用户名: 密码: 验证码:
圆坯连铸结晶器内热—力学行为的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在连铸结晶器内,热—力学行为互相影响相互作用。结晶器传热能力和特征决定铸坯温度场、坯壳凝固厚度及其分布,影响坯壳收缩和结晶器变形等力学行为;反之,铸坯收缩和结晶器变形影响铸坯和结晶器之间的传热。因此,清楚了解结晶器内的热—力学行为必须建立合适的耦合数学模型。
     坯壳和结晶器之间的相对运动形成摩擦力,坯壳受摩擦力的影响而发生力学行为的变化。在实际生产过程中,非理想的复杂的结晶器传热状态使摩擦力发生异常变化。方坯、板坯的形状决定了部分坯壳优先生长。圆坯结晶器由于沿各个方向都对称,其生长不均匀性是随机的,由结晶器各处的传热条件决定。因此,理想状态下的模拟计算不能反映实际生产中连铸结晶器内的热—力学状态。
     以安装在圆坯结晶器不同横截面和纵截面内的热电偶所获得的温度为基础,建立基于实测温度数据的多维反问题数学模型。通过确定结晶器和铸坯之间的热阻分布,计算出能及时反映实际生产中沿周向不均匀分布的传热。
     以结晶器和铸坯的温度场作为热载荷建立三维力学模型。该模型耦合了摩擦力和铸坯/结晶器的接触状态以及它们的应力、变形,并考虑了结晶器锥度的影响。计算出生产过程中圆坯结晶器和铸坯的热—力学行为,并讨论了摩擦力的影响;同时计算出结晶器和铸坯之间的间隙,包括固液渣膜厚度、气隙尺寸和接触状态,并分析它们之间的互相影响关系。由于实测的传热结果不均匀,结晶器和铸坯的热—力学相关计算结果也具有沿周向分布不均匀特征,更加反映了真实的连铸状态。
     基于现场实测数据,研究了正常生产过程中圆坯结晶器热流的实时分布特性,从而分析结晶器的传热行为,为达到实时监控提供基础。
     监测分析表明:热流沿结晶器周向分布处于频繁变化中。弯月面区传热很低,但在液面下70—110mm区域内存在热流峰值,并且对工艺参数变化较为敏感,比如浇注温度、拉速、钢水碳含量、保护渣类型等等。本文也分析了正常和异常传热条件下局部温度、热流的稳定性和沿周向不均匀性的变化。在稳定拉坯时,一定变化范围内的工艺参数对结晶器传热的波动性和不均匀性的影响很小,而钢水碳含量、保护渣类型以及结晶器安装等很大程度上决定结晶器传热的波动性和沿周向的不均匀性。
     研究发现:结晶器热流和坯壳厚度沿周向的分布特征受结晶器安装状态的影响。统计发现,同一次安装其分布相似,不同安装分布规律不同。高热流区热流沿周向分布的
The thermal and mechanical behaviors interact on each other over the whole mould process in continuous casting. The ability and characteristics of mould heat transfer are responsible for strand temperature and thickness of solidifying shell. Heat transfer has great influence on the shell shrinkage and the mould distortion. Whereas, the heat transfer from casting steel to mould is also influenced by the shell shrinkage and the mould distortion. It is important to develop thermo-mechanical coupled mathematical model to make a further understanding of mould process.The non-ideal, complicated mould heat transfer may lead to abnormal mould friction, the direct contact between shell and mould makes monitored mould friction an obvious respond in plant trial, so the influence of mould friction on the stress of strand cannot be neglected. The round billet mould is symmetry, the non-uniformity of shell thickness is random and is determined by the local heat transfer state, which is different from that of slabs, where the mould geometry determines the shell to grow first in corners. The simulation calculation in ideal state does not reflect the real mould process in continuous casting.A multi-dimensional, coupled, inverse problem model is developed from the measured data of mould temperature by thermocouples embedded in various transverse and longitudinal sections for a round billet. By identifying the thermal resistance between the mould and strand, the non-uniform mould heat transfer around the perimeter in each transverse section of mould is calculated, which can reflect the real process.The calculated temperature fields of mould and billet, which are taken as thermal load, are put into a three-dimensional mechanical model. The mould friction, interfacial state between the mould and billet, and their stresses are coupled together into the mould, considering the influence of mould taper and ferro-static of steel. The thermal and mechanical behaviors of billet and mould are predicted. The influence of mould friction is discussed. The solid/liquid slag film thickness, the interaction between the solidified strand and mould, and gap size are predicted from the stress model. Owing to the non-uniform heat transfer, the calculation results in respect of the thermo-mechanical behavior are non-uniform around the perimeter in each transverse section of mould. It is a better reflex from the real continuous casting process.
