用户名: 密码: 验证码:
核电站模拟含硼中低放废物的水泥固化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着核能的发展,资源利用与环境安全的矛盾逐渐尖锐。通过材料学研究解决核电站运行中带来的放射性废物问题,缓解其对环境造成的压力,是一条非常有效的途径。中低放射性废物的水泥固化技术一直是放射性废物安全处置研究的热点,本文在总结前人研究成果的基础上,系统地讨论了模拟中低放射性废物对固化体性能的影响。基于模拟放射性废物,针对模拟中放固体废物(即模拟放射性废离子交换树脂)与模拟低放液体废物(即模拟放射性废液)进行了水泥固化技术的研究。采用新的实验设计方法,在满足国家标准GB14569.1-93要求的前提下,设计出具有“双效”作用的固化胶凝材料配合比及具体应用配方,并制定了较为完善的工艺流程,为优化中低放废物的水泥固化技术提供了理论与实际指导。
     依据基于伪蒙特卡洛理论的统计学实验设计方法—均匀设计法,开展了7因素28水平的实验设计研究。该设计以硅酸盐水泥为基础,配以促凝剂,双掺无机添加剂沸石和硅灰,通过优化工艺流程对模拟含硼放射性废树脂进行固化,最终获得了废树脂体积包容量不低于50%且符合国家标准GB14569.1-93参数要求的配方:
     三种配方中的模拟含硼废树脂体积包容量分别55%(S_1)、60%(S_2)和52%(S_3),其固化体28d抗压强度分别为7.04MPa,7.62MPa和9.65MPa,并表现出
     良好的抗冲击、抗冻融与抗浸泡性能。S_1与S_3固化体标准试样中S_r2+的42天浸出率分别为8.89×10~(-4)cm/d和9.92×10-5cm/d,S_2在21天时浸出的S_r2+已经检测不到。S_1、S_2与S_3试样Cs2+的42天浸出率分别为3.81×10~(-4)cm/d、4.95×10~(-4)cm/d和1.33×10~(-4)cm/d。综合比较分析,推荐S_2作为含硼放射性废树脂水泥固化的优选配方。
     同时,采用相同的固化胶凝材料配合比,在水灰比0.6的情况下,实现了对模拟含硼废液的有效固化,获得了L_2与L_3配方:
     其中,L_2和L_3模拟含硼废液水泥固化体28天抗压强度分别为16.53MPa和19.13MPa,凝结性能、抗冲击、抗水、抗冻融与耐辐照性能均符合国家标准GB14569.1-93的要求。L_2和L_3试样中Cs~(2+)的42天浸出率分别为5.18×10~(-4)cm/d和7.75×10~(-4)cm/d,Sr~(2+)的42天浸出率分别为7.39×10-6cm/d和5.28×10-6cm/d。经过综合比较,推荐L_2为含硼放射性废液优先选择的水泥固化配方。
     以废液水泥固化浆体的流动性能,凝结性能,强度性能为基础,系统地研究了体系中原材料对模拟废液浆体性能的影响。采用XRD,SEM/EDS,IR等检测技术,探讨了原料对固化体微观结构与宏观性能的影响,分析了水泥的水化过程与水化产物,并解释了水化机理。
     通过对硼元素存在状态与形式的进一步研究发现,在固化过程中,废树脂上所吸附的硼元素,会大量带入水泥浆体中,与水泥的一次水化产物反应生成CaO·B_2O_3·6H_2O和B-AFt,并延缓水泥颗粒的水化过程,硼元素以最终三配位的BO_33-和四配位的BO45-两种状态存在。随着含硼浓度的增高,缓凝的作用会逐渐加强;随着水灰比的增大,也呈现相似规律。在0.3-0.5水灰比的范围内,当硼酸溶液浓度大于3%时,水泥硬化浆体中主要是未水化的水泥与大量CaO·B_2O_3·6H_2O。由于骨架产物CSH与AFt急剧减少,以及生成的硼酸钙片状形态不利于强度的发展,造成了水泥凝结硬化的延迟和抗压强度的下降。
     研究结果表明:当模拟树脂的体积含量超过65%时,浸泡过程中将会引起固化体开裂。沸石与硅灰能够改善固化体的孔结构,有助于提高硬化浆体的致密性。配方中的促凝剂对水泥的促凝效果在一定程度上抵消了硼元素对水泥造成的缓凝作用,加速了水化的进程,提高了固化体的强度。
With the increasing development of nuclear energy all over the world, thecontradiction between resource utilization and environmental security becomes moreand more serious. It has been proved that material solidification technique will be aneffective approach to deal with the radioactive waste of nuclear industry. For low andintermediate level radioactive waste, cement solidification is a hot researchpiont. Thiswork focus on cement solidification technology based on simulations of low andintermediate level radioactive waste including solid waste (radioactive ion exchangeresins) and liquid waste (radioactive steam residue). These researches will help us todevelop a new way to design binding material with double efficacy and the cementsolidification formula to meet the requirements of state standard GB14569.1-93, andto improve the process of cement solidification.
