [144] Rafaeli S. and Hutchison D. A Survey of Key Management for Secure Group Communication, ACM Computing Surveys 35(3): 309-329(2003.9)
    [145] Sencun Zhu, Sushil Jajodia. Scalable group rekeying for secure multicast: A survey, In Proc. 5th International Workshop on Distributed Computing, Springer Lecture Notes in Computer Science, Vol. 2918 :1-10(2004)
    [146] MITTRA, S. 1997. Iolus: A framework for scalable secure multicasting. In Proceedings of the ACM SIGCOMM. Vol. 27, 4 (New York, Sept.) ACM, New York, pp. 277–288.
    [147] M. Valdvogel et al.,‘‘The VersaKey Framework: Versatile Group Key Management’’, IEEE JSAC Special Issue on Service Enabling Platforms For Networked Multimedia Systems, Vol. 17, No. 9, September 1999.
    [148] C. K. Wong, M. Gouda, and S. S. Lam,‘‘Secure Group Communications Using Key Graphs’’, IEEE/ACM Trans. on Networking, Vol. 8, No. 1, February 2000, pp. 16–30.
    [149] D. Wallner, E. Harder and R. Agee,‘‘Key Management for Multicast: Issues and Architectures’’, RFC 2627(informational), IETF, June 1999.
    [150] Gallery E, Tomlinson A, Delicata R. Application of trusted computing to secure video broadcasts to mobile receivers. Technical Report RHUL-MA-2005-11, Department of Mathematics, Royal Holloway, University of London, 14 June 2005.
    [152] Eimear Gallery,Allan Tomlinson, Rob Delicata.Application of Trusted Computing to Secure Video Broadcasts to Mobile Receivers. Technical Report RHUL-MA-2005-11, Department of Mathematics, Royal Holloway, University of London, 14 June 2005.
    [153] TCG,“TCG Specification Architecture Overview,”The Trusted Computing Group, Portland, OR, USA, TCG Specification Revision 1.2, Apr. 2003.
    [154]“TPM Main, Part 1 Design Principles,”The Trusted Computing Group, Portland, OR, USA, TCG Specification Version 1.2 Revision 62, Oct. 2003.
    [155] Jing Liu, Minmin Liu,Utilizing trusted computing to design a fair non-repudiation protocol with an embedded TTP. Submitted to Computers and Security (Elsevier).
    [156] Anderson R.“Trusted Computing”frequently asked questions, August 2003 http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
    [157] ISO/IEC,“Information Technology - Security Techniques - Entity Authentication - Part 3:Mechanisms using Digital Signature Techniques,”International Organisation for Standardisation, Geneva, Switzerland, ISO/IEC Standard 9798-3, 1998.
    [158] The AVISPA tool version 1.1 AVISPA (Automated Validation of Internet Security Protocols and Applications),
    [159] Asokan,N.,Shoup,V.,and Waidner, MAsynchronous protocols for optimistic fair exchange. Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland, CA, May, pp. 86-99, IEEE Computer Society Press, Los Alamitos, CA.1998
    [160] J.P. Anderson. Computer security technology planning study. Electronic System Divison, US Air Force System Command, Tech Rep: ESD-TR-73-51, 1972
    [161] TPM Work Group.“TPM Main, Part 1 Design Principles,”The Trusted Computing Group, Portland, OR, USA, TCG Specification Version 1.2 Revision 62, Oct. 2003.
    [162] TPM Work Group.“TPM Main, Part 2 TPM Data Structures,”The Trusted Computing Group, Portland, OR, USA, TCG Specification Version 1.2 Revision 62, Oct. 2003.
    [163] TPM Work Group.“TPM Main, Part 3 Commands,”The Trusted Computing Group, Portland, OR, USA, TCG Specification Version 1.2 Revision 62, Oct.2003.
    [164]李倩.云计算与网格计算.山西电子技术,2010.5:91-93.
    [165] Michael Miller.云计算[M].北京,机械工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700