    The characteristics of mould heat flux for round billet are studied based on the measured data. The researching results can be provided as a basis for real-time monitoring.The measured results show that, the mould heat flux is in transient variation not only along the height but also around the perimeter in each transverse section of mould. There is low heat transfer of mould in the meniscus region. The peak heat flux locates at 70-11 Omm below meniscus and is sensitive to operational parameters, such as pouring temperature, casting speed, carbon content, powder type, and so on.The variation and non-uniformity of local temperature and heat flux are analyzed under normal and abnormal conditions. The variability and non-uniformity around the perimeter of mould heat transfer are influenced very little by the normal operational parameters, but influenced much by the steel grade, powder type, and mould installation etc.The results show that, both the mould heat flux and shell thickness are non-uniform around the mould perimeter in each transverse section of mould influenced by the mould installation in caster. Heat flux has the similar distribution in the same installation of mould and distinct difference in different installations by statistical analysis from amount of measured data. There is relationship between distributions of mould heat flux around the perimeter in the "high heat flux region" and shell thickness at any mould height. This can provide a basis for uniform strand solidification and for improvement on surface quality, by analyzing and controlling mould heat flux profiles, especially in the vicinity of meniscus.The distribution of mould heat flux and its influencing factors are discussed quantitatively on the basis of measurements and calculations. The relationship between the mould heat flux and shell thickness is discussed. This research helps to apprehend of the distribution of the mould heat flux and profile of solidifying shell thickness under normal production. A method combining on-line detection with numerical simulation provides a basis for the visualization of continuous casting mould process and for the real-time monitoring of high efficiency production of no-defect billet.The mould temperature calculated by two-dimensional model neglecting the longitudinal heat transfer is higher than that by three-dimensional model. However, the heat flux is contrarily lower. The heat flux calculated using Fourier's law simply from the temperature difference between two thermocouples located at different distances from the hot face result in a low estimate of heat flux in the vicinity of meniscus with larger longitudinal heat conduction.The calculation results illustrate that the location and the magnitude of peak mould temperature are depressed by the cold region above meniscus and the thick slag rim (up to 1.0mm). The solid slag film is thin to 0.1mm in the region about 80mm below meniscus,
    coinciding with formation of the high heat flux region. The liquid lubrication has obvious influence on shell stress in the meniscus region, while the solid-solid contact friction dominates in the lower part of mould. The gap through which the liquid slag filtrates is also non-uniform around the perimeter, determining the profile of mould heat flux to some extent. The shell thickness and mould heat flux share with the similar distribution, both of which are determined by the solidified slag film between the solidified shell and mould before the disappearance of liquid slag.A crack criterion is proposed based on the mould heat flux to predict the crack susceptible area. The possibility of crack formation in the meniscus is comparatively high, and the area with higher crack susceptible is determined by mould installation to some extent, and the crack almost located in the range of arc for the same installation.The inverse problem model is applied to the calculation of heat transfer and solidification for slab continuous casting, and the calculation results are good.All the results provide valuable foundation for the on-line diagnosis of defects, adjustment of operational parameters, optimization of monitoring system, and prediction of abnormity of intelligent mould.
引文
[1] J. K. Brimaeombe. Empowerment with knowledge toward the intelligent mold for the continuous casting of steel billets. Metall. Trans.B. 1993, 24B: 917-934.
