用户名: 密码: 验证码:
热带附生和地生蕨类植物对水分胁迫和光斑的光合生理响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
附着在树干、岩石表面、不从宿主上获取养分且不扎根于地面土壤的蕨类植物被称为附生蕨类植物,是热带雨林森林生态系统的重要组成部分。与地生蕨类植物相比,由于附生蕨类植物无法直接从土壤中吸收水分,忍受干旱胁迫是附生植物经常要经历的事情,因此保持体内必要的水分是其生存的关键因素。很多附生蕨类植物生长在林内光线很弱的环境下,因此它们对光斑的利用能力将影响它们的生长和发育。本研究通过对比附生和地生两种生活型的蕨类植物对干旱的响应来评价它们对干旱胁迫适应能力的差别;与半附生和地生两种生活型的榕属植物进行对比,研究蕨类植物对光斑的利用策略。此外,本研究还报道了西双版纳山地雨林蕨类植物的多样性。
     在控水实验中,对生长在4%光强下盆栽的2种附生蕨类(鸟巢蕨和星蕨)和2种地生蕨类植物(网脉铁角蕨和拟薄唇蕨)进行停水处理直到气孔完全关闭或接近关闭。研究结果发现:2种附生蕨类植物的叶片相对含水量(RWC)下降幅度明显低于2种地生蕨类植物,并且附生蕨在较高的叶片RWC下就关闭气孔。光合速率(An)、气孔导度(gs)和蒸腾速率(Tr)随着叶片RWC的下降而降低。35天干旱处理后,2种地生蕨类植物的An、gs和Tr均降到非常低的水平;49天干旱处理后,2种附生蕨类植物的An、gs和Tr均降到非常低的水平。地生蕨类植物复水9天,附生蕨类植物复水3天后其光合能力均已恢复。2种附生蕨类植物凌晨和正午Fv / Fm的值在水分胁迫期间并没有显著降低,附生鸟巢蕨的Chl NDI的值在整个水分胁迫期间也并没有显著下降,附生星蕨的Chl NDI的值虽然在水分胁迫期间有显著性下降,但复水后能快速地恢复到对照水平。2种地生蕨类植物凌晨和正午Fv / Fm的值在干旱处理的第28 d开始显著性的下降,但其值仍然在0.75以上,表明只发生了轻微的光抑制,而且复水9 d后光抑制解除。地生网脉铁角蕨的Chl NDI的值在干旱处理的第14 d开始显著下降,地生拟薄唇蕨的Chl NDI的值在第21 d后开始显著下降,但2种地生蕨的Chl NDI的值在复水9天后均能恢复对照水平。Fv / Fm和Chl NDI的结果表明在整个水分胁迫期间4种蕨类植物的光系统II的反应中心并没有受到不可逆的破坏,光合速率的下降主要是气孔关闭的结果。复水之后,4种蕨类植物的CO2同化能力能够快速恢复也证明了这一点。森林中4种蕨类在其自然生长方式下(即,地生或附生)的叶片相对含水量和叶绿素含量在干季和雨季并没有显著的差异,类胡萝卜素含量在旱季有显著提高。此外,它们的干季最大净光合速率和最大气孔导度显著低于雨季。由于附生蕨类植物在水分胁迫中能够保持光合系统的完整性、保持叶绿素含量的稳定性以及复水之后能够快速恢复,这是附生植物能够适应频繁水分胁迫的附生生境的重要原因。
     在光合诱导实验中,对12种植物对光斑的响应和光合诱导维持能力进行了测定。这12种植物包括6种蕨类植物和6种榕属植物。蕨类植物和榕属植物分别包括附生和地生2种生活型。研究结果发现:6种地生植物除了拟薄唇蕨和三叉蕨的诱导速率较慢外,其它4种地生植物种类达到最大净光合速率的90%所需要的时间(T90)为5.24 ~ 7.79 min,地生榕属植物的光合诱导响应时间T90明显比同属的3种半附生榕属植物要短,这有利于3种地生榕属植物在光斑下进行较快速的光合诱导,获得较高碳产量和维持较大的量子产额。而半附生榕属对光合诱导迟缓的反应可能是其幼苗阶段为了适应附生环境以保护水分为先的特性。诱导过程的快慢与初始气孔导度有关,初始气孔导度高的植物达到最大光合速率50%和90%所需的时间也相应较短。但初始气孔导度对T50和T90的影响均有一个阈值(50 mmol H2O m-2 s-1)。在光斑消失后,12种研究材料的光合诱导状态并没有立即消失,20分钟时仍然维持较高的诱导状态。从叶片结构来看,与地生植物相比,附生(包括半附生)植物有厚而密的叶片。从气孔特征来看,蕨类植物的气孔大而稀疏,但榕属植物的气孔小而密。蕨类植物的光合能力明显比榕属植物的低。
     此外,本文还对西双版纳热带山地常绿阔叶林蕨类组成特点及其数量特征等的进行了调查,根据4个50×50 m样地(400个5x5m小样方,共计1ha取样面积)的详细调查及对各样地外沿50m范围内蕨类的采集调查统计发现:滇南热带山地常绿阔叶林里记录有蕨类植物64种,以地面芽和地下芽生活型为主。在叶片特征上,以革质和纸质叶居多。蕨类植物有明显的季相变化;狗脊(Woodwardia japonica)、疏叶蹄盖蕨(Athyrium dissifolium)、苏铁蕨(Brainea insignis)、光叶鳞盖蕨(Microlepia calvescens)、清秀复叶耳蕨(Arachniodes spectabilis)和假稀羽鳞毛蕨(Dryopteris pseudosparsa)的重要值之和占蕨类植物重要值总和的84%,其中,狗脊的重要值占重要值总和的1/3以上,这6种蕨类植物是该森林群落中占优势的蕨类种类,为该森林群落的适宜种。勐腊凤尾蕨(Pteris menglaensis)为该森林群落的确限种。
Epiphytic ferns grow above the ground surface, using other plants or objects such as rocks for support and do not obtain nutrients from their hosts. They are an important component of tropical rainforest ecosystems. Epiphytic ferns do not directly absorb water from the soil in the ground and frequently experience drought stress. Therefore, the ability of maintaining necessary water content is a key factor for the survival and growth of epiphytic ferns. The habitats of epiphytic ferns are associated with the dim light environment under the forest canopy or in the forest understorey; therefore, the ability of light-fleck utilization affects their growth and development. In the present study, the differences in adaptation to water stress were assessed by comparing the responses of epiphytic and terrestrial fern species to drought stress. The strategies of light fleck utilization of these two life-form ferns were also studied, with a comparison to those in hemiepiphytic and terrestrial figs. Moreover, the diversity of ferns in tropical montane rain forests in Xishuangbanna of Southwest China was also reported in the study.
