用户名: 密码: 验证码:
增温和降水变化对半干旱区春小麦影响及作物布局对区域气候变化的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过大田模拟试验和长序列农业气象资料分析,研究了半干旱雨养农业区春小麦对温度升高和降水变化的响应规律;分析了气候变化对甘肃主要作物生长发育的影响及其气候变化对甘肃作物布局的影响。取得的主要结论有:
     (1)春季增温会显著加快半干旱区春小麦出苗速率。降水减少显著缩短了对春小麦营养生长期和生殖生长期。气候变暖使冬小麦发育期提前,而棉花除停止生长期推迟以外其它生育期均提前。冬小麦越冬期-返青期、乳熟-成熟期和全生育期明显缩短。棉花播种期-五叶期缩短,五叶-现蕾、吐絮-停止生长期和全生育期呈现延长的趋势。
     (2)增温和降水变化对拔节期春小麦株高无显著影响。增温和降水减少对灌浆期株高有极显著的影响。降水减少和增温的协同作用对春小麦地上干物质负面效应显著,而降水增加在一定程度上可以缓解这种影响。春小麦地下干物重随增温幅度的升高先增加后下降。
     (3)在增加降水和水分不变的情况下,1℃增温均有利于拔节期春小麦叶片Pn的提高,而2-3℃增温均限制了光合作用,暖干化不利于拔节期光合的进行。增温和降水减少的交互作用显著阻碍了春小麦后期的光合作用,增温抑制光合速率,降水增加对增温条件下的光合作用具有补偿作用。在春小麦前期(拔节期)光合速率下降的主要原因是气孔因素;在春小麦后期(灌浆期期)造成光合速率下降的主要原因是非气孔因素。随着温度的升高春小麦拔节期水分利用效率(WUE)降低,其中以降水减少处理下降最为明显,而降水增加和降水不变的处理则不显著。在灌浆期,降水减少20%的情况下水分利用效率(WUE)随着温度的增加而降低;在降水不变和增加的情况下随着温度的增加先上升后下降,其拐点温度分别为1℃和2℃。
     (4)随着增温幅度的增加春小麦潜在最大光化学量子效率(Fv/Fm)、实际光化学量子效率(ΦPSII)、光化学淬灭系数(qP)、电子传递速率(ETR)呈对数函数下降,降水减少处理下降更加明显。随着温度的增加春小麦NPQ先上升后下降,其拐点温度为增温2℃。降水量的增减均对春小麦荧光参数没有显著影响,说明在0-3℃增温幅度内,对降水增减20%表现不敏感。
     (5)随着温度的升高春小麦叶片脯氨酸(Pro)含量和可溶性蛋白含量上升;可溶性糖含量随着温度的增加而下降。在同一温度条件下降水减少使春小麦叶片脯氨酸(Pro)含量上升,可溶性糖含量和可溶性蛋白含量随降水的减少而下降。在降水减少或不变的情况下随着温度的增加春小麦叶片SOD活性在下降,在降水增加的情况下SOD活性随着温度的升高现增加后下降,其拐点温度为增温1℃,而POD活性均下降。随着温度的上升春小麦叶片丙二醛MDA含量和质膜相对透性(RC)增加。
     (6)降水减少和增温3℃组合春小麦穗粒数下降最为显著;在增温的条件下降水的变化对小麦千粒重有重要影响。随着温度的增加春小麦不孕小穗率呈现二次曲线上升,其中降水减少和增温3℃组合下不孕小穗率可达45%。最终导致春小麦产量随温度的增加而下降:在降水减少20%的情况下T1、T2和T3分别较对照下降-12.13%、-24.72%、-42.70%;在降水不变的情况下下降-8.37%、-15.10%、-21.82%;在降水增加20%的情况下下降-8.95%、-15.50%、-22.19%。冬小麦产量与越冬期间的最低气温显著正相关(R=0.67,P=0.023),但与返青-孕穗和乳熟-成熟期间的最高气温显著负相关。冬小麦千粒重与六月最高气温可用多项式y=-0.336X2+15.848X-152.66(R2=0.4015)描述,当六月平均最高气温超过24℃时小麦千粒重开始下降。所以乳熟-成熟期间的极端高温是影响冬小麦产量的重要限制因子。冬季负积温和冬小麦越冬死亡率平均每10年减少74℃和2.4%,降水量是影响冬小麦气候产量的主导因素,生育期间降水每减少10mm,气候产量降低42.00kg/hm2。棉花产量与花前的平均最低气温、十月最低气温显著正相关,霜前花产量与十月最低气温显著相关。十月最低气温的变暖使棉花停止生长期推迟,有效的增加了棉花的干物质积累,从而提高了霜前花的产量。
     (7)春小麦籽粒淀粉含量随温度的增加而下降;籽粒蛋白质含量随着温度的增加而上升。在降水减少的情景下蚜虫数量随着温度的升高而减少,在降水增加和不变的情景下随着温度的增加而先升高后下降。春小麦锈病发病率随着温度的升高而上升。
     (8)气候变暖使干旱半干旱区春小麦适宜区缩小,不适宜区扩大;使半湿润高寒阴湿区春小麦适宜区扩大,不可种植区缩小;冬小麦最适宜和不适宜种植区面积缩小,适宜、次适宜和可种植区急剧扩大;马铃薯最适宜区和适宜区面积分别减小35%和3%,次适宜区和可种植区面积分别扩大18.5%和6.6%,不适宜区面积缩小2.0%;河西绿洲灌区和中部黄河支流灌区玉米最适宜种植区急剧扩大,适宜种植区缩小;河西绿洲灌区次适宜区缩小,中部黄河支流灌区扩大;河西绿洲灌可种植区变化不大,中部黄河支流灌区缩小;不适宜种植区缩小。在河东雨养农业区玉米最适宜种植区扩大,适宜种植区缩小,次适宜种植区扩大、可种植区缩小、不适宜种植区变化不大。
The regulations of spring wheat (TriticumaestivumL)response to precipitation changing andtemperature increasing were studied in this thesis based on field experiments and a long sequenceagro-meteorological datain semi-arid rainfed farming regions. Meanwhile, the impact of climatechanging on growing, developing and layout of main crops in Gansu Province were analyzed.The main results were as followed:
     Emergence rate of spring wheat increased significantly with temperature increasing in thesemi-arid regions. The stages of vegetative growing and reproductive growing of spring wheatdecreased significantly with the precipitationdecreasing. The stages of springwheat were putforward with the global climate warming, and stages of cotton, except the stage of cessationgrowing. The periods of wintering stage-green stage, milky ripe stage-maturity stage and wholegrowing stage of spring wheat were shorten. The periods of sowing stage-five-leaf stage, five-leafstage-budding stage, spinning stage-cessation growing stage and whole growing stage of cottonwere prolonged.
