用户名: 密码: 验证码:
利用廉价动物蛋白原料替代饲料中鱼粉对点带石斑鱼摄食、生长、食物利用和氮、磷排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文报道了利用廉价动物蛋白原料(鸡肉粉、羽毛粉及血粉,以下分别简称PBM、FEM及BM)替代点带石斑鱼(Epinephelus malabaricus)配合饲料中鱼粉(以下简称FM)的研究结果。研究包括两部分:(1)在不同饲料蛋白水平(CP: 530 g Kg-1和CP:490gKg-1)下利用PBM、FEM及BM组成的混合蛋白(PBM: FEM:BM=7:2:1)替代点带石斑鱼饲料中的FM;(2)在CP:490 g Kg-1饲料蛋白水平下,比较利用混合蛋白与宠物级鸡肉粉(以下简称P-PBM)替代点带石斑鱼饲料中FM。
     实验设计和过程如下:
     1.实验(1)中,根据2×4的实验设计,设2个饲料蛋白水平(530 g Kg-1和490 g Kg-1粗蛋白,总能含量为19MJ Kg-1),每个饲料蛋白水平下设4个FM水平:1组饲料含50%FM做对照,其余3组饲料中分别加入12.8%、25.6%和38.3%的廉价动物蛋白(PBM:FEM:BM=7:2:1)混合物替代对照组饲料中FM的30%、60%和90%。在近岸海水网箱中对初始体重为33.4 g尾-1的1龄点带石斑鱼进行10周饲养实验。实验期间,每天早上08:00、下午14:00根据实验设计按点带石斑鱼饱食的条件向实验网箱内投喂饲料。实验开始前和结束后,对实验鱼称重并取样分析全鱼组成(水分、蛋白质、脂肪、灰分和能量)。实验结束时取样测量实验鱼条件系数和肝重指数。
     2.实验(2)中,根据单因素实验设计,设6个等粗蛋白(490 g Kg-1CP)等总能(19 MJ Kg-1)的饲料。1组饲料含50%FM做对照,其余5组饲料中分别加入12.8%、25.6%、38.3%的混合蛋白(PBM:FEM:BM=7:2:1)和15.0%、30.0%的P-PBM分别替代对照组饲料中FM的30%、60%、90%和30%、60%。在近岸海水网箱中对初始体重为33.4 g尾-1的1龄点带石斑鱼进行10周饲养实验。投喂、称鱼和取样分析方法和步骤同实验(1)。
     实验结果如下:
     1.饲料蛋白水平和FM含量显著影响点带石斑鱼生长。在相同饲料蛋白水平下,鱼生长率随FM含量降低而下降,在相同FM含量下,摄食含530 g Kg-1粗蛋白饲料的鱼生长速度略快于摄食蛋白含量为490 g Kg-1饲料的鱼。饲料蛋白水平和FM含量对鱼摄食量、饲料系数、饲料氮沉积效率和鱼体组成影响不显著。本实验结果显示通过添加PBM、FEM和BM混合物将饲料FM含量降低到20%对点带石斑鱼生长、摄食和食物利用效率不会产生显著的负面影响,将饲料蛋白水平从490 g Kg-1粗蛋白提高到530 g Kg-1未显著降低点带石斑鱼饲料中的FM含量。
     2.摄食混合蛋白组或摄食P-PBM组的鱼与对照组相比鱼体增重、摄食率、饲料系数、条件指数、肝指数和全鱼生化组成均无显著性差异。摄食混合蛋白组的鱼生长速度随着FM含量降低而下降,摄食P-PBM组的鱼生长速度呈波动下降(先略升再略降),且实验组生长速度快于相应的摄食混合蛋白组的鱼。
     本论文研究结果表明:PBM、FEM和BM混合物将饲料FM含量降低到20%对点带石斑鱼生长、摄食和食物利用效率不会产生显著的负面影响,将饲料蛋白水平从490 g Kg-1粗蛋白提高到530 g Kg-1未显著降低点带石斑鱼饲料中的FM含量,但混合蛋白的效果不如P-PBM。
This paper reported the results of experiments in which three rendered animal protein ingredients, poultry by-product meal (PBM), blood meal (BM), feather meal (FEM), were used in combination or alone to replace fish meal (FM) in diet formulation of malabar grouper. This study consisted of two experiments:(1) partial replacement of fish meal (FM) by the blend (the ratio is PBM:FEM:BM=7:2:1) in diet formulations for malabar grouper at two different protein levels, (2) partial replacement of fish meal (FM) with the blend used in the experiment (1) and P-PBM.