     Using potted plants of two epiphytic fern species (Neottopteris nidus (L.) J. Sm and Microsorium punctatum (L.) Cop.) and two terrestrial fern species (Asplenium finlaysonianum Wall. ex Hook. and Paraleptochilus decurrens (Blume) Copel.) grown under 4% daylight, an experiment of simulated drought stress and subsequent rehydration was done. Leaf relative water content (RWC) in two terrestrial fern species declined more rapidly and to greater extent than that in two epiphytic fern species in the simulated-drought experiment and two epiphytic fern species closed their stomata at relatively high RWC level. Net photosynthetic rate (An), stomatal conductance (gs) and transpiration rate (Tr) decreased with decreasing leaf RWC. The An, gs and Tr of the two terrestrial and two epiphytic fern species studied declined to the much lower values (35 days and 49 days, respectively) and returned to the values of the control quickly after several days rewatering (3 days and 9 days or more, respectively). The values of Fv/Fm at predawn and midday in the two epiphytic fern species did not decline significantly during the whole period of the water-withholding experiment; moreover, the values of Chl NDI values, a spectral index of chlorophyll content, did not significantly decline during the water-withholding experiment in N. nidus. The Chl NDI values declined significantly during the water-withholding experiment in M. punctatum, however, it could return to the level of the control quickly after re-watering. The values of Fv/Fm at predawn and midday began to decline significantly from 28th day in the terrestrial fern species, while the values were still higher than 0.75, which indicated that slight photoinhibition occurred. The slight photoinhibition was relieved after re-watering for 9 d. The Chl NDI values began to decline significantly in A. finlaysonianum and P. decurrens from 14th and 21th day, respectively, and returned to the level of the control after re-watering for 9 d. These results indicated that no irreversible damage occurred in reaction center of photosystem II of all the four fern species studied and the decline of An may be due to stomata closure. The quick recovery in CO2 assimilation rates after rehydration also supported this. In their respective native habitats of the 4 fern species in a rainforest, no significant differences in leaf RWC and chlorophyll content were found between the rainy and dry seasons for all of the four fern species. However, their maximum net photosynthetic rates and maximum stomatal conductance in the rainy season were significantly higher than that in the dry season. The ability of maintaining integrity of photosystems and stable chlorophyll content during the water-stressed periods and rapid recovery of photosynthetic capacities after rewatering in water-stressed epiphytic ferns were probably the reasons for the survival of epiphytic ferns in the drought-prone epiphytic habitat.