     The experiments with7factors and28levels were performed using uniformdesign method derived from pseudo-Monte Carlo theory. By using Portland cement,the nuclear waste resin, containing boron, was solidified with accelerator anddual-doped inorganic additives such as zeolite and silica fume. The optimizedformulas have been developed, by which the waste resin volume is greater than50%in capacity and meet the requirements of state standard GB14569.1-93.
     In the three compositions, the volume capacities of formulas are55%(S_1),60%(S_2) and52%(S_3), and the compressive strength at28d are7.04MPa,7.62MPaand9.65MPa, respectively. The solidification product shows good impulse strength,freezing thawing resistance and anti-penetration property. The leaching rates of Sr2+at42d, for standard formula samples of S_1and S_3, are8.89×10~(-4)cm/d and9.92×10~(-5)cm/d, but rarely be detected for S_3at21d. The leaching rates of Cr2+at42dfor all standard formula samples are3.81×10~(-4)cm/d,4.95×10~(-4)cm/d and1.33×10~(-4)cm/d, respectively. According to the comparison and analysis, S_2isrecommended as the optimized formula of boron containing waster resin cementsolidification.
     Meantime, using the same component design, it solidifies the simulated boron containing liquid waste successfully, with a w/c value of0.6. The formulas of L2and L3are listed as below:
     The compressive strength of the solidification products for L2and L3at28d was measured to be16.53MPa and19.13MPa, respectively. It meets the requirements of state standard GB14569.1-93for condensation performance, impulse strength, freezing-thawing resistance and radiation. The leaching rates of Sr2+at42d for standard formula samples of L2and L3are5.18×10-4cm/d and7.75×10-4cm/d. The leaching rate of Cr2+at42d for all standard formula samples are7.39x10-6cm/d and5.28x10-6cm/d respectively. Thus L2is strongly suggested as the optimized formula for boron containing radioactive waste solution cement solidification.
     The relationships between the microstructure and macroscopic performances of solidification form for each formula have been investigated by means of XRD, SEM/EDS, IR and other advanced techniques. The hydration process, products of cement and hydration mechanism has been also discussed.
     Boron ion adsorbed on the surface of waste resin, which forms CaO·B2O3·6H2O and B-AFt by reacting with cement hydration products, infiltrates the cement paste deep during solidification. It also slows down the hydration process of cement particle. The resultant structure of boron is3-fold BO33-and4-fold BO45-. With the increase of boric acid concentration, the degree of inhibition increases gradually. With W/C ratio increases, it performs in a similar way.
     When boric acid concentration exceeds3%and the W/C ratio is between0.3-0.5, the main phase in cement harden paste is determined to be un-hydrated cement particles and large number of CaO·B2O3·6H2O. Due to dramatically decrease of CSH and AFt and the existence of the framework structure and plate shape calcium borate appear in the solidification products, the compressive strength and harder process are strongly influenced.
     The results indicate that, when the resin volume capacity exceeds65%, cracks are easily formed in the cement solidification form during soaking in water. Zeolite and silica fume doped are valid to improve the pore structure and the density of hardened paste. Accelerator eliminates retarding cement setting effect by boron ion, and it accelerates the hydration process and improves the strength of the cementsolidification form.
引文
[1]陈宝山,刘承新.轻水堆燃料元件[M].北京:化学工业出版社,2007,6:1-2.
    [2]周全之.核能发电原理及主要堆型.大众用电,2005,(8):23.
    [3]核科学技术情报研究所.国际原子能机构通报,2001,43(1):50.