     Effects of temperature increasing and precipitation changing on height of spring wheat werenot significant at the jointing stage, but were significant at the filling stage. The cooperationeffects of precipitation decreasing and temperature increasingon aboveground dry matter ofspring wheat were negative, and precipitation increasing could alleviate this negative effect. Theunderground dry matter of spring wheat increased and then decreased with temperatureincreasing.
     The Pn of spring wheat leaves increased when temperature increased about1degree, but not2-3degree. Meanwhile, hot and drought conditions were not good for photosynthesis duringthejointing stage.The interactions of temperature increasing and precipitation decreasing restrainedthe photosynthesis of spring wheat during late stages. And also temperature increasing restrainedthe photosynthesis, but precipitation increasing increased photosynthesis. The stomataon leaveswas main factor for the decline photosynthetic of spring wheat during jointing stage, but not thestomata after the filling stage. The water use efficiency (WUE) of spring wheat decreased withthe temperature increasing during the jointing stage, and effects was obvious as the precipitationdecreasing, but not obvious when precipitation increasing or unchanging. WUE decreased withthe temperatureincreasingwhen precipitation decreased about20%. WUE increased at first and then decreased with the temperatureincreasingwhen precipitation increasing or unchanging. Andinflection point temperatures were1℃and2℃, respectively.
     The potential maximal photochemical efficiency (Fv/Fm), the actual photochemicalquantum efficiency (ΦPSII), photochemical quenching (qP) and electron transport rate (ETR)decreased in logarithmic function withthe temperature increasing. And effects were obvious asthe precipitation decreasing. NPQ increased at first and then decreased with thetemperatureincreasing, and the inflection point temperature was2℃. Precipitation had notsignificantly effects on fluorescence parameters. So it can be concluded that response of wheat tothe precipitationwas not sensitive as the precipitationdecreased about20%duringthe temperaturechanged about0-3°C.
     With the temperature increasing, the proline (Pro) contentand soluble protein contentofspring wheat leaves increased, but the soluble sugar contentdecreased. At the sametemperature,the Procontentincreased with the precipitation increasing, but the soluble sugarcontentand soluble protein content decreased. The SOD activity of spring wheat leaves decreasedwith the temperature increasing under the conditions of precipitationincreasing or unchanging.The SOD activity of spring wheat leaves increased at first and then decreased with thetemperature increasing under the conditions of precipitationincreasing, and the inflection pointtemperature was1℃, but SOD activity decreased all times. The malondialdeyde (MDA) contentand the relative permeability of the plasma membrane (RC) of spring wheat increased withthetemperature increasing.
     The cooperation effects of precipitation decreasing and temperature increasingabout3℃ondecrease of number of grain of spring wheat were significant. And effects of precipitationdecreasing on grain weight of spring wheat were important under condition of the temperatureincreasing. The rate of sterility spike of spring wheat increased with the temperature increasing inquadratic. And rate of sterility spike of spring wheat was45%under conditions of theprecipitation decreasing and the temperature increased at3°C, leading to grain yields of springwheatdecreased with the temperature increasing. Compared with control, decreases of grainyields were-12.13%,-24.72%and-42.70%, respectively, in temperature increased about1°C,1°C and3°C under the precipitation decreasing about20%. While decreases were-8.37%,-15.10%an-21.82%, respectively, under the precipitation unchanging, and were-8.95%, -15.50%and-22.19%, respectively, under the precipitation increasing about20%. Correlationbetween thegrain yield of winter wheat and the minimum temperature in winter was positive(R=0.67, P=0.023), but correlation between thegrain yield of winter wheat and the maximumtemperature in June was negative during the periods of the green stage-booting stage and themilky ripe stage–maturity stage.The relations between grain weight of winter wheat and themaximum temperature in June was y=-0.336X2+15.848X-152.66(R2=0.4015). The grain weightof winter wheat started to decrease as the maximum temperature in June is more than24℃. Themaximum temperature in June was the main factor which constrained grain forming during theperiods of the milky ripe stage-maturity stage. The accumulated temperature in winter willdecrease about74℃and death rate of the winter wheat will be2.4%in10years.Theprecipitation was the key factor which affected grain yields of winter wheat. And decrease ofgrain yields was42.00kg ha-1with precipitation reduce about10mmduring the wheat growingseasons.The relations between the yields of cotton and the average minimum temperature beforeflowering and in October were positive. The flower production before frost had a significantrelation with the minimum temperature in October.With minimum temperature increasing inOctober, the growing stage of cotton was prolonged, and dry matter and the flower production ofcottonwere increased.