     The experimental design and process was as follows:
     1. In the experiment 1, a 2 X 4 design was established. The fish were fed eight isonitrogenous but non-isocaloric diets formulated to contain 19 MJ Kg-1 GE and 530 g Kg-1 or 490 g Kg-1 CP. The two control diets contained 50% steam dried herring meal, while in the other six diets,12.8%,25.6% or 38.3% the blend was combined to replace 30%,60% or 90% of the FM. A 10-week net pen experiment was carried out with one-year-old malabar grouper (initial body weight: 33.4g fish-1). During the experiment, the fish was hand fed to satiation at 08:00 and 14:00 h daily except the days when strong waves or typhoon attacked Shenao Bay. Water temperature and salinity were measured daily. At the end of the experiment, the fish in each pen was captured and bulk weighed. Three fish was sampled from each pen for the determination of final body composition, condition factor (CF) and hepatosomatic index (HSI).
     2. In the experiment 2, a 10-week net pen experiment was carried out with one-year old malabar grouper (initial body weight:33.4g fish-1). The control diet contained 50% steam dried herring meal, while in the other five diets,12.8%,25.6% or 38.3% the blend was combined to replace 30%,60% or 90% of the FM and 12.8% or 25.6% the T-PBM to replace 30% or 60% of the FM to compare the effect on the malabar grouper at the lower protein level. During the experiment, the fish were hand fed to satiation at 08:00 and 14:00 h daily except the days when strong waves or typhoon attacked Shenao Bay. At the end of the experiment, the fish in each pen was captured and bulk weighed. Three fish was sampled from each pen for the determination of final body composition, condition factor (CF) and hepatosomatic index (HSI).
     The study results were as follows:
     1. In the experiment 1, compared to the control of the two protein level, there were no significant differences in WG, FBW, FI, FCR, CF, HIS and chemical composition (moisture, crude protein, crude lipid and ash) of whole fish body between feeds containing 12.8% to 25.6% the blend and fish fed the control (replaced 30% to 60% of the FM). Fish fed the feed containing 38.3% the blend (replaced 90% of the FM) had lower WG, FBW than that of fish fed the control feed (P<0.05). There were no significant difference between the fore feeds at the higher protein level in protienases activity, but the feeds containing 12.8% to 25.6% the blend (replaced 30% to 60% of the FM) had lower proteinases activity than the control and the feeds containing 38.3% the blend (replaced 90% of the FM).
     2. In the experiment 2, no significant differences were found in FI, FBW, WG, FCR, FCR, CF, HIS and chemical composition (moisture, crude protein, crude lipid and ash) of whole fish body among fish fed the five test diets with the control. There was no siginificant difference between the control with the five test diets except the feeds containing 5% FM.
     On the basis of above experiments, we conclude that: the protein level can reduce to 49% CP for malabar grouper reared in net pen; fish meal in practical feeds for malabar grouper can be replaced 60% by the blend; the blend performed as good as the P-PBM at the lower protein level.
引文
Adams M A, Johnsen P B, Zhou H. Chemical enhancement of feeding for the herbivorous fish Tilapia zillii [J]. Aquaculture,1988,72:95-107.
    Adron J W, Mackie A M. Studies on the chemical nature of feeding stimulants for rainbow trout Salmo gairdneri Richardson [J]. J. Fish Biol.,1978,12:303-310.
    Alert G J, Hardy R W.动物蛋白在水产养殖中的应用.美国动物蛋白及油脂提炼协会.水产饲料成本优化——动物蛋白取代鱼粉的实效.2001
    Allan G L, Rowland S J, Mifsud C, et al. Replacement of fish meal in diets for Austrian silver perch, Bidyanus bidyanus V. Least-cost formulation of practical diets [J]. Aquaculture,2000, 186:327-340.
    Berge G M, Grisdale-Helland B, Helland S J. Soy protein concentrate in diets for Atlantic halibut E. (Hippoglossus hippoglossus) [J]. Aquaculture,1999,178:139-148.