    [2] I. A. Bakshi, J. L. Brendzy, N.Walker et al. Mould-strand interaction in continuous casting of steel billets Partl Industrial trials. Ironmaking and Steelmaking, 1993, 20 (1): 54-62.
    [3] Huang X., Thomas B. G. Modeling of transient flow phenomena in conlinuous casting of steel. Canadian Metallurgical Quarterly, 1998, 37 (3): 197-212.
    [4] Araki T, Ikeda M. Optimization of mold oscillation for high speed casting-new criteria for mold oscillation. Canadian Metallurgical Quarterly, 1999, 38 (5): 295-300.
    [5] Emling W H, Dawson S. Mold Instrumentation for Breakout Detection and Control. ISS 71st Steelmaking Conference Proceedings, Ontario, Canada, 1991.
    [6] A. S. Normanton, P.N.Hewitt, N.S.hunter et al. Mould thermal monitoring: a window on the mould. Imnmaking and Steelmaking, 2004, 31 (5): 357-363.
    [7] H. L. Gilles. Breakout protection by automatic mold heat removal control. Proceedings of 2nd annual AIME process technology conference, Chicago, 1982.
    [8] K. Kuriham, A. Tsuneoka, K. Minami et al. Development of mold diagnostic technology(breakout prediction and quality prediction). Trans. ISIJ, Vol, 1985, S163
    [9] Anon. Prediction and prevention system for sticking type breakout in continuous casting.Trans. ISIJ, 1988, 28 (2): 147.
    [10] Emling W H, S. D. Mis, D. J. Simko. A Thermocouple-Based System for Breakout Prevention and Practice Development. Ironmaking and Steelmaking, 1988, 15(9): 47-51.
    [11] G. Xia, H. P. Narzt, Ch. Furst et al. Investigation of mould thermal behaviour by means of mould instrumentation. Ironmaking and Steelmaking, 2004, 31(5): 364-370.
    [12] F. Haers, S. G. Thomton. Application of mould thermal monitoring on the two strand slab caster at Sidmar. Ironmaking and Steelmaking, 1994, 21 (5): 390-398.
    [13] S. Kumar, J. A. Meeeh, I. V. Samamsekera et al. Development of Intelligent Mould for Online Detection of Defects in Steel Billets. Ironmaking and steelmaking, 1999, 26(4): 269-284.
    [14] J. K. Brimacombe. The challenge of quality in continuous casting processes. Metall. Maters. Trans. B, 1999, 30B: 553-566.
    [15] G. Alvarez de Toledo, J. Cifiza, J. J. Laraudogoitia et al. Abnormal transient phenomena in the continuous casting process. Ironmaking and Steelmaking, 2003, 30 (5): 360-368.
    [16] A. Byme, J. Powell, A. Perkins et al. Commissioning and work up of the three strand round bloom caster at British Steel, Clydesdale Works. Ironmaking and Steelmaking, 1990, 17(4): 288-291.
    [17] M. Suzuki, H. Mizukami, T. Kitagawa et al. Development of a New Mold Oscillation Mode for High-speed Continuous Casting of Steel Slabs. ISIJ Int., 1991,31 (3): 254-61.
    [18] M.D. Lanyi, C.J. Rosa. Casting fluxes: physical properties affecting strand lubrication. Ironmaking and Steelmaking, 1982,9 (1): 25-31.
    [19] B.Mairy, D.Ramelot, M.Dutrieux et al. Mold lubrication and oscillation monitoring for optimizing continuous casting. Fifth PTD Proceedings, AIME, 1985.
    [20] B.Mairy, N.Melardy, D.Ramelot et al. Recent developments in Mold monitoring. ISS PTD conference Proceedings, AIME, 1990.
    [21] B.Mairy, D.Ramelot, P.H.Dauby. Lubrication control in caster molds with the ML TEKTOR. ISS-AIME 62nd Steelmaking Conference Proceedings, Chicago, USA, 1979.