     With the temperature increasing, the starch content of spring wheat decreased, but the grainprotein contentof spring wheat increased. The number of aphids decreased with temperatureincreasing under conditions of precipitation decreasing. The number of aphids increased at firstand then decreased with temperature increasing under conditions of precipitation increasing orunchanging. The rate of rust of spring wheat increased with the temperature increasing.
     With climate warming, the suitable areas for spring wheat planting are becoming small inarid and semiarid regions, and are becoming big in humid and semi-humid regions. The mostsuitable and unsuitable areas of winter wheat are became small, and the areas of suitable, lesssuitable and cultivable are becoming big.The decrease of the most suitable, most suitable andunsuitable areas were35%,3%and2%, respectively, for potato production, and the increase oftheless suitable and cultivable areas were18.5%and18.5%, respectively. The area of the mostsuitable areas is becoming big, but the suitable area is becomingsmallfor maize productionin Hexioasis irrigation region and in the middlebasin of the yellow river irrigation region. The less suitable areas is becoming small in Hexi oasis irrigationregion and is becoming big in themiddlebasin of the yellow river irrigation region. The cultivable area is unchangeablein Hexioasis irrigationregionand in becoming small in the middlebasin of the yellow river irrigationregion. And the unsuitable areas are becoming smallin both regions. The most suitable and lessareas is becoming big, but the suitable and cultivable areas are becoming small, and theunsuitable area is unchangeable for maize production in the rainfed farming inHedong regions.
引文
[1] IPCC. Summary for Policymakers of Climate Change: The Physical Science Basis. Contribution of WorkingGroup I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge: Cambridge University Press.2007.
    [2] Washington, D C. National Research Council of the National Academies. Surface TemperatureReconstructions for the Last2000Years. The National Academies Press, P:2006.1-141.
    [3]秦大河,陈振林,罗勇,丁一汇,戴晓苏,任贾文,翟盘茂,张小曳,赵宗慈,张德二,高学杰,沈永平.气候变化科学的最新认知[J].气候变化研究进展,2007.3(2),63-73.
    [4]林而达,许吟隆,蒋金荷,李玉娥,杨修,张建云,李从先,吴绍洪.气候变化国家评估报告(Ⅱ):气候变化的影响与适应.气候变化研究进展,2006.2(2),51-56.
    [5]林而达,王京华.全球变化对农业的影响及适应对策[J].地球科学进展,1995.10,6:598-604.
    [6]肖国举,张强,王静.全球气候变化对农业生态系统的影响研究进展[J].应用生态学报,2007.18(8),1877-1885.
    [7]Shen KP, Harte J. Ecosystem climate manipulations. In:Sala OE, Jackson RB, Mooney HA, HowarthRW eds. Methods in Ecosystem Science.。Springer Press, New York,2000.353-369.
    [8]Hobbie SE, Shevtsova A, Chapin PS III. Plant response to species removal and experimental warming inAlaskan tussock tundra. Oikos,1999.84,417-434
    [9]牛书丽,韩兴国,马克平,万师强.全球变暖与陆地生态系统研究中的野外增温装置[J].植物生态学报,2007,31(2):262-271.
    [10]Harte J, Torn MS, Chang FR, Feifarek B, Kinzig, AP, Shaw R,SHen K.Global warming and soilmicroclimate: results from a meadowOwarming experiment. Ecological Applications,1995,5,132-150.
    [11]Nijs I, Kockelbergh F, Teughels H, Blum H, Hendrey G, Impens I. Free air temperature increase (FATI): anew tool to study global warming effects on plants in the field. Plant, Cell and Environment,1996,19(4):495-502.
    [12]Kimball B A. Theory and performance of an infrared heater for ecosystems warming. Global ChangeBiology,2005,11(11):2041-2056.
    [13]房世波,谭凯炎,任三学.夜间增温对冬小麦生长和产量影响的实验研究[J].中国农业科学,2010,43(15):3251-3258.
    [14]肖国举,张强,张峰举,罗成科,王润元.增温对宁夏引黄灌区春小麦生产的影响[J].生态学报,2011,31(21):6588-6593
    [15]赵鸿,肖国举,王润元,邓振镛,王鹤龄,杨启国.气候变化对半干旱雨养农业区春小麦生长的影响[J].地球科学进展,2007.22(3),322-327.
    [16]Wang, R.Y., Zhang, Q.,2004. Response of corn to climate warming in arid areas in Northwest China,Acta Botanica Sinica,46(12),1387-1392.
    [17]H.L. Wang, Y.T. Gan, R.Y. Wang, J.Y. Niu.2009. Phonological trends in winter wheat and spring cotton inresponse to climate changes in northwest China. Agricultural and Forest Meteorology.148:1242-1251
    [18]Xiao Guoju, Zhang Qiang, Yao Yubi, Zhao Hong, Wang Runyuan, Bai Huzhi.2008. Impact of recentclimatic change on the yield of winter wheat at low and high altitudes in semi-arid northwestern China.Agric. Ecosyst. Environ.127,37-42.