    Bomeo-Tuburan E B, Coniza E M, Rodriguez R F, et al. Culture and economics of wild grouper using three feed types in ponds [J]. Aquaculture,2001,201:345-358.
    Bureau D P, Harris A M, Bevan D J, et al. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout(Oncorhynchus mykiss) diets [J]. Aquaculture,2000, 181:281-291.
    Bureau D P. Harris A M, Cho C Y. Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture,1999,180:345-358.
    Carr W E S, Chaney T B. Chemical stimulation of feeding behavior in the pinfish, Lagodon rhomboides:characterization and identification of stimulatory substances extracted from shrimp [J]. Comp. Biochem. Physiol.,1976,54A:437-441.
    Catacutan M R, Pagador G E. Partial replacement of fishmeal by defatted soybean meal in formulated diets for themangrove red snapper, Lutjanus argentimaculatus (Forsskal 1775) [J]. Aquacult. Res.,2004,35:299-306.
    Chen H Y, Tsai J C. Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semi-purified diets [J]. Aquaculture,1994,119:265-271.
    Cho C Y, Slinger S J, Bayley H S. Bioenergetics of salmonid fishes:energy intake, expenditure and productivity [J]. Comp. Biochem. Physiol.,1982,73B:25-41.
    Dong F M, Hardy R W, Haard N F, et al. Chemical composition and protein digestibility of poultry by-product meals for salmonid diets [J]. Aquaculture,1993,116:149-158.
    Dy Penaflorida V, Virtanen E. Growth, survival and feed conversion of juvenile shrimp Penaus monodon. fed a betaineramino acid additive [J]. Isr. J. Aquacult.,1996,48:3-9.
    El-Haroun E R, Azevedo P A, Bureau D P. High dietary incorporation levels of rendered animal protein ingredients on performance of rainbow trout Oncorhynchus mykiss [J]. Aquaculture, 2009,290:269-274.
    El-Sayed A F M. Total replacement of fish meal with animal protein sources in Nile tilapia, Oreochromis niloticus (L), feeds [J]. Aquacult. Res.,1994,29:275-280.
    El-Sayed A M. Evaluation of soybean meal, spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings [J]. Aquaculture,1994,127: 169-176.
    El-Sayed A-F M. Alternative dietary protein sources for farmed tilapia, Oreochromis spp [J]. Aquaculture,1999,179:149-168.
    Eusebio P S, Coloso R M. Nutritional evaluation of various plant protein sources in diets for Asian sea bass Lates calcarifer [J]. J. Appl. Ichthyol.,2000,16:56-60.
    Fowler L G, Banks J L. Animal and vegetable substitutes for fish meal in the Abernathy diet [J]. Progress. Fish-Cultur.,1976,38(3):123-126.
    Fowler L G. Feather meal as a dietary protein source during parr-smolt transformation in fall Chinook salmon [J]. Aquaculture,1990,89:301-314.
    Fowler L G. Poultry by-product meal as a dietary protein source in fall Chinook salmon diets [J]. Aquaculture,1991,99:309-321.
    Gallagher M L, Degani G. Poultry meal and poultry oil as sources of protein and lipid in the diet of European eels(Anguilla anguilla) [J]. Aquaculture,1988,73:177-187.
    Gallagher M L, LaDouceur M. The use of blood meal and poultry products as partial replacements for fish meal in diets for juvenile palmetto bass (Morone saxatilis×M. chrysops.) [J]. J. Appl. Aquacult.,1995,5(3):57-65.
    Gaylord T G, Gatlin D M Ⅲ. Determination of digestibility coefficients of various feedstuffs for red drum (Sciaenops ocellatus) [J]. Aquaculture,1996,139:303-314.
    Glencross B D, Booth M, Allan G L. A feed is only as good as its ingredients-a review of ingredient evaluation strategies for aquaculture feeds [J]. Aquacult. Nutri.,2007,13:17-34.
    Goda A M, El-Haroun E R, Kabir Chowdhury M A. Effect of totally or partially replacing fish meal by alternative protein sources on growth of African catfish Clarias gariepinus (Burchell,1822) reared in concrete tanks [J]. Aquacult. Res.,2007,38:279-287.