     The photosynthetic induction and induction maintenance were examined on the potted plants of six fern species (three epiphytic and three terrestrial species) and six fig species (three hemi-epiphytic and three terrestrial species) grown under 4% daylight. The time required to reach 90% full induction state (T90) in six terrestrial species except for Pseudodrynaria coronans and Tectaria subtriphylla (15.92 and 16.25 min, respectively) was 5.24 ~ 7.79 min. T90 of three terrestrial fig species was significantly shorter than that in three terrestrial fig species, which was beneficial for light-fleck utilization of the terrestrial figs. The induction time required 50% and 90% maximum photosynthetic rate was nonlinearly and negatively correlated with initial stomatal conductance (gs-initial). Species with higher gs-initial tended to had shorter time required to reach 50% and 90% full induction state, with a threshold value of gs-initial at 50 mmol H2O m-2 s-1.
     According to the data from 4 sampling plots of 50 x 50 m (divided into 400 small plots of 5 x 5m), floristic composition and ecological characteristics of fern communities in a tropical montane rainforest in Xishuangbanna were studied. Totally, 64 fern species were recorded from the forest. These ferns were dominated by chamaephytes and geophytes with leathery and papery leaves. These ferns showed obvious seasonal change in physiognomy. Six fern species, including Woodwardia japonica, Athyrium dissifolium, Brainea insignis, Microlepia calvescens, Arachniodes spectabilis and Dryopteris pseudosparsa, had 84% of the important value (IV) summed from the total fern species. The IV of Woodwardia japonica was above 1/3 of total. This indicates these six fern species dominate the montane rainforests and are preferential species. The fern species Pteris menglaensis is the exclusive species of the montane rainforests.? ?
引文
Alberte RS, Thornber JP (1977) Water Stress Effects on the Content and Organization of Chlorophyll in Mesophyll and Bundle Sheath Chloroplasts of Maize. Plant Physiology 59, 351-353.
    Allen MT, Pearcy RW (2000) Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. Oecologia 122, 470-478.
    Andrade JL, Noble PS (1997) Microhabitats and water relations of epiphytic cacti and ferns in lowland neotropical forest. Biotropica 29, 261-270.
    Bai KD, Liao DB, Jiang DB, Cao KF (2007) Photosynthetic induction in leaves of co-occurring Fagus lucida and Castanopsis lamontii saplings grown in contrasting light environments. Trees - Structure and Function, DOI 10.1007/s00468-007-0205-4 (In press).
    Bassman J, Zwier JC (1991) Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa×trichocarpa clones. Tree Physiology 8, 145-149.
    Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematics 11, 287-310.
    Benzing DH (1990) Vascular epiphytes. General biology and related biota. Cambridge University Press, Cambridge.
    Benzing DH, Dahle CE (1971) The vegetative morphology, habitat preference and water balance mechanisms of the bromeliad Tillandsia ionantha Planch. American Midland Naturalist 85, 11-21.