    [19]Xiao Guoju, Zhang Qiang, Wang Runyuan, Yao Yubi, Zhao Hong, Bai Huzhi, Xiong Youcai.2009. Effectsof temperature increase on pea production in a semiarid region of China. Air, Soil and Water Research,2,31-39.
    [20]姚玉璧,张秀云,王润元,邓振镛,卢汉威.2010.西北温凉半湿润区气候变化对马铃薯生长发育的影响[J].生态学报,30(1),0100-0108.
    [21]金之庆,葛道阔,石春林.2002.东北平原适应气候变化的若干粮食生产对策的模拟研究[J].作物学报,28(1),24-31.
    [22]汪杏芬.植物根系、根区微生物对大气浓度倍增的反应及其生态学意义【D】.北京:中国科学院植物研究所,1998.
    [23] Baker J T, Allen Jr L H, Boote K J et al. Rice photosynthesis and evaportranspiration in subambient,ambient and superambient carbon dioxide concentrations. Agron.J.1990,82:834-840.
    [24] Tissue, D.T., R.B. Thommas&B.R. Strain.1997.Atmospheric CO2enrichment increases growth andphotosynthesis of Pinus taeda: a fow-year experiment in the field. Plant, Cell and Environment,22:767-778.
    [25] Hamerlynck, E.l., T.E.Huxman, M.E.Loik&S.D.Smith.2000. Effect of extreme high temperatwe, droughtand elevated CO2on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentata PlantEcology,148:183-193.
    [26]冀瑞萍,光强温度、CO2对光合作用的影响[J],晋中师范高等专科学校学报,2000,17(3):36-37.
    [27]刘东焕,赵世伟,高荣孚等.植物光合作用对高温的响应[J].植物研究,2002,22(2):206-212.
    [28] BenyJ.,Bjorkman O. Photosynthetieres Ponseandada Ptationtotem Perature in higher Plants.Ann RevPlant Physiol,1980,31:491-543.
    [29]武维华,植物生理学,北京:科学出版社,第一版,2003:172-173.
    [30]武维华,植物生理学,北京:科学出版社,第一版,2003:165.
    [31]张桂莲,陈立云,张顺堂,刘国华,唐文邦,贺治洲,王明.抽穗期高温对水稻剑叶理化特性的影响[J].中国农业科学,2007,40(7):1345-1352.
    [32]郭建平,高素华.高温、高CO2对农作物影响的试验研究[J].中国生态农业学报,2002.10(1)17-20.
    [33].Sage R F, Kubien DS. The temperature response of C3and C4Photosynthesis. Plant Cell&Environment200730(9):1086-1106.
    [34]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.
    [35]Maxwell K,Johnson G N.Chlorophyll fluorescence-apracticalguide[J].J Exp Bot,2000,(51):659-6681.
    [36]Ogren E,Rosenqvist E.On the significance of photoinhibition of photosynthesis in the field and itsgenerality among species[J].Photosynth Res,1992,(33):63-711.
    [37]Kitao M,Utsugi H,Kuramoto S,Tabuchi R,Fujimoto K,Lihai S.Light-dependent photosyntheticcharacteristics indicated by chlorophyll fluorescence in five mangrove species native to PohnpeiIsland,Micronesia[J].Physiol Plant,2003,(117):376-382.
    [38]林世青,许春辉,张其德.叶绿素荧光动力学在植物抗逆性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16.
    [39]Krause G H,Weis E.Chlorophyll fluorescence and photosynthesis:the basis[J]. Annu Rev PlantMol Biol,1991,(42):313-349.
    [40]李志博,魏亦农,杨敏,张荣华.低温胁迫对棉花幼苗叶绿素荧光特性的影响[J].棉花学报,2006,18(4):255-556.
    [41]郭延平,周慧芬,增光辉,张良诚.高温胁迫对柑橘光合速率和光系统的影响[J].应用生态学报,2003,24(6):867-870.
    [42]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响[J].植物学报.2000,42(7):673-678.
    [43]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [44]林植芳,李双顺,林桂珠,孙谷畴,郭俊彦.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26:605-615.
    [45]郑小林,董任瑞.幼苗叶片的膜透性和游离脯氨酸的含量变化[J].湖南农业大学学报,199723(2):109-112.
    [46]张显强,罗在柒,唐金刚,卢文芸.高温和干旱胁迫对鳞叶鲜游离脯氨酸和可溶性糖含量的影响[J].广西植物,2004,24(6):570-573
    [47]任昌福,陈安和,刘保国.高温影响杂交水稻开花结实的生理生化基础[J].西南农业大学学报,1990,12(5):440-443.
    [48]汤日圣,郑建初,陈留根,张大栋,金之庆,童红玉.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响[J].植物生理与分子生物学学报,2005,31(6):657-662.
    [49]冯兆忠,周华英,王效科,冯宗炜.高温胁迫下三哇酮对黄瓜幼苗某些生理性质的影响[J].西北植物学报,2005,25(1):170-173
    [50]张桂莲,陈立云,张顺堂,肖应辉,贺治州,雷东阳.高温胁迫对水稻剑叶保护酶活性和膜透性的影响[J],作物学报,2006,32(9):1306-1310.