    Gomes E F, CorrzaeqKaushik S. Effects of dietary incorporation of a co-extruded plantprotein (rapeseed and peas) on growth, nutrient utilization and muscle fatty acid composition of rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture,1993,113:339-353.
    Gomes E, Dias J, Kaushik S J. Improvement of feed intake through supplementation with an attractant mix in European sea bass fed plant protein rich diets [J]. Aquat. Living Resour., 1997,10:385-389.
    Guo J L, Wang Y, Bureau D P. Inclusion of rendered animal ingredients an fish meal substitutes in practical diets for cuneate drum, Nibea miichthioides (Chu, Lo et Wu) [J]. Aquacult. Nutri., 2007,13:81-87.
    Hasan M R, Haq M S, Das P M, et al. Evaluation of poultry-feather meal as a dietary protein source for Indian major carp, Labeo rohita fry [J]. Aquaculture,1997,151:47-54.
    Hertrampf J W, Piedad-Pascual F. Handbook on Ingredients for Aquaculture Feeds [M]. Kluwer Academic Publishers, Dordrecht, Netherlands,2000,482-483.
    Kikuchi K, Sato T, Furuta T, Sakaguchi I, et al. Use of meat and bone meal as a protein source in the diet of juvenile Japanese flounder [J]. Fisheries Sci.,1997,63(1):29-32.
    Kureshy N, Davis D A, Arnold C R. Partial replacement of fish meal with meat-and-bone meal, flash-dried poultry by-product meal in practical diets for juvenile red drum [J]. N. Am. J. Aquacult.,2000,62:266-272.
    Lee K & Bai S C. Haemoglobin powder as a dietary fish meal replacer in juvenile Japanese eel, Anguilla japonica (Temminck et Sciilegel) [J]. Aquacult. Res.,1997,28:509-516.
    Lee K J, Bai S C. Hemoglobin powder as a dietary animal protein source for juvenile Nile tilapia [J]. Progres. Fish-Cultur.,1997,59(4):266-271.
    Li K, Wang Y, Zheng Z X, et al. Replacing fish meal with rendered animal protein ingredients in diets for malabar grouper, epinephelus malabaricus, reared in net pens [J]. J. the World Aquacult. Soc.,2009,40:67-75.
    Lin M F, Shiau S Y. Dietary L-ascorbic acid affects growth, nonspecific immune responses and disease resistance in Juvenile Grouper, Epinephelus malabaricus [J]. Aquaculture,2005,244: 215-221.
    Lin M F, Shiau S Y. Requirements of vitamin C and its effects on immune responses of grouper, Epinephelus malabaricus [J]. Aquacult. Nutri., 2004,10:327-333.
    Lin M F, Shiau S Y. Requirements of vitamin C and its effects on non-specific immune responses of grouper, Epinephelus malabaricus [J]. Aquacult. Nutri.,2005,11:183-189.
    Lin Y H, Shiau S Y. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses [J]. Aquaculture,2003,225:243-250.
    Lin Y H, Shiau S Y. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricu [J]. Aquaculture,2005,250:356-363.
    Lin Y H, Shiau S Y. Dietary vitamin E requirement of grouper, Epinephelus malabaricus, at two lipid levels, and their effects on immune responses [J]. Aquaculture,2005,248:235-244.
    Lu J D, Kevern N R. The feasibility of using waste materials as supplemental fish feed [J]. The Progres. Fish-Cultur.,1975,37(4):241-244.
    Luo Z, Liu Y J, Mai K S et al. Dietary L-methionine requirement of juvenile grouper Epinephelus coioides at a constant dietary cystine level [J]. Aquaculture,2005,249:409-418.
    Luo Z, Liu Y J, Mai K S et al. Optimal dietary protein requirement of grouper Epinephelus coioides juveniles fed isoenergetic diets in floating net cages [J]. Aquacult. Nutri.,2004,10:247-252.
    Mai K S, Li H T, Ai Q H, et al. Effects of dietary squid viscera meal on growth and cadmium accumulation in tissues of Japanese seabass, Lateolabrax japonicus (Cuvier 1828) [J]. Aquacult. Res,2006,37:1063-1069.
    Mearns K J. Sensitivity of brown trout Salmo trutta L..and Atlantic salmon Salmo salar L.. fry to amino acids at the start of exogenous feeding [J]. Aquaculture,1986,55:191-200.