    [22] H.L.Gills, M.Byrne, T.J.Russo et al. The Use of an Instrumented mold in the development of high speed slab casting. 9~(th) PTD Conf. Proc., 1990.
    [23] K.E.Blazek, I.G.Saucedo. Characterization of the formation, propagation, and recovery of sticker/hanger type breakout. ISIJ Int., 1990,30 (6): 435-443.
    [24] H.Nakato, S.Omiya, Y.Habu et al. Optimizing mold lubrication for high speed continuous casting of slabs. Journal of Metals, 1984, (3): 44-49.
    [25] A.Tsuneoka, W.Ohashi, S.Ishitobi et al. Measurement and Control system of solidification in continuous casting mold. ISS-AIME 68th Steelmaking Conference Proceedings, Detroit, MI, 1985.
    [26] A.Delhalle, J.Mariotton, J.Tirat et al. New Development in quality and process monitoring on Solmer's slab caster. ISS Steelmaking Proceedings, Chicago, 1984.
    [27] M. Yao, D.CFang: On line measuring method for mould friction in continuous casting. Ironmaking and Steelmaking, 1996,23 (6): 522-527.
    [28] G.Alvarez de Toledo, J.Ciriza and J.Laraudogoitia. Abnormal transient phenomena in the continuous casting process: Partl. Ironmaking and Steelmaking, 2003,30 (5): 353-359.
    [29] J.E.Lait, J.K.Brimacombe, F.Weinberg. Mathematical modeling of heat flow in the continuous casting of steel. Ironmaking and Steelmaking, 1974,1 (2): 90-97.
    [30] K.Okuno, H.Naruwa, T. Kuribayashi et al. Slab casting at Rouge Steel. Iron Steel Eng., 1987,64(1): 34-41.
    [31] E.A. Mizikar. Mathematical Heat Transfer Model for Solidification of Continuously Cast Steel Slabs. Trans. TMS-AME, 1967,239:1747-1753.
    [32] S.Spencer, P.Carless, E.Magee. Mathematical model for simulation of solidification and cooling of cast rolls. Ironmaking and Steelmaking, 1981, 8 (3): 129-35.
    [33] Ya MENG, B. G.Thomas. Heat transfer and solidification model of continuous slab casting: CON1D. Metall. Mater. Trans. B, 2003,34B: 685-704.
    [34] K. H. Spitzer, K. Harste, B.Weber et al. Mathematical Model for Thermal Tracking and On-line Control in Continuous Casting. ISIJ Int., 1992, 32(7): 848-856.
    [35] Seppo Louhenkilpi, Erkki Laitinen, Risto Nieminen. Real-time simulation of heat transfer in continuous casting, Metall. Trans. B, 1993, 24B: 685-693.
    [36] Seppo Louhenkilpi. Study of heat transfer in a continuous billet casting machine. Seand. J. Metall., 1994, 23 (1): 9-17.
    [37] 蔡开科,刘凤荣.连铸坯凝固冷却过程的控制.金属学报,1984,20(3):S146-154.
    [38] 蔡开科,吴元增.连续铸锭板坯凝固传热数学模型.北京钢铁学院学报,1982,(3):1-11.
    [39] 金俊泽,郑贤淑,郭可切等.连铸钢坯凝固进程的数值模拟.钢铁,1985,20(5):19-27.
    [40] 陈登福,颜广庭,刘人达.方坯连铸凝固传热数学模型.重庆大学学报,1994,17(1):112-116.
    [41] 张炯明,张立,王新华等.板坯连铸结晶器热流分布的研究.金属学报,2003,38(12):1285-1290.
    [42] 刘旭东,朱苗勇,邹俊苏等.连铸板坯凝固传热过程的计算机模拟.材料与冶金学报,2002,1(3):195-199.
    [43] 李东辉,白金兰,邱以清等.方坯连铸机结晶器凝固传热的模型研究.特种铸造及有色合金,2004,(6):37-41.
    [44] 汪建农,马金昌,陈刚.连铸初始凝固行为的热模拟研究.钢铁,1998,33(9):18-20.