    Benzing DH, Renfrow A (1974) The mineral nutrition of Bromeliaceae. Botanical Cazette 135, 281-288.
    Brodribb TJ, Holbrook NM (2004) Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist 162, 663-670.
    Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B (2005) Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytologist 165, 839-846.
    Cao SS(曹寿善.主编) (2003) Caiyanghe Nature Reserve(菜阳河自然保护区)[M]. Kunming(昆明):Yunnan Science & Technology Press(云南科技出版社),pp. 12.
    Carlquist S, Schneider EL (2001) Vessels in ferns: structural, ecological, and evolutionary significance. American Journal of Botany 88, 1-13.
    Cavelierr J, Goldstein G (1989) Mist and fog interception in elfin cloud forest sin Colombia and Venezuela. Journal of Tropical Ecology 5, 309-322.
    Chapin III FS (1980) The Mineral Nutrition of Wild Plants. Annual Review of Ecology and Systematics pp. 233-260.
    Chazdon RL (1988) Sunflecks and their importance to forest understory plants. Advance of Ecological Research 18, 1-62.
    Chazdon RL, Fetcher N (1984) Light environments of tropical forest. In: Medina, E., H.A. Mooney & C. Vázquez-Yánes eds. Physiological ecology of plants of the wet tropics. The Hague: W. Junk Publishers. pp. 27-36.
    Chazdon RL, Pearcy RW (1986) Photosynthetic responses to light variation in rainforest species. I. Induction under constant and fluctuating light conditions. Oecologia 69, 517-523.
    Cheng X(陈晓),Wu SG(武素功),Lu SG(陆树刚)(2005) Flora Yunnanica(云南植物志)[M]. Vol.21 (Pteridophyta). Beijing(北京):Science Press (科学出版社),pp. 1-414.
    Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science 5, 187-188.
    Dang CL (党承林), Wu ZL(吴兆录), Zhang Q(张强) (1997) A study on biomass of the ravine tropical rain forest in Xishuangbanna(西双版纳沟谷热带雨林的生物量研究). Acta Botanica Yunnanica (Appendix)[云南植物研究(增刊)] pp. 123-128.
    Demmig-Adams B, AdamsⅢWW (1992) Carotenoid composition in sun and shade leaves of plants with different life forms. Plant, Cell and Environment 15, 411-419.
    Deng X (邓馨), Hu ZA(胡志昂), Wang HX(王洪亲), Wen XG(温小刚), Kuang TY(匡廷云) (2004) Effects of dehydration and rehydration on photosynthesis of detached leaves of resurrective plant Boea hygrometrica (脱水和复水对复苏植物牛耳草离体叶片光合作用的影响). Acta Botanica Sininca (植物学报) 42, 321-323.
    Dong M(董鸣) (1996a) Clonal growth in plants in relation to resource heterogeneity: foragion behavior [J]. Acta Bot Sin (植物学报),38, 828-835.
    Dong M(董鸣) (1996b). Plant clonal growth in heterogeneous habitats: Risk– spreading(异质性生境中的植物克隆生长:风险分摊)[J]. Acta Phytoecol Sin (植物生态学报),20, 543-548.
    Dong M(董鸣.主编)(1997) Observation and Analysis on the Survey of Land Biocoenoses(陆地生物群落调查观测与分析)[M]. Beijing(北京):Chinese Standard Press(中国标准出版社),pp. 3-10.
    Ellwood MDF, Foster WA (2004) Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429, 549-551.
    Endres L, Mercier H (2003) Amino acid uptake and profile in bromeliads with different habits cultivated in vitro. Plant Physiology and Biochemistry 41, 181-187.
    Feng YL, Cao KF, Zhang JL (2004) Photosynthetic characteristics, dark respiration, and leaf mass per unit area in seedlings of four tropical tree species grown under three irradiances. Photosynthetica 42, 431-437.
    Flexas J, Bota J, Gamés J, Medrano H, Ribas-CarbóM (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum 127, 343-352.