    Meilahn C W, Davis D A, Arnold C R. Effects of commercial fish meal analogue and menhaden fish meal on growth of red drum fed isonitrogenous diets [J]. Progres. Fish-Cultur.,1996,58: 111-116.
    Milliamena 0 M. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides [J]. Aquaculture,2002,204:75-84.
    Mohamed J S, Sivaram V, Christopher T S, et al. Dietary vitamin A requirement of juvenile greasy grouper (Epinephelus tauvina) [J]. Aquaculture,2003,219:693-701.
    Mohsen A A, Lovell R T. Partial substitution of soybean meal with animal protein source in diets for channel catfish [J]. Aquaculture,1990,90:303-311.
    Mosconi-Bac N. Hepatic disturbances induced by an artificial feed in the sea bass(Dicentrarchus labrax) during the first year of life [J]. Aquaculture,1987,67:93-99.
    Mosconi-Bac N. Reversibility of artificial feed-induced hepatocyte disturbances in cultured juvenile sea bass (Dicentrarchus labrax):An ultrastructural study [J]. Aquaculture,1990,88: 363-370.
    Murai T. Protein nutrition of rainbow trout [J]. Aquaculture,1992,100:191-207.
    Nengas I, Alexia M N, Davies S J. High inclusion levels of poultry meals and related by products in diets for gilthead seabream Sparus aurata L. [J]. Aquaculture,1999,179:13-23.
    NRC (National Research Council). Nutrient Requirements of Fish [M]. National Academy Press. Washington, DC.1981.
    Otubusin S O. Effects of different levels of blood meal in pelleted feeds on tilapia, Oreochromis niloticus, production in floating bamboo net-cages [J]. Aquaculture,1987,65:263-266.
    Papatryphon E, Sorares J J. The effect of dietary feeding stimulants on growth performance of striped bass Morone saxatilis, fed-a-plant feedstuff-based diet [Jj. Aquaculture,2000,185: 329-338.
    Quartararo H Y, Allan G L, Bell J D. Replacement of fish meal in diets for Australian snapper, Pagrus auratus [J]. Aquaculture,1998,166:279-295.
    Rawles S D, Riche M, Gaylord T G, et al. Evaluation of poultry by-product meal in commercial diets for hybrid striped bass (Morone chysops ♀×M. saxatilis ♂) in recirculated tank production [J]. Aquaculture,2006,259:377-389.
    Robaina L, Moyano F J, Izquierdo M S, et al. Corn gluten and meat and bone meals as protein sources in diets for gilthead seabream (Sparus aurata):Nutritional and histological implications [J]. Aquaculture,1997,157:347-359.
    Rodriguez S M, Olvera N M, Carmona O C. Nutritional value of animal by-product meal in practical diets for Nile tilapia(Oreochromis niloticus) [J]. Aquacult. Res.,1996,27:67-73.
    Shapawi R, Ng W, Mustafa S. Replacement of fish meal with poultry by-product meal in diets formulated for the humpback grouper, Cromileptes altivelis [J]. Aquaculture,2007,273: 118-126.
    Shiau S Y, Lan C W. Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus) [J]. Aquaculture,1996,145:259-266.
    Shimeno S, Masumoto T, Hujita T, et al. Alternative protein-sources for fish-meal in diets of young yellowtail [J]. Nippon Suisan Gakk.,1993,59(1):137-143.
    Steffens W. Replacing fish meal with poultry by-product meal in diets for rainbow trout, Oncorhynchus mykiss [J]. Aquaculture,1994,124:27-34.
    Stone D A J, Allan G L, Parkinson S, et al. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus Ⅲ. Digestibility and growth using meat meal products [J]. Aquaculture,2000,186:311-326.
    Su S L, Shiau S Y. Requirements of dietary myo-inositol of juvenile grouper, Epinephelus malabaricus [J]. J. Fish. Soc. Taiwan,2004,31(4):311-317.
    Sudaryono A, Tsvetnenko E, Evans L H. Evaluation of potential of lupin meal as an alternative to fish meal in juvenile Penaeus monodon diets [J]. Aquacult. Nutri.,1999,5:277-285.
    Teng S K, Chua T E, Lim P E. Preliminary observation on the dietary protein requirement of estuary grouper, Epinephelus salmoides Maxwell, cultured in floating net-cages [J]. Aquaculture,1978,15:257-271.