    [45] 任鸣忠,董华锋,邓康等.软接触结晶器电磁连铸中初始凝固的基础研究.金属学报,1999,35(8):851-855.
    [46] 王晓东,李廷举,金俊泽等.电磁驱动对金属连铸凝固的影响.材料工程,2001,(6):13-16.
    [47] 黄军涛,赫冀成.方坯结晶器内钢液凝固及电磁制动的数值模拟.金属学报,2001,37(3):281-286.
    [48] 兰惠清,盛义平.圆坯结晶器铜管温度场模拟.钢铁研究学报,2000,12,增刊:33-35.
    [49] 王宝峰,丁国,麻永林等.大方坯在连铸过程中传热及凝固规律的数学模拟.炼钢,2002.18(5):15-18.
    [50] 杨秉俭,苏俊义.板坯连铸结晶器中三维凝固壳厚度分布的数值模拟及实验验证.钢铁,1996,31(9):24-28.
    [51] 伍成波,王谦,刘仁龙等.板坯连铸结晶器温度场的计算机仿真.重庆大学学报,2002,25(12):31-34.
    [52] 冯科,徐楚韶,陈登福.方坯连铸流动传热的三维耦合数值仿真.系统仿真学报,2004,16(8):1665-1669.
    [53] 文光华,李刚,张建春.高速板坯连铸结晶器内流场、温度场的数值模.重庆大学学报(自然科学版),1997,20(6):23-29.
    [54] 仇圣桃,刘和平,干勇.基于连续模型的板坯连铸凝固过程的数值模拟.钢铁研究学报,2003,15(6):16-20.
    [55] 俞钢强,潘毓淳.板坯连铸机拉坯阻力的计算方法.北京科技大学学报,1994,16,增刊:61-66.
    [56] 姜时荣.方坯连铸机拉坯阻力的计算.重型机械,1995,(5):43-51.[57] Akira Yamauchi, Toshihiko Emi, Seshadri Seetharaman. A mathematical model for prediction of thickness of mould flux film in continuous casting mould. ISIJ Int., 2002, 42 (10):1084-1093.
    [58] E. Takeuchi, J. K. Brimacombe. The formation of oscillation marks in the continuous casting of steel slabs. Metall. Trans. B, 1984, 15B: 493-509.
    [59] S. E. Royzrnan. Coefficient of friction between strand and mould during continuouscasting: mathematical model. Ironmaking and Steelmaking, 1997, 24 (6): 484-488.
    [60] 张玉文,朱立光,丁伟中.连铸保护渣润滑行为的数学模拟,钢铁研究学报,2002,14(4):21-25.
    [61] 吴夜明,杜挺.连铸结晶器保护渣稳态润滑作用的简化数学分析.化工冶金,1997,18(2):187-191.
    [62] 许光明,崔建忠,常守威.铸拉工艺中摩擦力的计算.铸造技术,1997,(5):3-5.
    [63] 姚曼,王文华,方大成.连铸结晶器与铸坯间保护渣润滑行为的研究.钢铁,2001,36(3):26-29.
    [64] A. Grill, J.K.Brimacombe, F. Weiberg. Mathematical analysis of stresses in continuous casting of steel, Ironmaking and Steelmaking, 1976, 3(1): 38-47.
    [65] K. Sorimachi, J.K.Brimacombe. Improvements in mathematical modeling of stresses in continuous casting of steel. Ironmaking and Steelmaking, 1977, 4 (4): 240-245.
    [66] B. G. Thomas, I. V. Samarasekera, J. K. Brimacombe. Mathematical Model of the Thermal Processing of Steel Ingot. Metall. Trans. B, 1987, 18B: 119-47.
    [67] H. N. Han, J. E. Lee, T. J. Yeo et al. A finite element model for 2-dimensional slice of cast strand. ISIJ Int., 1999, 39(5): 445-454.
    [68] A. Marcandalli, C. Mapelli, W. Nicodemi. A thermomechanical model for simulation of carbon steel solidification in mould in continuous casting. Ironmaking and Steelmaking, 2003, 30(4): 265-272.