    [4] Nuclear energy today. OECD. Policy Brief,2005.
    [5] Energy, electricity and nuclear power estimates for the period up to2030. IAEA,2009:17.
    [6]陈宝山,刘承新.轻水堆燃料元件[M].化学工业出版社,北京:2007,6:1.
    [7]郑爱荣.专题部分:深底层处置中低放废物. jpkc.sdkd.net.cn
    [8]胡海.掩埋核废料的新构想.知识就是力量.2003,(3)
    [9]李俊平,冯长根,曾庆轩.采空场应用综述.金属矿山.2002,(10):4-6.
    [10]晓开.人类面临的各种威胁——核废料.军事展望,2001,(10):86-87.
    [11]陆安洲.核废料令人头痛.科学大众中学生.2011,(3):7-8
    [12]云桂春,成徐州.压水堆水化学[M].哈尔滨:哈尔滨工程大学出版社,2009
    [13]罗上庚.核废物及其治理.环境科学与技术,1986,(3):38-39.
    [14]陈松,李玉香.高放废料固化基材的研究现状.材料导报,2005,19(11):54.
    [15]何涌.高放废液玻璃固体化和矿物固化体性质的比较.辐射防护,2001,21(1):43-47.
    [16]刘丽君,郄东生,李扬,等.硼硅酸盐玻璃中硫存在形态的XANES方法研究.中国原子能科学研究院年报,2009,(1):285-286.
    [17] Vance E R. Synroc: A Suitable Waste Form for Actinides [J]. Mater Res Soc Bull,1994,19(2):28.
    [18] Vance E R, Begg B D, Day R A, et al. Zirconolite ceramic for Actinide Waste [J]. Mater ResSoc S ymp Proc,1995(353):767.
    [19] Luo Shanggeng, Zhu Xingzhang, Tang Baolong. Actinides Containment by UsingZirconolite-rich Synroc [A]. Proceedings of spectrum, International Conference onDecommissioning and Decontamination and on Nuclear and Hazardous WasteManagemen[C].1998,(2):829.
    [20]朱鑫璋,罗上庚,汪德熙.锕系元素的人造岩石固化[J].核科学与工程,1997,17(2):173-178.
    [21]芦令超,沈晓东,严生,等.水泥固化高放射性废物研究进展.硅酸盐通报,1996,(4):40.
    [22]欧洲原子能共同体.核设施退役手册[M].北京:核科学技术情报研究所,1998,3:10.
    [23]林良元.沥青固化低放废液的试生产.原子能科学技术,1998,32(5):37.
    [24]车春霞,滕元威,桂强.放射性废物固化处理的研究及应用现状.材料导报,2006,20(2):94-97.
    [25]芦令超,沈晓冬.模拟高放废液碱矿渣水泥固化体稳定性的研究[J].硅酸盐学报,1999,27(6):13-16.
    [26]陈雅兰,李玉香,钱光人,等.新型放射性废物固化胶凝材料浆体对锶铯的吸附研究.西南工学院学报,2000,15(1):15-19.
    [27] Conner J R. Chemical fixation and solidification of hazardous wastes[M]., New York: VanNostrand Reinhold,1990:293-298.
    [28] Shi C, Spence R. Designing of cement-based formula for solidification/stabilization ofhazardous, radioactive and mixed wastes. Critical Reviews in Environmental Science andTechnology,2004,34(4):391-417.
    [29] Gougar M L D, Scheetz B E, Roy D M, Ettringite and C-S-H Portland cement phases forwaste ion immobilization: A review [J]. Waste Management,1996,16(4):295-303.
    [30] Cocke D L. The binding chemistry and leaching mechanisms of hazardous substances incementitious solidification/stabilization systems. Journal of Hazardous Materials,1990,24(2-3):231-253
    [31] Roy D M, Gouda G R. Cementitious materials in nuclear waste management.9th ICCC.New Delhi,1992,4:88.
    [32] Roy D M, Gouda G R, Bobrowsky A. Very high strength cement pastes prepared by hotpressing and other high pressure techniques. Cement and Concrete Research,1972,2(3):349-366.
    [33] Stellacci P, Liberti L, Notarnicola M, et al. valorization of coal fly ash by mechano-chemicalactivation: part II. enhancing pozzolanic reactivity. Chemical Engineering Journal,2009,149(1-3):19-24.