    Thompson K R, Metts L S, Muzinic L A, et al. E ects of feeding practical diets containing di erent protein levels, with or without fish meal, on growth, survival, body composition and processing traits of male and female Australian red claw crayfish (Cherax quadricarinatus) grown in ponds [J]. Aquacult. Nutri.,2006,12:227-238.
    Thompson K R, Muzinic L A, Engler L S, et al. Evaluation of practical diets containing different protein levels, with or without fish meal, for juvenile Australian red claw crayfish (Cherax quadricarinatus) [J]. Aquaculture,2005,244:241-249.
    Tibbetts S M, Milley J E, Lall S P. Apparent protein and energy digestibility of common and alternative feed ingredients by Atlantic cod, Gadus morhua (Linnaeus,1758) [J]. Aquaculture, 2006,261:1314-1327.
    Toften H, Jobling M. Feed intake and growth of Atlantic salmon, Salmo salar L., fed diets supplemented with oxytetracycline and squid extract [J]. Aquacult. Nutri.,1997,3:145-151.
    Wang Y, Guo J, Bureau D P, Cui Z H. Replacement of fish meal by rendered animal protein ingredients in feeds for cuneate drum (Nibea miichthioides) [J]. Aquaculture,2006,225: 476-483.
    Wang Y, Kong L, Li C, et al. The potential of land animal protein ingredients to replace fish meal in diets for cuneate drum, Nibea miichthioides, is affected by dietary protein level [J]. Aquacult. Nutr.,2010,16:37-43.
    Wang Y, Li K, Han H, et al. Potential of using a blend of rendered animal protein ingredients to replace fish meal in practical diets for malabar grouper (Epinephelus malabricus) [J]. Aquaculture,2008,281:113-117.
    Watanabe T, Pongmaneerat J, Sato S, et al. Replacement of fish-meal by alternative protein-sources in rainbow-trout diets [J]. Nippon Suisan Gakk.,1993,59(9):1573-1579.
    Webster C D, Thompson K R, Morgan A M, et al. Use of hempseed meal, poultry by-product meal, and canola meal in practical diets without fish meal for sunshine bass (Morone chysops×M. saxatilis) [J]. Aquaculture,2000,188:299-309.
    Wu Y V, Tudor K W, Brown P B, et al. Substitution of plant proteins or meat and bone meal for fish meal in diets of Nile tilapia [J]. N. Am. J. Aquacult.,1999,61(1):58-63.
    Xue M, Cui Y B. Effect of several feeding stimulants on diet preference by juvenile gibel carp (Carassius auratus Gibelio), fed diets with or without partial replacement of fish meal by meat and bone meal [J]. Aquaculture,2001,198:281-292.
    Xue M, Xie S Q, Cui Y B. Effect of a feeding stimulant on feeding adaptation of gibel carp Carassius auratus gibelio (Bloch), fed diets with replacement of fish meal by meat and bone meal [J]. Aquacult. Res.,2004,35:473-482.
    Yang Y, Xie S Q, Cui Y B, et al. Effect of replacement of dietary fish meal by meat and bone meal and poultry by-product meal on growth and feed utilization of gibel carp, Carassius auratus gibelio [J]. Aquacult. Nutri.,2004,10:289-294.
    Yang Y, Xie S Q, Cui Y B, et al. Partial and total replacement of fishmeal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch [J]. Aquacult. Res.,2006,37: 40-48.
    Ye C X, Liu Y J, Tian L X, et al. Effect of dietary calcium and phosphorus on growth, feed efficiency, mineral content and body composition of juvenile grouper, Epinephelus coioides [J]. Aquaculture,2006,255:263-271.
    Yigit M, Erdem M, Koshio S, et al. Substituting fish meal with poultry by-product meal in diets for black Sea turbot Psetta maeotica [J]. Aquacult. Nutri.,2006,12:340-347.
    Zhang S, XIE S, ZHU X, et al. Meat and bone meal replacement in diets for juvenile gibel carp (Carassius auratus gibelio) effects on growth performance, phosphorus and nitrogen loading [J]. Aquacult. Nutri.,2006,12:353-362.
