用户名: 密码: 验证码:
挤压轧制复合工艺制备AZ61镁合金板材的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为轻质金属结构材料,由于其低密度、高比强度、优越的抗震性能和电磁屏蔽性等独特的优点,受到了越来越多的关注。采用传统的铸态轧制工艺对中厚板材进行变形的过程中,加工效率较低,得到的板材存在明显的基面板织构。本文选取电磁连铸AZ61变形镁合金,采用挤压轧制复合工艺进行中厚板材的变形研究,探讨了轧制温度对板材性能的影响并与铸态轧制工艺板材的组织和力学性能进行了对比分析。
     连铸过程中引入的电磁场使AZ61铸态组织细化,破碎晶界处粗大网状分布的β-Mg17Al12共晶相,使其细小并且弥散分布。连铸过程中加入的电磁场改善了镁合金铸锭的表面质量;与无磁场连铸相比,电磁连铸AZ61镁合金铸锭抗拉强度达到181MPa,提高了25%;伸长率为7.4%,提高了45%。
     铸态轧制工艺的板材在变形初期会有大量的孪晶组织生成,之后以孪生动态再结晶的方式细化晶粒;75%变形量下的晶粒组织为不完全动态再结晶,力学性能为σb=300MPa,σ0.2=235MPa,δ=8.0%。
     挤压轧制复合工艺板材在轧制初期围绕着挤压产生的细小晶粒发生动态再结晶,后期以旋转动态再结晶的方式形成局部剪切带来细化晶粒,改善塑性。三种轧制变形量的板材组织均小于铸态轧制。60%变形量时的力学性能等同于铸态轧制板材;75%和80%两种轧制变形量的板材极限抗拉强度、屈服强度以及伸长率为315MPa、283MPa、12.0%,325MPa、306MPa、10.3%,相比于铸态轧制工艺,分别提高了5%、20.4%、50%,8.3%、30.2%、28.7%。挤压轧制复合板材的{0002}基面板织构最大极密度低于同等变形量下的铸态轧制板材。
     在较低温度下轧制时,两种原因引发裂纹源导致在板材侧边部产生45°斜向裂纹。一是较大的应力集中导致孪晶和晶界的交界处产生裂纹源:二是晶粒之间的变形程度失调而诱发裂纹源。随着轧制温度的升高,裂纹的产生倾向减小,而且微观组织从大量的孪晶逐渐变为完全动态再结晶的细小等轴晶粒,并发生一定程度的粗化:板材的极限抗拉强度和屈服强度逐渐降低,塑性逐渐提高,断裂机制从典型的准解理断裂向混合断裂机制转变。挤压轧制复合工艺下的优化轧制温度为400℃。
     经过研究对比,可通过较小的轧制下压量得到与传统铸态轧制工艺下大变形量性能相当甚至更高的高性能板材。减小了板材在大变形量轧制时的破坏趋势,提高了板材的加工效率。
As a lightweight metal structural material, magnesium alloy has attracted more and more attention because of its low density, high specific strength, excellent shock resistance, electromagnetic shielding and other unique performances. The thick magnesium alloy plate with traditional cast rolling deformation process performed a low processing efficiency and a strong base panel texture. This paper employed a new approach of the extrusion composite rolling technology to research the deformation of the thick electromagnetic continuous casting AZ61wrought magnesium alloy plates. It compared the effect of the new approach with the cast rolling process on the microstructure and mechanical properties of the sheets. And it also explored the influence of rolling temperature on the new approach.
     The introduction of electromagnetic fields in the continuous casting process make AZ61cast microstructure refinement, broken the coarse mesh distributed β-Mg17Al12eutectic phase at the grain boundaries and making it be fine and dispersed. And it improved the surface quality of the magnesium alloy ingots. Compared with the normal casting, the ultimate tensile strength of the electromagnetic casting AZ61magnesium alloy ingot increased by25%of181Mpa, and the elongation had45%enhanced of7.4%.
     There will be a large number of twins in the early deformation of cast rolling sheets. Afterwards, the grain refinement mechanism is the twin dynamic recrystallization. The grains organization is incomplete dynamic recrystallization with75%deformation and the mechanical properties is σb=300MPa, σ0.2=235Mpa and δ=8.0%.