    Fu RS(付荣恕),Liu LD(刘林德) (2004) Tutorial of ecology experiment(生态学实验教程)[M]. Beijing(北京):Science Press(科学出版社): pp. 12-106.
    Grassi G, Magnani F (2005) Stomatal, mesophyll and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell and Environment 28, 834-849.
    Gratani L, Bombelli A (2001) Differences in leaf traits among Mediterranean broad-leaved evergreen shrubs. Annales Botanici Fennici 38, 15-24.
    Hietz P, Briones O (1998) Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114, 305-316.
    Holbrook NM, Putz FE (1996) From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant, Cell and Environment 19, 631-642.
    H?lscher D, K?hler L, Dijk van AIJM, Bruijnzeel LA (2004) The importance of epiphytes to total rainfall interception by a tropical montane rainforest in Costa Rica. Journal of Hydrology 292, 308-322.
    Hou XY(侯学煜) (1957) First observations of ecology environment of pteridophytes in Guizhou province and neighboring region(贵州省及邻近地区的蕨类植物生态环境的初步观察) [M]. Beijing(北京):Science Press (科学出版社) pp. 62.
    Hubbard R, Ryan M, Stiller V, Sperry J (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, cell and environment 24, 113-121.
    Jiang HQ(姜汉侨),Duan CQ(段昌群),Yang SH(杨树华)等(2005) Plant Ecology(植物生态学)[M]. Beijing(北京):China Higher Education Press(高等教育出版社),pp. 99-60.
    Jin ZZ(金振洲)(1979) The types and characteristics of evergreen broad-leaved forests in Yunnan[J]. Acta Botanica Yunnanica (云南植物研究),1, 90-105
    Kaiser H, Kappen L (2000) In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey. Journal of Experimental Botany 51, 1741-1749.
    Karst AL, Lechowicz MJ (2007) Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytologist 173, 306-312.
    Kong XX(孔宪需),Zhu WM(朱维明),Xie YT(谢演堂) (2001) Flora of China(中国植物志)[M]. Vol.5 (2). Beijing(北京):Science Press (科学出版社),pp. 2-177.
    Kundu SK, Tigerstedt PMA (1999) Variation in net photosynthesis, stomatal characteristics, leaf area and whole plant phytomass production among ten provenances of neem (Azadirachta indica). Tree Physiology 19, 47-52.
    Kursar TA, Coley PD (1993) Photosynthetic induction times in shade-tolerant species with long and short-lived leaves. Oecologia 93, 165-170.
    Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25, 275-294.
    Li B (李博.主编) (2000) Ecology(生态学)[M].北京:China Higher Educating Press(高等教育出版社),pp. 124-128.
    Li BG(李保贵), Zhu H(朱华), Wang H(王洪) (2000) The changing of fern diversity from the fragment rain forest on a holy hill in Xishuangbanna (西双版纳“龙山”片断雨林蕨类植物的变化研究). Journal of Botanical Research (武汉植物学研究) 18, 479-486.
    Li BG(李保贵), Zhu H(朱华), Wang H(王洪), Xu ZF(许再富) (1996) A preliminary study on the pteridoflora in Xishuangbanna limestone forest (西双版纳石灰岩山地森林蕨类区系的初步研究). Journal of Botanical Research (武汉植物学研究) 14, 131-140.
    Li BG(李保贵),Zhu H(朱华)(2005) A study on ferns in monsoon evergreen broad-leaved forest on Mangong Mountain in Mengla, Xishuangbanna, China(西双版纳勐腊南贡山季风常绿阔叶林蕨类植物初步研究)[J]. Guihaia(广西植物),25, 497-503.
    Li HS(李合生) (2000) Principles and techniques of plant physiological biochemical experiment(植物生理生化实验原理和技术). Beijing(北京): China Higher Education Press(高等教育出版社).
    Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophyll a and b of leaf extracts different solvents. Biochemical Society Transaction 603, 591-592.
    Lin P(林鹏) (1986)植物群落学[M]. Shanghai(上海):Shanghai Science & Technology Press(上海科学技术出版社): pp. 68-90.