    [69] I. V. Samamsekera, J. K. Brimacombe. Thermal and mechanical behaviour of continuous casting billet moulds. Ironmaking and Steelmaking, 1982, 9 (1): 1-15.
    [70] A. Grill, K.Sormachi, J. K. Brimacombe. Heat flow, gap formation and break-outs in the continuous casting of steel slabs. Metall. Trans. B, 1976, 7B: 177-189.
    [71] Thomas G, O'Connor, J. A. Dantzig. Modeling the thin-slab continuous casting mold. Metall. Mater. Trans. B, 1994, 25B: 443-457.
    [72] B. G.Thomas. Application of mathematical models to the continuous slab casting mold. ISS Trans., 1989, 16(12): 53-66.
    [73] 蔡开科,邵璐,刘新华.水平连铸凝固壳热应力模型研究.钢铁研究学报,1993,5(2):1-8.
    [74] 傅广瑞,郑贤淑,金俊泽.连铸热工过程的数值模拟与热/力模拟研究.大连理工大学学报,1992,32(2):176-180.
    [75] 张家泉,陈素琼,干勇等.连铸板坯在结晶器内凝固行为的研究.炼钢,2003,19(3):22-26.
    [76] 张炯明,张立,杨会涛等.板坯结晶器钢水凝固的数值模拟.北京科技大学学报,2004,26(2):130-134.
    [77] 张家泉,崔立新,陈志平等.板坯连铸结晶器内温度/应力场耦合模型.北京科技大学学报,2004,26(4):373-376.
    [78] 刘新,赵连刚,张富强。高拉速条件下板坯连铸结晶器铜板温度场研究.重型机械,2000,(6):13-15.
    [79] 程常桂,邓康,茅洪祥.连铸小方坯热应力模型的研究.炼钢,1999,15(5):28-32.
    [80] 王恩刚,赫冀成,杨泽宽等.结晶器内连铸小方坯凝固过程及应力分布的有限元数值模拟.金属学报,1999,35(4):433—438.
    [81] 杨秉俭,刘伟涛,苏俊义.薄板坯连铸结晶器中铸坯凝固壳应力发展的有限元分析.应用力学学报,1994,11(2):55—62.
    [82] 陈登福,刘人达,颜广庭.连铸薄板坯的二维热弹塑性蠕变应力模型.重庆大学学报(自然科学版),2001,24(2):81-84.
    [83] K. Okamura, H. Kawashima. Three-dimensional Elasto-Plastic and Creep Analysis of Bulging in Continuously Cast Slabs. ISIJ Int., 1989, 29 (8): 666-672.
    [84] 王宝峰,谢延敏,麻永林.小方坯高速连铸时结晶器应力场有限元模拟.包头钢铁学院学报,2003,22(3):201-207.
    [85] 严波,文光华,张培源等.薄板坯连铸结晶器内凝固坯壳三维有限元分析.重庆大学学报(自然科学版),1996,19(3):28-34.
    [86] J. E. Kelly, K. P. Michalek, T. G. O'Connor et al. Initial Development of Thermal and Stress Fields in Continuously Cast Steel Billet. Metall. Trans. A, 1988, 19A: 2589-2602.
    [87] J. E. Lee, H. N. Hart, K.H. Oh et al. A Fully Coupled Analysis of Fluid Flow, Heat Transfer and Stress in Continuous Round Billet Casting. ISIJ Int., 1999, 39 (5): 435-444.
    [88] J. E. Lee, T. J. Yeo, K. H. Oh et al. Prediction of crocks in continuously cast steel beam blank through fully coupled analysis of fluid flow, heat transfer, and deformation behavior of a solidifying shell. Metall. Mater. Trans.A, 2000, 31A: 225-237.
    [89] Thomas B. G., A. Moitra, R. McDavid. Simulation of Longitudinal Off-Comer. Depressions in Continuously Cast Steel Slabs. Iron and Steelmaker, 1996, 23 (4): 57-70.