    [51]欧志英,林桂珠,彭长连.超高产杂交水稻培矮64S/E32和两优培9剑叶对高温的响应[J].中国水稻科学,2005,19(3)249-254
    [52]Tanaka K. Accumulation of hydrogen peroxide in lasts of SO2-fumigated spinach leaves. chl PlantCell&Physiology,1982,23:999-1007.
    [53]Hodges D M, Andrews C J, Johnson D A, Hamilton R I. Antioxidant enzyme responses to chilling stress indifferentially sensitive inbred maize lines. Journal of Experiment Botany.1997,78:707-721.
    [54]王光明,杨贵旭,朱自均,王三根,刘大均.高低温对水稻n优6078开花结实的影响研究[J].西南农业大学学报,1998,20(1):24-27.
    [55]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响[J].植物学报,2000,42(7):673-678.
    [56]朱雪梅,柯永培,邵继荣,林立金,杨远祥.“高温胁迫对重穗型水稻品种叶片活性氧代谢的影响.种子,2005,24(3):25-28.
    [57]曹云英,杨立年,王志琴,刘立军,杨建昌.抽穗和灌浆早期高温对耐热性不同釉稻品种产量的影响及其生理原因[J].作物学报,2009,35(3):512-521.
    [58]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响[J].江西农业大学学报,2008,30:(3):427-432.
    [59王春乙,潘亚茹,等.CO2浓度倍增对中国主要作物影响的试验研究[J].气象学报,2002.5(51):86-94.
    [60]王馥棠.我国气候变暖对农业影响研究的进展[J].气象科技,2003.22(4):19-25.
    [61]王馥棠.气候变化对农业生态的影响[M].北京:气象出版社,
    [62]朱大威,金之庆.气候及其变率变化对东北地区粮食生产的影响[J].作物学报,2008,34(9):1588-1597.
    [63]房世波,谭凯炎,任三学.夜间增温对冬小麦生长和产量影响的实验研究[J].中国农业科学,2010,43(15):3251-3258.
    [64]邓根云主编。气候变化对中国农业的影响[M].1993.北京科学技术出版社
    [65]丁一汇.中国的气候变化与气候影响研究[M].1997.北京:气象出版社。
    [66]高亮之.水稻栽培计算机模拟优化决策系统[M].1992.北京:中国农业科技出版社。
    [67]高素华主编.中国三北地区农业气候生产潜力及开发利用对策研究[M].1995.北京:气象出版社.
    [68]黄建晔,杨洪建等.开放式空气CO2浓度增高对水稻产量形成影响[J],应用生态学报.2002.13(10):1210-1214。
    [69]金之庆.全球气候变化对中国粮食生产影响模拟研究.1996.博士论文.
    [70]金之庆,葛道阔.东北平原适应全球气候变化的若干粮食生产对策的模拟研究[J].作物学报,2002.28(1):24-31。
    [71]金之庆,葛道阔,等.评价全球气候变化对我国玉米生产的可能影响[J].作物学报,1996.22(5):513-523。
    [72]王馥棠等.气候变化对农业生态的影响(M)。2003.北京:气象出版社
    [73]熊伟等.气候变化情景下我国水稻产量变化模拟[J].2001.中国农业气象,22(3)
    [74]居煇,熊伟,许吟隆.东北春麦对气候变化的响应预测[J].生态环境,2008,17(4):1595-1598.
    [75]赵鸿,肖国举,王润元,邓振镛,王鹤龄,杨启国.气候变化对半干旱雨养农业区春小麦生长的影响[J].地球科学进展,2007,22(3):322-327.
    [76]赵鸿,何春雨,李凤民,王润元,杨启国,邓振镛,王鹤龄.气候变暖对高寒阴湿地区春小麦生长发育和产量的影响[J].生态学杂志,2008,27(12):2111-2117.
    [77]赵鸿,王润元,王鹤龄,杨启国,邓振镛,肖国举.西北干旱半干旱区春小麦生长对气候变暖响应的区域差异[J].地球科学进展,2007,22(6):636-641.
    [78]肖国举,张强,张峰举,罗成科,王润元.增温对宁夏引黄灌区春小麦生产的影响[J].生态学报,2011,31(21):6588-6593
    [79]孙平.蛋白质含量多会降低稻米食味吗:试析日本产销界关于稻米食味和应否追肥问题的争议[J].中国稻米,1998(5):31-33.
    [80]徐振江,肖立中,王维,唐湘如,任永浩,李之林.香稻产量和品质形成的温度效应[J].华南农业大学学报.2006,27(4):1-4.
    [81]罗科.灌浆结实期气温的分布对稻米直链淀粉累积效应的研究[J],广西农学院学报,1987,(1)9-15.
    [82]Ha.K.Y Grain quality chaareteristies for borw in riee. Korea journal of crop seience1994,39(l):38-44.
    [83]ResurreeeionA..P Eeffet of tempearture during ripening on grain qualiyt of rice. Soil scienee and Plantnutrition,1977vol.23,Nol,109-112.
    [84]王守海,李泽官,吴李君.灌浆成熟期气候生态条件对早釉稻米加工品质的影响[J],安徽农业科学,1990(4):293-297.
    [85]朱碧岩,程方民.结实期温度对稻米粒重和整精米率形成动态的影响[J],西北农业学报,19,5(4):31-35
    [86]Shouiehiyoshida. Eeffet of airtem Peratuer and light on grain filling of an indiea and a japoniea undercontrolled environment conditions,soil and Plant Nutrition.1987,23:93-104
    [87]程方民,朱碧岩.气象生态因子对稻米品质影响的研究进展[J].中国农业气象,1998,10(5):39-45.