    Ling YX(林尤兴),Zhang XC(张宪春),Lu SG(陆树刚),et al. Flora of China(中国植物志)[M]. Vol.6 (2). Beijing(北京):Science Press (科学出版社),2000, 49-150.
    Liu WJ, Meng FR, Zhang YP, Liu YH, Li HM (2004) Water input from fog drip in the tropical seasonal rain forest of Xishuangbanna, South-West China. Journal of Tropical Ecology 20, 517-524.
    Liu WJ, Zhang YP, Li HM, Meng FR, Liu YH, Wang CM (2005) Fog- and rainwater chemistry in the tropical seasonal rain forest of Xishuangbanna, Southwest China. Water, Air and Soil Pollution 167, 295-309.
    Liu WY, Fox JED, Xu ZF (2002) Nutrient fluxes in bulk precipitation, throughfall and stemflow in montane subtropical moist forest on Ailao Mountains inYunnan, Southwest China. Journal of Tropical Ecology 18, 527-548.
    Lowman DM, Nadkarni MN (1995) Forest Canopies. Academic Press, USA. pp. 495-543.
    Lowman MD (2001) Plants in the forest canopy: some reflections on current research and future direction. Plant Ecology 153, 39-50.
    Martinez-Vilalta J, Pinol J, Beven K (2002) A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecological Modeling 155, 127-147.
    Nadkarni NM, Merwin MC, Nieder J (2001) Forest canopies, plant diversity. Encyclopedia of Biodiversity 3, 27-40.
    Naumburg E, Ellsworth DS (2000) Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in face. Oecologia 122, 163-174.
    Ng CKY, Hew CS (2000) Orchid pseudobulbs–‘false' bulbs with a genuine importance in orchid growth and survival. Scientia Horticulturae 83, 165-172.
    ?gren E, Sundin U (1996) Photosynthetic response to variable light: a comparison of species from contrasting habitats. Oecologia 106, 18-27.
    Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Physiology and Plant Molecular Biology 41, 421-453.
    Pearcy RW, Chazdon RL, Gross LJ, Mott KA (1994) Photosynthetic utilization of sunflecks, a temporally patchy resource on a timescale of seconds to minutes. In: Caldwell MM, Pearcy RW eds. Exploitation of environmental heterogeneity by plants. San Diego, USA, Academic Press, pp. 175-208.
    Pfitsch WA, Pearcy RW (1989) Steady-state and dynamic photosynthetic response of Adenocaulon bicolor (Asteraceae) in its redwood habitat. Oecologia 80, 471-476.
    Pons TL, Pearcy RW, Seemann JR (1992) Photosynthesis in flashing light in soybean leaves in different conditions. I. Photosynthetic induction state and regulation of ribulose-1, 5-bisphosphate carboxylase activity. Plant, Cell and Environment 15, 569-576.
    Poorter L, Bongers F, Sterck FJ, W?ll H (2005) Beyond the regeneration phase: differentiation of height-light trajectories among tropical tree species. Journal of Ecology 93, 256-267.
    Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. AnnualReview Plant Physiology 35, 15-44.
    Qian CS(钱崇澍),Chen HY(陈焕镛)(1959) Flora of China(中国植物志)[M]. Vol.2. Beijing(北京):Science Press (科学出版社).
    Qing RC(秦仁昌),Xing GX(刑公侠),Wu ZH(吴兆洪)(1990) Flora of China(中国植物志)[M].Vol.3 (1). Beijing(北京):Science Press (科学出版社),
    pp. 2-77. Qu ZX(曲仲湘)(1960) Nature reserves in Yunnan (云南自然保护区植被专号)[J]. Journal of Yunnan University (Natural Science) [云南大学学报(自然科学版)],1, 1-4.
    Rathinasabapathi B (2006) Ferns represent an untapped biodiversity for improving crops for environmental stress tolerance. New Phytologist 172, 385-390.
    Richards PW (1952) The tropical rain forest. Cambridge University Press, Cambridge.
    Richardson AD, Berlyn GP (2002) Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting. Tree Physiology 22, 499-506.