    陈杰,方志伟,徐鹤龙,等.花生粕的主要特征、营养成分及综合开发利用[J].广东农业科学,2008,11:70-71.
    陈国华,张本.点带石斑鱼亲鱼培育、产卵和孵化的试验研究[J].海洋与湖沼,2001,32:428-435.
    陈学豪,林利民,洪惠馨.赤点石斑鱼人工配合饵料中蛋白质最适含量的研究[J].台湾海峡,1995,14:407-412.
    戴庆年,张其永,蔡友义,等.福建沿岸海域赤点石斑鱼年龄和生长的研究[J].海洋与湖沼,1988,19:215-224.
    丁天喜.石斑鱼人工育苗技术进展[J].浙江水产学院学报,1990,9:43-50.
    高荣丽,陶冠军,杨严俊.葵花籽粕的综合利用[J].食品工业科技,2006,7:138-140.
    郭沛勇,王运涛.水产养殖饲料蛋白源开发利用研究现状[J].中国水产科学,2001,7:108-112.
    韩家波,木云雷,王丽梅.海水养殖与近海水域污染研究进展[J].水产科学,1999,18:40-43.
    胡杰,周婉霞,薄治礼.青石斑鱼的胚胎发育[J].水产科技情报,1982,2:20-22.
    胡梦红.廉价动物蛋白源替代异育银鲫实用饲料中鱼粉的研究[D].华中农业大学硕士学位论文,2008.
    姜志强,吴立新,郝拉娣.海水养殖鱼类生物学及养殖[M].北京,海洋出版社,2005.146
    兰海军.采用营养调控降低养殖场粪污对环境污染[J].养殖与饲料,2008,4:107-109.
    林永泰,张庆,杨汉运,等.黑龙滩水库网箱养鱼对水环境的影响[J].水利渔业,1995,6:6-10.
    刘振利,彭健.双低菜粕在动物日粮中的使用技术[J].牧草饲料,2009,1:112-113.
    卢婷婷,吴凤笋,唐桂芬.浅谈发酵豆粕作为饲料的价值[J].上海畜牧兽医通讯,2008,6:98.
    梅娜,周文明,胡晓玉,等.花生粕营养成分分析[J].西北农业学报,2007,16:96-99.
    王涵生.赤点石斑鱼人工繁殖的研究Ⅰ.亲鱼的室内自然产卵[J].海洋科学,1996,6:4-8.
    王卫东.芝麻油中芝麻素的保健功能[J].中国食物与营养,2005,6:49-50.
    王妍琪,李玫.双低油菜粕粉在饲料中响应用及展望[J].饲料广角,2005,5:28-32.
    邢晨光,金珊,袁思平.石斑鱼性逆转研究现状[J].水产科学,2006,25(4):214-216.
    许波涛,李加儿,周宏团.赤点石斑鱼的胚胎和仔鱼形态发育[J].水产学报,1985,4:369-374.
    薛飞,周维仁,徐为民.鱼类氮、磷营养与水体环境[J].河北渔业,2004,3:1-3.
    薛敏,周志刚,虞予等.肉骨粉替代罗非鱼(Nile Tilapia)摄食率中的鱼粉.美国动物蛋白及油脂提炼协会.水产饲料成本优化——动物蛋白取代鱼粉的实效.2001.
    杨家驹,黄增岳,肖耀兴,等.人工诱导巨石斑鱼性逆转的研究[J].热带海洋,1996,15(4):75-79.
    杨耐德.微生物发酵豆粕在动物生产中的研究与应用[J].黑龙江畜牧兽医科技版,2009,5:67-68.
    叶元土,林仕梅,罗莉等.水产养殖的饲料损失量及原因分析[J].中国饲料,2002,14:27-28.
    张其永,戴庆年,蔡友义.赤点石斑鱼人工繁殖和仔鱼培育试验[J].水产科学,1986,5(1):1-4.
    张世卿,张水成.芝麻素研究进展[J].氨基酸和生物资源,2005,27(3):17-21.
    赵富荣,袁有志.葵花籽制油及综合利用[J].中国油脂,2005,30(1):9-13.
    周建新,孙明,汪海峰,等.芝麻素的应用性能研究.食品科学,2004,25(1):102-105.
    周秋白.浅谈降低水产养殖饲料的氮、磷污染.江西水产科技,2001,1:11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700