    [34] Wilding C R. The Performance of cement based systems [J]. Cem Concr Res,1992,22:299-300.
    [35] Mcculloch C E, Angus M J, Crawford R W, et al. Cements in radioactive waste disposal:some mineralogical considerations. Mineralogical Magazine,1985,49:211-221.
    [36] US Environmental Protection Agency, Treatment Technologies for Site Cleanup AnnualStatus Report, eleventh ed, EPA-542-R-03-009, Washington, DC,2004.
    [37] Glasser F P. Progressing in the immobilization of radioactive wastes in cement[J]. CemConer Res,1992,22:201-216.
    [38] Weeren H O. Waste disposal by shale fracturing at ORNL [J]. Nuclear Engineering andDesign,1977,44(2):291-300.
    [39] Bishop P L. Leaching of Inorganic Hazardous Constituents from Stabilized/SolidifiedHazardous Wastes[J]. Hazardous Wastes Hazardous Mater,1988,5:129-143.
    [40]程理,龚力.模拟中低放废物水泥固化体在地下水中浸出性能的研究[J].辐射防护,2010(1):299-303.
    [41]谭宏斌,李玉香,陈雅斓.几种水泥对铀(Ⅵ)滞留特性的研究[J].西南科技大学学报,2004,19(3):67-70.
    [42]王显德,孙明生.十年来低、中水平放射性废液处理技术的研究和发展[J].核化学与放射化学,1990,12(3):65-67.
    [43]吕殿全.广东大亚湾核电站放射性固体废物处理及暂存措施.辐射防护,1996,16(6):304-308.
    [44]云桂春,成徐州.压水堆水化学.哈尔滨工程大学出版社[M],哈北滨,2009:215.
    [45]吴学权,严生,沈晓冬.高放废液碱矿渣水泥固化体研究. CNIC00731NCEC0001.
    [46]赵怀红,严生.大体积浇注碱矿渣水泥中低放废液固化研究,南京工业大学学报,2002,24(6):20-25.
    [47]李玉香,钱光人,易发成,等.碱矿渣复合水泥—放射性废物固化基材力学性能的研究(二).新世界水泥导报,1995,5(5):23-24.
    [48]李玉香,傅依备,易发成,等.碱矿渣黏土复合胶凝材料水化物粉体对铯离子的吸附.硅酸盐学报,2005,33(10):1184-1188.
    [49]李玉香,傅依备,易发成.碱矿渣—粘土复合水泥固化模拟放射性泥浆的可行性研究.原子能科学技术,2005,39(4):311-317.
    [50]芦令超,沈晓冬,严生,等.模拟高放废液碱矿渣水泥固化体稳定性的研究.硅酸盐通报,1999(6):13-16.
    [51] Qian Guangren, Li Yuxiang, Yi Facheng, et al. Improvement of Metakaolin on radioactive Srand Cs immobilization of Alkaliactivated Slag Matrix[J]. Journal of Hazardous Materials,2002,92(3):289-300.
    [52] Komarneni S, Roy D M, Roy R. Al-substituted Tobermorite: shows cation exchange[J].Cement and Concrete Research,1982,12:773-780.
    [53] Shrivastava O P, Komarneni S. Cesium selectivity of (Al+Na)-substituted Tobermorite[J].Cement and Concrete Research,1994,24(3):573-579.
    [54] Komarneni S, Roy D M. New Tobermorite cation exchangers[J]. Journal of Materials Science,1985(20):2930-2936.
    [55]李俊峰,王建龙.放射性废离子交换树脂的特种水泥固化技术进展.辐射防护,2006,26(2):109.
    [56]李俊峰,周耀中,王建龙,等.放射性废离子交换树脂特种水泥固化体的微观结构分析[J].核科学与工程,2004,24(4):340.
    [57]刁江京.硫铝酸盐水泥性能及在GRC制品业的应用初探,水泥工程,2003(3):7-11
    [58]李俊峰,赵刚,王建龙.放射性废树脂水泥固化中水化热的降低[J].清华大学学报,2004,44(12):1600-1602.
    [59]周耀中,云桂春.放射性废离子交换树脂水泥固化与机理探讨.原子能科学技术,2004,38(7):133-138.
    [60]周耀中,放射性废树脂水泥固定化技术及机理研究.清华大学博士学位论文.2002.