    Rijkers T, de Vries PJ, Pons TL, Bongers F (2000) Photosynthetic induction in saplings of three shade-tolerant tree species: comparing understorey and gap habitats in a French Guiana rain forest. Oecologia 125, 331-340.
    Roden JS, Pearcy RW (1993) Photosynthetic gas exchange responses of poplars to steady-state and dynamic light environments. Oecologia 93, 208-214.
    Schneider H (2000) Morphology and anatomy of roots in the filmy fern tribe Trichomaneae H. Schneider (Hymenophyllaceae, Filicatae) and the evolution of rootless taxa. Botanical Journal of the Linnean Society 132, 29-46.
    Shi JP(施济普),Zhu H(朱华) (2003) A Community Ecology Study on the Monsoonal Evergreen Broad– leaved Forest in Tropical Montane of Xishuangbanna(西双版纳热带山地季风常绿阔叶林的群落学研究)[J]. Acta Botanica Yunnanica (云南植物研究),25, 513-519.
    Shimizu Y (1991) Forest types and vegetation zones of Yunnan, China. Journal of the Faculty of Science University of Tokyo Section III Botany 15, 1-71.
    Sinclair R (1983) Water relations of tropical epiphytes I. Relationships between stomatal resistance, relative water content and the components of waterpotential. Journal of Experimental Botany 34, 1652-1663.
    Smitinand T, Larsen K (1989) Flora of Thailand. 3, 53-522.
    Song YC(宋永昌)(2001) Vegetating Ecology(植被生态学)[M],Shanghai(上海):East China Normal University Press(华东师范大学出版社),pp. 549-573.
    Stuart TS (1968) Revival of respiration and photosynthesis in dried leaves of Polypodium polypodioides. Planta 83, 185-206.
    Sun RY(孙儒泳),Li B(李博). Zhu GY(诸葛阳),Shan YC(尚玉昌)(1993) General Ecology (普通生态学)[M]. Beijing(北京):China Higher Education Press(中国高等教育出版社),pp. 135-148.
    Tao L(陶玲), Ren J(任珺) (2004) Quantitative research methods of evolutional ecology(进化生态学的数量研究方法)[M]. Beijing(北京): China Forestry Press(中国林业出版社): pp. 1-50.
    Tinoco-Ojanguren C, Pearcy RW (1993) Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. II. Stomatal versus biochemical limitations during photosynthetic induction. Oecologia 94, 395-402.
    Valladares F, Allen M, Pearcy RW (1997) Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient. Oecologia 111, 505-514.
    Walker B, Kinzig A, Langridge J (1999) Plant attributes diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2,95-113.
    Wang BS (王伯荪),Yu SX (余世孝), Peng SL (彭少麟) (1996)Handbook of Plant 市Community Experiment (植物群落学实验手册).Guangdong Higher Education Press(广东教育出版社),Guangzhou(广州)
    Wang PS(王培善),Wang XY(王筱英) (2001) Pteridophyte flora of Guizhou(贵州蕨类植物志)[M]. Guizhou (贵州):Guizhou Science & Technology Publishing House (贵州科技出版社),pp. 61-613.
    Watkins JE, Mack MC, Sinclair TR., Mulkey SS (2007) Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytologist 176, 708-717.
    Watkins JE, Rundel PW, Cardelús CL (2007) The influence of life form on carbon and nitrogen relationships in tropical rainforest ferns. Oecologia 153, 225-232.
    Watling JR, Ball MC, Woodrow IE (1997) The utilization of lightflecks for growth in four Australian rain-forest species. Functional Ecology 11, 231-239.
    Windsor DM (1990) Climate and moisture variability in a tropical forest: long-term records from Barro Colorado Island, Panamá. Smithsonian Institution, Washington.
    Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005) Assessing the generality of global leaf trait relationships. New Phytologist 166, 485-496.
    Wu ZH(吴兆洪)(1999) Flora of China(中国植物志)[M]. Vol.4 (2). Beijing(北京):Science Press (科学出版社),pp. 193-226.
    Wu ZH(吴兆洪),Wang ZH(王铸豪)(1999) Flora of China(中国植物志)[M]. Vol.6 (1). Beijing(北京):Science Press (科学出版社),pp. 116-123.