     In the early deformation period, dynamic recrystallization occurred around the fine grains in the extrusion of the extrusion composite rolling process. And then, the local shear zones produced by the rotation dynamic recrystallization bring the grain refinement to improve the plasticity. The average grain size of three different rolling deformations is less than the cast rolling.
     Mechanical properties of the60%rolling deformation sheets were equivalent to the cast rolling. The ultimate tensile strength, yield strength and elongation of75%and80%rolling deformation sheets were315MPa,283MPa,12.0%,325MPa,306Mpa and10.3%. Compared with the cast rolling process, they were increased by5%,20.4%,50%,8.3%,30.2%, and28.7%respectively. The maximum pole density of {0002} base panel texture of the sheets with extrusion composite rolling is lower than that of the cast rolling sheets under the same deformation.
     There are two reasons inducing the crack sources lead to the45°diagonal crack on the sheet side rolled at lower temperatures. First, the crack sources generate on the junction of the twin and grain boundaries because of large stress concentration. The other is the disorder of the deformation degree between the grains.
     As the rolling temperature increased, the cracks tendency reduced, the microstructure gradually turned into slightly coarse and equiaxed grains from a large number of twins because of fully dynamic recrystallization. The ultimate tensile strength and yield strength of the sheet decreased and a gradual increase in plasticity at the same time. And the fracture mechanism turned to mixed fracture from the typical quasi-cleavage fracture. The optimized rolling temperature of extrusion composite rolling process is400℃.
     It was studied that high-performance sheets can be manufactured under a small rolling deformation with extrusion composite rolling process, and the mechanical properties of them are equivalent to or even higher than the high rolling deformation sheets with traditional cast rolling process. Consequently, this new approach decreased the failure trends with a large rolling deformation and improved the processing efficiency of the magnesium sheets.
引文
[1]刘正,王越,等.镁基轻质材料的研究与应用[J].材料研究学报,2000(05):449-456.
    [2]陈礼清,赵志江,等.从镁合金在汽车及通讯电子领域的应用看其发展趋势[J].世界有色金属,2004(07):12-20.
    [3]曾小勤,王渠东,等.镁合金应用新进展[J].铸造,1998(11):39-42.
    [4]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [5]Mordike B L, Ebert T, et al. Magnesium:Properties-applications-Potential [J]. Materials Science and Engineering A,2001,302(1):37-45.
    [6]李新林,王慧远,等.颗粒增强镁基复合材料的研究现状及发展趋势[J].材料科学与工艺,2001(02):219-224.
    [7]周海涛,曾小勤,等.稀土铈对AZ61变形镁合金组织和力学性能的影响[J].中国有色金属学报,2004(01):99-104.
    [8]彭志辉.超轻高比强度Mg-Li系合金[J].稀有金属与硬质合金,1995(04):53-56.
    [9]周海涛,马春江,等.变形镁合金材料的研究进展[J].材料导报,2003(11):16-18+55.
    [10]余馄,黎文献,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003(02):277-288.
    [11]Kojima Y. Platform science and technology for advanced magnesium alloys [J]. Materials Science Forum,2000,350-351:3
    [12]殷建华,近年来世界镁工业的发展现状与前景[J].中国金属通报,2005(31):8-13.
    [13]殷建华,世界镁工业的发展与前景[J].世界有色金属,2005(7):58-66.
    [14]贾非.电磁连续铸造过程工艺优化及组织性能研究[D].大连:大连理工大学,2002.
    [15]房灿峰.高性能镁合金电磁改性技术研究[D].大连:大连理工大学,2006.
    [16]那贤昭,张兴中,仇圣桃,等.软接触电磁连铸技术分析[J].金属学报,2002,38(1):105-108.
    [17]于洋,李宝宽.钢连铸电磁搅拌工艺中电磁力的计算[J].金属学报,2006,42(5):540-544.
    [18]王宏明,任忠鸣,雷作胜,等.钢的软接触电磁连铸技术[J].铸造技术,2005,26(9):782-784.