    [61]周耀中,叶裕才,云桂春,等.特种水泥固化放射性废离子交换树脂的初步研究.辐射防护,2002,22(4):225.
    [62]孙奇娜,李俊峰,王建龙.模拟放射性含硼废液的水泥固化研究.原子能科学技术,2010,44:153-159.
    [63]李俊峰,王建龙,赵璇.模拟放射性树脂特种水泥固化提高包容量的研究.原子能科学技术,2004,38:139-142.
    [64]李俊峰,王建龙.放射性废离子交换树脂的特种水泥固化技术进展.辐射防护,2006,26(2):107-112.
    [65] Faucon P, Adenot F, Jacquinot J F, et al. Long-term behaviour of cement pastes used fornuclear waste disposal: review of physico-chemical mechanisms of water degradationCement and Concrete Research,1998,28(6):847-857.
    [66]李俊峰,王建龙,叶裕才.模拟放射性废树脂的沸石和特种水泥混合物固化.原子能科学技术,2006,40(3):288-291.
    [67] Lung, Kwang P. Optimization for solidification of low level radioactive resin using taguchianalysis[J]. Waste Management,2001,21:767-772.
    [68] Sandor Bagosi, Laszlo J. Csetenyi. Immobilization of caesium-loaded ion exchange resinsin zeolite-cement blends. Cement and Concrete Research,1999,29:479-485.
    [69]吴宗道.钙矾石的显微形貌.中国建材科技,1995,4(4):9-14.
    [70] Yamasaki N, Yanagisawa K, Nishioka M, et al.A hydrothermal hot-pressing method:Apparatus and application, Journal of Materials Science Letters,1986,5(3):355-356.
    [71]吴学权.高放废物固化新技术——水热热压法.南京化工学院内部资料,1993.
    [72] Guerrero A, Gon S. Efficiency of a Blast Furnace Slag Cement for Immobilizing SimulatedBorate Radioactive Liquid Waste. Waste Management,2002,22:831–836.
    [73] El-Kamash A M, El-Naggar M R, El-Dessouky M I. Immobilization of cesium and strontiumradionuclides in zeolite-cement blends. Journal of Hazardous Materials,2006,136(2):310-316.
    [74] Madsen F T. Clay mineralogical investigations related to nuclear waste disposal. ClayMinerals,1998,(33):109-129.
    [75]陈松,李玉香.模拟含碱高放废液“碱-偏高岭土-矿渣”固化性能研究[J].硅酸盐通报,2006,25(3):42-46.
    [76]李俊峰,赵刚,王建龙.放射性废树脂水泥固化中水化热的降低.清华大学学报(自然科学版),2004,44(12):1600-1602.
    [77]陈良,陈莉,李均华.压水堆核电站放射性废液水泥固化技术分析.核动力工程,2009,30(2):113-116.
    [78]陈竹英,黄卫岚张英杰,等.低放废水蒸残液的水泥固化.辐射防护,1995,15(3):229-234.
    [79]陈竹英,陈百松,曾继述,等.中放废液水泥固化大体积浇注工艺可行性探讨[J].原子能科学技术,1988,22(6):664-667.
    [80]魏保范,李润珊.反应堆含硼放射性废液固化的研究.南开大学学报(自然科学),1995,28(3):71-75.
    [81]安鸿翔,郭喜良.含硼废液水泥固化处理技术进展.核化工三废处理处置学术交流会,厦门,2007:88-92.
    [82] Masami M, Nishi T, Chino K, et al. Solidification of ion exchange resin using newcementitious material (1):Swelling pressure of ion exchange resin [J].J Nucl Sci andTech,1992,29(9):883-889.
    [83] Natsuda M, Nishi T, Chino K, et al. Solidification of ion exchange resin using newcementitious material (2): Improvement of resin content fiber reinforced cement [J].J NuclSci and Tech,1992,29(11):1093-1099.
    [84] Takashi Nishi. Advanced solidification system using high performance cement. In:Proceedings of the Fifth InternationAl Conference on Radioactive Waste Management andEnvironmental Remediation. ICEM'95, ASME, New York,1995,2:1095-1098.
    [85] Zhang Wei, Yu Xingju, Yuan Quan. Uniform design: a new approach of design fermentationmedia [J]. Biotechnology Techniques,1993,7(5):379-384.