    [88]贾志宽.稻米至白形成的气候生态基础研究[J].应用生态学报,1992,3(4):321-326
    [89]李欣,顾铭洪,潘学彪.灌浆结实期环境条件对稻米品质的影响[J].江苏农学院学报,1989,10(l):7-12.
    [90]MasahikoTamaki. Physio eeologieal studies quality of mration of riee kenrej: eeffet of nitorgen to pdressedat full hedaing time and air temparture during ripening Period on quality of rice kenrel.Janpan jouralcrop csience,1989,58:653-658.
    [91]陈能,李太贵,罗玉坤.早釉稻胚乳充实过程中的温度变化对坐白形成的影响[J],浙江农业学报,2001,13(2):103-106.
    [92]赵式英.灌浆期气温对稻米食用品质的影响[J].浙江农业科学,1963(4):178-181.
    [93]李裕,张强,王润元,等.气候变暖对春小麦籽粒痕量元素利用率的影响[J].农业工程学报,2011,27(12):96-104.
    [94] Souza E J, Martin J M, Guttieri M J, O’Brien K M, Habernicht DK, Lanning S P, McLean R, Carlson G R,Talbert L E. Influenceof genotype, environment, and nitrogen management on spring wheat quality.Crop Sci,2004,44:425432
    [95]吴东兵,曹广才,强小林,李萌.生育进程和气候条件与秋播小麦品质的关系[J].河北农业科学.2003,7(1):510
    [96]曹广才,陈贺芹,强小林,王建林,侯立白,李萌.温度和日照与春播小麦品质的关系[J].中国农业科学,2004,37(5):663669
    [97]李向阳,朱云集,郭天财.不同小麦基因型灌浆期冠层和叶面温度与产量和品质关系的初步分析[J].麦类作物学报.2004,24(2):8891
    [98]田云录,陈金,邓艾兴,郑建初,张卫建.非对称性增温对冬小麦籽粒淀粉和蛋白质含量及其组分的影响[J].作物学报.2011,37(2):302308
    [99]Ma C S,Hau B,Poehling H M. Effects of pattern and timing of high temperature exposure onreproduction of the rose grain aphid,Metopolophium dirhodum. Entomologia Experimentalis etApplicata,2004,110(1):65-71.
    [100]Ma C S,Hau B,Poehling H M. The effect of heat stress on the survival of the rose grain aphid,Metopolophium dirhodum (Hemiptera:Aphididae). European Journal of Entomology,2004,101(22):327-331.
    [101]DeBarro P J,Maelzer DA. Influence of High-Temperatures on the Survival of Rhopalosiphum-Padi (L)(Hemiptera,Aphididae) in Irrigated Perennial Grass Pastures in South-Australia. Australian Journal ofZoology,1993,41(2):123-132.
    [102]姚玉璧,王润元,邓振镛,等.黄土高原半干旱区气候变化对马铃薯生长发育的影响[J].应用生态学报,2010,21(2):379-390
    [103]姚玉璧,张秀云,王润元,等.西北温凉半湿润区气候变化对马铃薯生长发育的影响-以甘肃岷县为例[J].生态学报,2010,30(1):100-108
    [104]姚玉璧,张秀云,卢汉威,等.气象条件对西北温凉半湿润区马铃薯块茎形成及产量的影响[J].中国农业气象,2009,30(2):208-211
    [105]姚玉璧,万信,张存杰,等.甘肃省马铃薯晚疫病气象条件等级预报[J].中国农业气象,2009,30(3):445-448
    [106]姚玉璧,张存杰,万信,等.气候变化对马铃薯晚疫病发生发展的影响[J].干旱区资源与环境,2010,24(1):173-178
    [107]蒋菊芳,魏玉国,刘明春.河西走廊东部麦红吸浆虫发生的气象预测[J].中国农业气象.2009.30(3):449-452
    [108]蒋菊芳,魏玉国,刘明春.石羊河流域玉米棉铃虫发生气象条件分析预测[J].干旱地区农业研究.2009,3:3-10
    [109]郭小菁,刘明春,魏玉国.基于主成分分析的玉米棉铃虫预测模型研究[J].西北农业学报.2010,19(8):69-73
    [110]蒋菊芳,魏玉国,刘明春.石羊河流域玉米红蜘蛛发生趋势预测气象条件模型[J].中国农业气象.2010,31(2):440-444
    [111]Xiao Guoju, Zhang Qiang, Wang Runyuan, Yao Yubi, Zhao Hong, Bai Huzhi, Xiong Youcai. Effects oftemperature increase on pea production in a semiarid region of China. Air, Soil and Water Research,2009.2,31-39.
    [112]王馥棠等.农业气象模拟与模型引论[M].北京:科学出版社.1990.
    [113]王馥棠.近十年来我国气候变暖影响研究的若干进展[J].应用气象学报.2002,13(6):755-766.
    [114]王馥棠.气候变暖与我国粮食生产的可持续发展[J].科学对社会的影响.1999.1:40
    [115]张宇,王石立.王馥棠.气候变化对我国小麦发育及产量可能影响的数据模拟研究[J].应用气象学报.2000.11(3):264-270.