    [90] 荆德君,蔡开科.连铸结晶器内热—力耦合状态有限元模拟.金属学报,2000,36(4):403-406.
    [91] 严波,文光华,刘馨燕.小方坯连铸结晶器内凝固坯壳形成及变形热力耦和有限元分析.应用力学学报,2001,18(4):71-77.
    [92] C. A. M. Pinheiro, I. V. Samarasekera, J. K. Brimacombe et al. Mould heat transfer and continuously cast billet quality with mould flux lubrication Partl: mould heat transfer. lronmaking and Steelmaking, 2000, 27 (1): 37-54.
    [93] C. Chow, I. V. Samarasekera, B.N.Walker et al. High speed continuous casting of steel billets. Part2: Mould heat transfer and mould design. Ironmaking and Steelmaking, 2002, 29 (1): 61-69.
    [94] R. B. Mahapatra, J. K. Brimacombe, I. V. Samatmsekera et al. Mold behavior and its influence on quality in the continuous casting of steel slabs: Partl. Industrial trials, mold temprature measurements, and mathematical modeling, Metall. Trans. B, 1991, 22B: 861-874.
    [95] 孙冀,潘德惠.基于实测温度推算铸坯表面热流量分布.东北大学学报(自然科学版),1998,19(1):66-68.
    [96] K. Tsutsumi, T. Nagasaka, M. Hino. Surface Roughness of Solidified Mold Flux in Continuous Casting Process. ISIJ Int., 1999, 39(11): 1150-1159.
    [97] A. Yamauchi, K.Sorimachi, T. Sakuraya et al. Heat Transfer between Mold and Strand through Mold Flux Film in Continuous Casting of Steel. ISIJ Int., 1993, 33 (1): 140-47.
    [98] 刘晓,刘俊江,陈超等.宝钢圆坯连铸结晶器热流分布的试验研究,2004,3.
    [99] 尹合壁,姚曼,罗庆梅等.连铸钢坯表面裂纹预测研究现状.钢铁研究学报,2004,16(1):1-5.
    [100] Irving W. R. On Line Quality Control for Continuously Cast Semis. Ironmaking and Steelmaking, 1990, 17(3): 197-202.
    [101] 吴振刚,孟秀梅.薄板坯连铸纵裂纹的控制.冶金标准化与质量,2001,(3):15-17.
    [102] 山上谆.铸造监视开发.铁钢,1986,72(4):S144.
    [103] Kee Chye. Utilization of Plant Process Data for the Caster Quality Prediction Model. Conference Continuous Casting of Steel in Developing Countries, Beijing, 1993.
    [104] Klaus Wunnenberg. 10th Mannesmann Continuous Casting Conference. Ironmaking and Steelmaking, 1995, 22(5): 346-348.
    [105] Stewart D.板坯连铸中纵向裂纹的预测.国外钢铁,1997,(11):34-37.
    [106] Mairy B,WolfM.在连续铸钢中控制结晶器摩擦力的重要性.现代连铸理论与实践.北京:中国金属学会,1986.207-217.
    [107] Sridhar S. Break Temperatures of Mould Fluxes and Their Relevance to Continuous Casting. Ironmaking and Steelmaking, 2000, 27 (3): 238-242.
    [108] 陈亚贤.结晶器振动阻力在线监测应用研究.中国钢铁年会论文集,北京,2001.
    [109] 姚曼.连铸结晶器摩擦力预报漏钢可行性研究.第十二届全国炼钢学术会议论文集,上海,2002.
    [110] B.Mali RY.结晶器检测的长期发展.第一届欧洲连铸会议译文集,佛罗伦萨,1991.
    [111] Anton Wagner,Josef Watzinger,Andreas Flick.美国阿拉巴莫比尔依普斯科公司采用热装方式的超宽板坯连铸机.薄板坯连铸连轧国际研讨会,广州,2002.
    [112] Huespe A E. Thermomechanical model of a continuous casting process. Comput. Methods Appl.Mech.Engrg., 2000, 182(3/4): 439-455.