    [86]张铨昌,杨华蕊,韩成.天然沸石离子交换性能及其应用[M].北京:科学出版社.1986:11.
    [87]张铨昌,杨华蕊,韩成.天然沸石离子交换性能及其应用[M].北京:科学出版社.1986:94-95.
    [88]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994:1-2.
    [89]赵弈殊.均匀设计表及其使用表的构造[[J].战术导弹技术,1988(4):53-58.
    [90]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994:14.
    [91]王鹏,王玉珠,沈建民.均匀设计及其在药学中的应用[J].沈阳药学院学报,1989(6):297-306.
    [92]张建舟.飞航导弹系统工程与均匀设计法[J].均匀协会年会论文集,1995
    [93]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994:23-35.
    [94]陈磊,陈太林.聚丙烯纤维混凝土力学性能分析[J].化学建材,2004(4):58.
    [95]董建伟,朱菊明.改性聚丙烯纤维混凝土应用中的若干问题.吉林水利,2003(11):4
    [96]王玉方.均匀设计注意事项.均匀设计用户手册,2007
    [97]赵由才.危险废物处理技术[M].化学工业出版社,2003:198-200.
    [98]黄来喜,何文新,陈德淦,等.大亚湾核电站反射性固体废物管理.辐射防护,2004,24(3-4):214-215
    [99] Koshiba Y, Kitamura H, Kawashima A, et al. New technologies for treatment of low-levelwastes in PWR plants. Radioactive Waste Management and Environmental Remendiation,1995.
    [100]安鸿翔,郭喜良.含硼废液水泥固化处理技术进展.放射性废物处理处置学术交流会论文集,2007:90-91.
    [101]四室五组.浓盐溶液中硼酸盐的相化学与溶液化学.盐湖科技资料,1978,21:61-62.
    [102]陈国军.几种新型硼酸盐非线性光学晶体材料研究[学位论文].北京:中国科学院研究生院,2007:4.
    [103]谢先德,查福标.硼酸盐矿物物理学[M].北京:地震出版社,1993,3-5.
    [104]杨南如,岳文海.无机非金属材料图谱手册[M].武汉工业大学出版社,2000,11:454.
    [105]王建华,冯守华,徐如人.类沸石微孔硼铝酸盐的合成及鉴定.石油学报,1990,6(3):70.
    [106] Black L, Garbev K, Stemmermann P, et al. X-ray Photoelectron Spectroscopy (XPS): Anew means of studying C-S-H structure and chemistry. Nachrichten aus dem Institut fürTechnische Chemie, Wasser und Geotechnologie,2002,2:37-44.
    [107] James V, Bothe Jr, Brown P W. Phase formation in the system CaO–Al2O3–B2O3–H2O at23±1℃. Journal of Hazardous Materials,1998:199-210.
    [108]難波徳郎,ガラスの化学結合状態の解析と計算機化学,讲演稿,2010.
    [109] Li Jun, Xia Shuping, Gao Shiyang. FT-IR and Raman spectroscopic study of hydratedborates. Molecular and Biomolecular Spectroscopy,1995,51(4):519-532.
    [110]杨南如,岳文海.无机非金属材料图谱手册[M].武汉工业大学出版社,2000,11:340-341.
    [111]曹惠峰.水热法合成硼酸钙的工艺研究与性能表征.景德镇陶瓷学院硕士学位论文,2006:11
    [112] Csenteyi, L.J., Glasser, F.P. Borate retardation of cement set and phase relations in thesystem Na2O-CaO-B2O3-H2O.Adv. Cem. Res,1995,7(25):13-19.
    [113] S. Hernández, A. Guerrero,S,Gon i. Leaching of borate waste cement matrices: poresolution and solid phase characterization.Adv. Cem. Res,2000,12(1):1-8.
    [114] H. Poellmann, St. Auer, H.-J. Kuzel, et al. Solid solution of ettringites: Part II:Incorporation of B(OH)4and CrO42in3CaO·Al2O3·3CaSO4·32H2O. Cem. Concr. Res,1993,23(2):422-430.
    [115] Go i, S., Guerrero, A.Stability of calcium aluminate cement matrices mixed withboratesolution. In: Proceedings of International Conference on CALCIUM ALUMINATECEMENTS(CAC),2001:425–435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700