    [116]张厚煊.中国种植制度对全球气候变化响应的有关问题.我国种植制度对气候变化响应的主要问题[J].中国农业气象.2000.21(2)10-11
    [117]唐国平,李秀彬,Guenther Fischer,Sylvia Prieler.气候变化对中国农业生产的影响[J].地理学报.2000,55(2):129-138
    [118]张丽娟.气候变化对黑龙江省农业生态环境的影响[J].哈尔滨师范大学自然科学学报.1998.14(4):105-108
    [119]徐斌,辛晓平,唐华俊,周清波,陈佑启.气候变化对我国农业地理分布的影响及对策[J].地理科学进展1999.18(4):78-82
    [120]方修琦,盛静芬.从黑龙江省水稻种植面积的时空变化看人类对气候变化影响的适应.自然资源学报.2000.(7),213-217.
    [121]矫江[J].黑龙江省水稻发展问题明.垦殖与稻作.2002(2):3-6.
    [122]王鹤龄,王润元,张强.甘肃省作物布局演变及其对区域气候变暖的响应[J].自然资源学报.2012,27(3):413-421
    [123]Aroca R.,Amodeo G.,Fernandez I. S.,et al. The role of aquaporins and membrane damage in chilling andhydrogen peroxide induced changes in the hydraulic conductance of maize roots[J].Plant Physiol,2005,137:341—353.
    [124]袁庆华,桂枝,张文淑.苜蓿抗感褐斑病品种内超氧化物歧化酶、过氧化物酶和多酚氧化酶活性的比较[J].草业学报,2002,11(2):100-104.
    [125]梁爱华,马富裕,梁宗锁,等.水分胁迫后复水激发玉米根系功能补偿效应的生理机制研究[J].西北农林大学学报,2008,36(4):58—64.
    [126]Jiang M. Y.,Zhang J. H. Water stress induced abscises acid accumulation triggers the increased generationof reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves [J]. JExp. Bot.2002,53:2401-2410.
    [127]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,164-169.
    [128]熊庆娥.植物生理学实验教程[M].成都:四川科学技术出版社.2003,112-114.
    [129]上海植物生理学会.现代植物生理学实验手册[M].北京:科学出版社,1999。
    [130]牛俊义,杨祈峰.作物栽培学研究方法[M].兰州甘肃民族出版社1998,85-88.
    [131]邓振镛.高原干旱气候作物生态适应性研究[C].2005.气象出版社。
    [132]刘南艳,翟玲.数字地面模型的建立与应用[J].西安电子科技大学学报,2006.33(3):500-503.
    [133]李粉玲,李京忠,张琦翔.DEM提取坡度、坡向算法的对比研究[J].安徽农业科学,2008.36(17):7355-7357.
    [134]侯琼,郭瑞清,杨丽桃.内蒙古气候变化及其对主要农作物的影响[J].中国农业气象,2009,30(4):560-564.
    [135]董文军,邓艾兴,张摇彬,田云录,陈摇金,杨摇飞,张卫建.开放式昼夜不同增温对单季稻影响的试验研究[J].生态学报.2011,31(8):2169—2177.
    [136] van Delden A, Kropff MJ, Haverkort AJ. Modeling temperature and radiation driven leaf areaexpansion in the contrasting crops potato and wheat[J]. Field Crops Research,2001,72:119-142
    [137]田云录,陈金,邓艾兴,郑建初,张卫建。开放式增温下非对称性增温对冬小麦生长特征及产量构成的影响[J].应用生态学报.2011,22(3):681-686
    [138] Sandv ik SM, Heegaar d E, Elven R, et al. Responses of alpine snowbed vegetation to longtermexperimental warming [J]. Ecoscience,2004,11:150-159.
    [139] Welker JM, Molau U, Par sons AN, et al. Responses of dry asoctopetala to ITEX environmentalmanipulations: A synthesis with circumpolar comparisons [J].Global Change Biology,1997,3:61-73.
    [140] Kudo G, Suzuki S. Warming effects on growth, production, and vegetation structure of alpine shrubs: Afive-year experiment in northern Japan [J]. Oecologia,2003,135:280-287.
    [141] Saavedra F, Inouye DW, Pr ice MV, et al. Changes in flowering and abundance of Delp hiniumnuttallianum (Ranunculaceae) in response to a subalpine climate warming ex periment [J]. GlobalChange Biology,2003,9:885-894.
    [142] Rego ry S, St even FO, Ericw P. Effects of lengthened growth season and soil warming o n phonologyand physiology of Polygonum bistorta [J].Global Chang Biolog y,2000,6:357-364.
    [143]王谋,李勇,白宪洲,等.全球变暖对青藏高原腹地草地资源的影响[J].自然资源学报,2004,19(3):331-336.
    [144]石福孙,吴宁,罗鹏.川西北亚高山草甸植物群落结构及生物量对温度升高的响应[J].生态学报,2008,28(11):5286-5293.
    [145]徐振峰,胡庭兴,李小艳,等.川西亚高山采伐迹地草坡群落对模拟增温的短期响应[J].生态学报,2009,29(6):2089-2095.
    [146] Naoy a W, Ma saki S, Miehir u M, et al. Warming effects on shoo t dev elo pment al g row th andbiomass pr oduction in sympatr ic ever gr een alpine dwar f shrubs Emp etrum nigr um and L oiseleuria p r ocumbens [J]. Ecolo gical。
    [147]钱春荣,于洋,赵杨,宫秀杰,姜宇博,王俊河,杨忠良,张卫建.寒地春玉米生长发育及产量对花前夜间增温的响应[J].应用生态学报.2012.23(9):2483-2488.