    [19]金百刚,工强,崔大伟,等.两段式无缝软接触结品器电磁参数和结构参数的研究[J].金属学报,2007,43(4):427-432.
    [20]A. Staroselsky, L. Anand. A constitutive model for hep materials deforming by slip and twinning:application to magnesium alloy AZ31B [J]. International Journal of Plasticity, 2003,19:1843-1864.
    [21]K. KUBOTA, M. MABUCHI, K. HIGASHI. Processing and mechanical Properties of fine-grained magnesium alloy [J]. Journal of materials science,1999,34:2255-2262.
    [22]陈振华,等.镁合金材料的塑性变形理论及其技术[J].2004(23)2:127-135.
    [23]M. H. Yoo et al. Non-basal slip systems in HCP metals and alloys source mechanicals [J]. Materials Science and Engineering A.2001,319-321:87-92.
    [24]J. Koike. New Deformation Mechanisms in Fine-Grain Mg Alloys [J]. Materials Science Forum,2003,419/422(part 1):189-194.
    [25]M. R. Barnett. Twinning and the ductility of magnesium alloys Part I:"Tension" twins [J]. Materials Science and Engineering A,2007,464:1-7.
    [26]M. R. Barnett. Twinning and the ductility of magnesium alloys Part Ⅱ. "Contraction" twins [J]. Materials Science and Engineering A,2007,464:8-16.
    [27]J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki and K. Maruyama. Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523K [J]. Materials Transactions,2003, 44(4):445-451.
    [28]吕宜振Mg-Al-Zn合金组织、性能、变形和断裂行为研究[D].上海:上海交通大学,2001.
    [29]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,2004.
    [30]余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(07):1081-1086.
    [31]T. Al-Samman, G. Gottstein. Dynamic recrystallization during high temperature deformation of magnesium [J]. Materials Science and Engineering A,2008,490:411-420.
    [32]S. M. Fatemi-Varzaneh, et al. Dynamic recrystallization in AZ31 magnesium alloy [J]. Materials Science and Engineering A,2007,456:52-57.
    [33]Liu Y. Transient plasticity and microstructural evolution of a commercial AZ31 magnesium alloy at elevated temperatures [D]. Detroit, Michigan:Wayne State University, 2003.
    [34]D. L. Yin, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy [J]. Materials Science and Engineering A,2005,392:320-325.
    [35]黄光杰,等.AZ31镁合金初始动态再结晶的临界条件研究[J].稀有金属材料与工程,2007,36(12):2080-2083.
    [36]毛卫民,赵新兵,等.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [37]Galiyev, A, Kaibyshev, R, Sakai, T. Continuous dynamic recrystallization in magnesium alloy [J]. Materials Science Forum,2003,419/422 (Part 1):509-514.
    [38]Sitdikov,O, Kaibyshev, R, Sakai, T. Dynamic recrystallization based on twinning in coarse-grained Mg. [J]. Materials Science Forum,2003,419/422 (Part 1):521-526.
    [39]J. A. del Valle, et al. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy [J]. Material Science and Engineering A,2003,355:68-78.
    [40]Barnett M R. Recrystallization during and following hot working of magnesium alloy AZ31 [J]. Materials Science Foriun,2003,419/422:503.
    [41]陈振华,等.镁合金的动态再结晶[J].化工进展,2006,25(2):1.40-146.
    [42]徐河,刘静安,等.镁合金制备与加工技术[M].北京:冶金工业出版社,2007.
    [43]彭大暑(编译).金属塑性加工原理[M].长沙:中南大学出版社,2006.
    [44]付雪松.AZ31轧制变形与AZ31/Al热轧复合工艺研究[D].大连:大连理工大学,2010.
    [45]余琨,黎文献Mg-Al-Zn系变形镁合金轧制及热处理后的组织和性能[J].金属热处 理,2002,27(5):8-11.
    [46]A. El-Morsy, et al. Microstructural and mechanical properties evolution of magnesium AZ61 alloy processed through a combination of extrusion and thermomechanical processes [J]. Materials Science and Engineering A,2008,486:528-533.