    Wu ZY (吴征镒.主编) (1980) Vegetation of China (中国植被)[M]. Beijing (北京):Science Press (科学出版社).
    Wu ZY (吴征镒.主编) (1987) Vegetation of Yunnan (云南植被)[M]. Beijing (北京):Science Press (科学出版社), pp. 197-231.
    Xie YT(谢演堂),Wu SG(武素功),Lu SG(陆树刚)(2000) Flora of China(中国植物志)[M]. Vol.5 (1). Beijing(北京):Science Press (科学出版社),pp. 26-195.
    Xing GX(刑公侠),Ling YX(林尤兴),Qiou PX(裘佩喜)(1999) Flora of China(中国植物志)[M]. Vol.4 (1). Beijing(北京):Science Press (科学出版社),pp. 108-305.
    Xu HQ (徐海清), Liu WY (刘文耀) (2005) Species diversity and distribution of epiphytes in the montane moist evergreen broad—leaved forest in Ailao Mountain,Yunnan (云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布). Biodiversity Science(生物多样性) 13, 137-147.
    Xu YC(徐永椿),Jiang HQ(姜汉桥),Quan F(全复)(1987) Reports on the Nature Reserve of Xishuangbanna (西双版纳自然保护区综合考察报告集)[M]. Kunming(昆明): Yunnan Science & Technology Press(云南科技出版社).
    Yan YH(严岳鸿),Qin XS(秦新生),Xing FW(邢福武) (2003) The Characteristicsof Fern Community in Gudoushan Nature Reserve, Guangdong(广东古兜山自然保护区蕨类植物群落的特征)[J]. Journal of Tropical and Subtropical Botany(热带亚热带植物学报),11, 109-116.
    Yang WL(阳文龙), Hu ZA(胡志昂), Wang HX(王洪新), Kuang TY(匡廷云). 2003. Photosynthesis of Resurrection Angiosperm(更苏被子植物的光合作用). Acta Botanica Sininca (植物学报) 45, 505-508.
    Yanhong T, Koizumi H, Satoh M, Izumi W (1994) Characteristics of transient photosynthesis in Quercus serrata seedlings grown under lightfleck and constant light regimes. Oecologia 100, 463-469.
    Zhang XC(张宪春),Zhang LB(张丽兵)(2004) Flora of China(中国植物志)[M]. Vol.6 (3). Beijing(北京):Science Press (科学出版社),pp. 70-138.
    Zhao ZM(赵志模),Guo YQ(郭依泉) (1990) principles and methods of community ecology(群落生态学原理与方法)[M]. Chongqing(重庆):Chongqing Branch of Scientific Information Press(科学技术文献出版社重庆分社)
    Zheng YL(郑玉龙), Feng YL(冯玉龙) (2006) Fog water absorption by the leaves of epiphytes and non-epiphytes in Xishuangbanna(西双版纳地区附生与非附生植物叶片对雾水的吸收). Chinese Journal of Applied Ecology(应用生态学报) 17, 977-981.
    Zhu H(朱华)(2000) Ecology and biogeography of the tropical dipterocarp rainforest in Xishuangbanna(西双版纳龙脑香热带雨林生态学与生物地理学研究)[M]. Kunming:Yunnan Science & Technology Press (云南科技出版社),pp. 1.
    Zhu H, Shi JP,Zhao CJ (2005) Species composition, physiognomy and plant diversity of the tropical montane evergreen broad-leaved forest in southern Yunnan. Biodiversity and Conservation 14, 2855-2870.
    Zhu WM(朱维明),Wang ZR(王中仁),Zhang XC(张宪春),et al. (1999) Flora of China(中国植物志)[M]. Vol.3 (2). Beijing(北京):Science Press (科学出版社), pp. 23-444.
    Zotz G, Hietz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 52, 2067-2078.
    Zotz G, Mikona C (2003) Photosynthetic induction and leaf carbon gain in thetropical understory epiphyte, Aspasia principissa. Annals of Botany 91, 353-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700