    [148]杨兵,王进闯,张远彬.长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响[J].生态学报.2010,30(21):5994-6000
    [149] Perdomo P, Murphy J A, Berkowitz GA. Physiological changes associated with performance of Kentuckybluegrass cultivars during summer stress. Hort Science,1996,31:1182-1186.
    [150] Berry J, Bjorkman O. Photosynthetic response and adap tation to temperature in higher p lants. Annu.Rev. Plant Physiol,1980,31:491-543.
    [151] Winter K, Schromm M J. Analysis of stomatal and nonstomatal components in the environmental controlof CO2exchanges in leaves of wehwitschia mirabilis. Plant Physiol,1986,82:173-178.
    [152] Lakso A N. Seasonal changes in stomatal responses to leaf water potential in app le. Hort Sci,1979,104:58-60.
    [153] Ni B R, Pallardy S G. Stomatal and nonstomatal limitations to net photosynthesis in seedlings ofwoody angiosperms. Plant Physiol,1992,99:1502-1508.
    [154] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Physiol,1982,33:317-345.
    [155]上官周平,郑淑霞.黄土高原植物水分生理生态与气候环境变化(M).2008.北京:科学技术出版社.
    [156]冀天会,张灿军等.冬小麦叶绿素荧光参数与品种抗旱性的关系[J].麦类作物学报.2005,25(4):64~66.
    [157]陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,1995,3(4):79~86.
    [158] Demmig B, Winter K, KrugerA, et al. Photoinhibition and zeaxanthin formation in intact leaves: apossible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol,1987,84:218-222.
    [159]王磊,张彤,丁圣彦,等.干旱和复水对大豆光合生理生态特性的影响[J].生态学报,2006,26(7):2073~2078.
    [160]Liang J, Zhang J, Wong MH. Stomatal conductance in relation to xylem sap ABA concentration in twotropical trees, Acacia confusa and Litsea glutinosa. Plant Cell and Environment,1996,19:93-100
    [161] Vettakkorumakankav N N, Falk D, Saxena P, Fletcher R A. A crucial role for gibberellins in stressprotection of plants. Plant Cell Physiol,1999,40:542–548
    [162]Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat. CropSci,1981,21:43–47
    [163]郭天财,王晨阳,朱云集,王化岑,李九星,周继泽.后期高温对冬小麦根系及地上部衰老的影响[J].作物学报,1998,24(6):957–962
    [164]张保仁.高温对玉米产量和品质的影响研究.博士论文,2003
    [165] Souza E J, Martin J M, Guttieri M J, O’Brien K M, Habernicht DK, Lanning S P, McLean R, Carlson GR, Talbert L E. Influence of genotype, environment, and nitrogen management on spring wheat quality.Crop Sci,2004,44:425432
    [166]张谋草,赵满来,张红妮,等.气候变化对陇东塬区冬小麦生长发育及产量的影响[J].干旱地区农业研究.2005,23(5):232-235.
    [167]瞿汶,刘德祥,杨苏华.甘肃省1994-2001年极端干旱气候特征研究[J].甘肃气象,2003,21(1):11-15.
    [168]施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步探讨.冰川冻土,2002.24(3):219-226.
    [169]蒲金涌,姚玉璧,马鹏里,等.甘肃省冬小麦生长发育对暖冬现象的响应[J].应用生态学报,2007,18(6):1237﹣1241.
    [170]刘晓光,刘志娟,陈阜.气候变化对中国冬小麦生产影响[J].中国农业科学,2010,43(2):329~336
    [171]蒲金涌,张存杰.甘肃省冬小麦水分适应性动态变化分析[J].资源科学,2008,30(9):1397~1402.
    [172]王位泰,张天峰,马鹏里,等.甘肃陇东黄土高原秋季冬小麦异常旺长对气候变暖的响应[J].生态学杂志,2008,27(9):1492~1497.
    [173]郭海英,万信,杨兴国,等.冬小麦冬前旺长及资源耗损现象分析[J].土壤通报,2008,27(9):1492~1497.
    [174]戴晓苏.气候变化对我国小麦地理分布的潜在影响[J].应用气象学报,1997,(8):19~25.
    [175]杏东,强世军.甘肃省不同旱作区全膜双垄沟播玉米增产效果研究[J].甘肃农业科技,2009,8:9-12
    [176]刘广才,杨祁峰,李来祥,等.旱地玉米全膜双垄沟播技术增产效果研究[J].农业现代化研究.2009,30(6):739-943.
    [177]黄高宝,方彦杰,李玲玲,等.旱地全膜双垄沟播玉米高效用水机制研究[J].干旱地区农业研究,2010,28(6):116-121
    [178]刘晓英,林而达.气候变化对华北地区主要作物需水量的影响[J].水利学报,2004,2(2):7783
    [179]熊伟,杨婕,林而达,等.未来不同气候变化情景下我国玉米产量的初步预测[J].地球科学进展,2008,23(10):10921101
    [180]Allen R G, Richard G A, Luis S P, et al. Crop evapotranspiration-Guidelines for computing crop waterrequirements[M]. FAO Irrigation and Drainage Paper,1998,56:1764
    [181]沈荣开,张瑜芳,黄冠华.作物水分生产函数与农田非充分灌溉研究述评[J].水科学进展,1995,6(3):248254
    [182]方文松,刘荣花,朱自玺,等.黄淮平原冬小麦灌溉需水量的影响因素与不同年型特征[J].生态学杂志,2009,28(11):21772182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700