    [47]M. T. Pe'rez-Prado, et al. Achieving high strength in commercial Mg cast alloys through large strain rolling [J]. Materials Letters,2005,59:3299-3303.
    [48]S.-H. Kim et al. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheet [J]. Materials Letters,2005,59:3876-3880.
    [49]程永奇,陈振华,等.等径角轧制AZ31镁合金板材的组织与性能[J].中国有色金属学报,2005,15(9):1369-1375.
    [50]魏松波,蔡庆伍,等.挤压AZ31B镁合金板材高温轧制变形行为研究[J].塑性工程学报,2009,16(01):0095-0101.
    [51]周鋆.ME10挤压轧制镁合金热处理后的组织与性能[D].重庆:重庆大学,2007.
    [52]许芳艳.轧制板材镁合金AZ31的再结晶行为[D].长沙:湖南大学.2006.
    [53]Yo Kojima, Tatsuhiko Aizawa, Shigeharu Kamado, et al. Progressive Steps in the Platform Science and Technology for Advanced Magnesium Alloys [J]. Materials Science Forum,2003, 419/422 (part 1):03-20.
    [54]于延浩.镁合金电磁连铸成型技术研究[D].大连:大连理工大学,2005.
    [55]任政.变形镁合金强韧化与电磁-悬浮连铸技术的研究[D].大连:大连理工大学,2009.
    [56]齐国红.Al-Ti-B曾强镁合金组织性能的研究[D].大连:大连理工大学,2009.
    [57]白云.原位7iB2颗粒增强镁基复合材料的制备[D].大连:大连理工大学,2010.
    [58]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [59]金俊泽,曹志强,郑贤淑,等.电磁搅拌作用下形成分离共晶的研究[J].金属学报,1995,31(8):375-378.
    [60]任忠鸣,董华锋,邓康,等.软接触电磁连铸中初始凝固的基础研究[J].金属学报,1999,35(8):851-855.
    [61]房灿峰,张兴国,季首华,于延浩,金俊泽.AZ61镁合金软接触电磁连铸的研究[J].稀有金属材料与工程,2006,35(8):1319-1322.
    [62]黄光胜.镁合金成形性能的改善及热变形行为研究[D].重庆:重庆大学,2003.
    [63]Hiroyuki Watanabe, Hirosuke Tsutsui, Toshiji Mukai, et al. Grain size control for commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization. Materials Transactions,2001,42(7):1022-1205.
    [64]Barnett M R, Beer A G. Atwell D, et al. Influence of grain size on hot working stresses and microstructures in Mg-3Al-1Zn [J]. Scripta Materialia,2004,51:19-24.
    [65]Perez-Prado M T, del Valle J A, Contreras J M. et al. Micro-structural evolution during large strain hot rolling of an AM60Mg alloy [J]. Scripta Materialia,2004,50:661-665.
    [66]胡赓祥,蔡殉,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006.
    [67]陈振华,等.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(8):107-113.
    [68]陈振华,夏伟军,程永奇,傅定发.镁合金织构与各向异性[J].中国有色金属学报,2005,15(1):01-11.
    [69]潘复生,韩厚恩,等.高性能变形镁合金及加工技术[M].北京:科学出版社,2007.
    [70]M. T. Perez-Prado, et al. Effect of sheet thickness on the microstructural evolution of an Mg alloy during large strain hot rolling [J]. Scripta Materialia,2004,50: 667-671.
    [71]P. Yang, Y. Yu, L. Chen, W. Mao. Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31 [J]. Scripta Materialia,2004,50: 1163-1168.
    [72]张丁非,戴庆伟,等.镁合金板材轧制成型的研究进展[J].材料工程.2009(10):85-90.
    [73]刘俊伟,陈振华,陈鼎.镁合金轧制板材低温变形行为与微观机制[J].中国有色金属学报.2008,18(9):1577-1584.
    [74]詹美燕,等.镁合金的塑性变形机制和孪生变形研究[J].材料导报A:综述篇,2011,25(2):01-07.
    [75]苏美科.AZ61镁合金板材热轧工艺研究[D].沈阳:东北大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700