    [113] Huespe A E. Visco-plastic Constitutive Models of Steel at High Temperature. Journal of Materials Processing Technology, 2000,102: 143-152.
    [114] Boehmer J R. Strategies for coupled analysis of thermal strain history during continuous solidification processes. Advances in Engineering Software, 1998, 29(7-9): 679-697.
    [115] 荆德君,蔡开科.连铸结晶器内连铸坯温度场和应力场耦合过程数值模拟.北京科技大学学报,2000,22(5):417-421.
    [116] Y. M. Won, H. N. Han, T. J Yeo et al. Analysis of Solidification Cracking Using the Specific Crock Susceptibility. ISIJ Int., 2000, 40 (2): 129-36.
    [117] K. Kim, H. N. Han, T.Yeo et al. Analysis of surface and internal cracks in continuously cast beam blank. Ironmaing and Steelmaking, 1997, 24 (3): 249-256.
    [118] B. G. Thomas. Issues in thermal-mechanical modeling of casting processes. ISIJ Int., 1995, 35(6): 737-743.
    [119] A. S. Normanton, B.Barber, A.Bell et al. Developments in online surface and internalquality forecasting of continuously cast semis. Ironmaking Steelmaking, 2004, 31(5): 376-382.
    [120] Z. Q Han, K. K Cai, B. C Liu. Prediction and analysis on formation of intemal crocks incontinuously cast slabs by mathematical models. ISIJ Int., 2001, 41 (12): 1473-1480.
    [121] Y.M. Won. A New Criterion for Internal Crack Formation in Continuously Cast Steels. Metallurgical and Materials Transactions, 2000, 31B(4): 779-794.
    [122] T. J. H. Billany, A. S. Normanton, K. C. Mills et al. Surface crocking in continuously cast products. Ironmaking and Steelmaking, 1991, 18 (6): 403-410.
    [123] Y. Sugitani, M. Nakamura, M.Okuda et al. Effects of the mould surface conditions on uneven solidification and heat removal rate through the mould, Trans. Iron Steel Inst. Jpn., 1985, 25: B91.
    [124] B. Lally, L.Biegler, H. Henein. Finite difference heat transfer modeling for continuous casting. Metall. Trans. B. 1990. 21B: 761-770.
    [125] 尹合壁,姚曼.圆坯连铸结晶器传热的反算法.金属学报,2005,41(6):638-644.
    [126] Y. M. Won, T. J. Yeo, K.H. Oh et al. Analysis of mold wear during continuous casting of slab. ISIJ Int., 1998, 38 (1): 53-62.
    [127] C. H. Moon, S. M. Hwang. Analysis of flow, heat transfer, solidification, and inclusion removal in continuous slab caster by finite element method, lronmaking and Steelmaking, 2003, 30(1): 48-56.
    [128] S. K. Choudhary, D. Mazumdar, A. Ghosh. Mathematical Modelling of Heat Transfer Phenomena in Continuous Casting of Steel. ISIJ Int., 1993, 33 (7): 764-774.
    [129] B. G. Thomas, I. V. Samamsekera, J. K. Brimacombe. Comparison of numerical modeling techniques for complex, two-dimensional, transient heat conduction problems. Metall. Tram B,1984, 15B: 307-318.
    [130] J. M. Cabrera-Marrero, V. Carreno-Galindo, R. D. Morales et al. Macro-micromodeling of the dendritic microstructure of steel billets processed by continuous casting. ISIJInt., 1998, 38 (8): 812-821.
    [131] S.E.Royzman. Stress in continuous solidifying slab: mathematical model. Ironmakingand Steelmaking, 1996, 23 (1): 46-49.
    [132] Suzuki M, Miyaham S, Kitagawa T et al. Effect of mold oscillation curves on heattransfer and lubrication behavior in mold at high speed continuous casting of steel slabs, Tetsu-to-Hagane, 1992, Vol.78 (1): 113-120.
    [133] I.V.Samarasekera, J.K.Bfimacombe. The Thermal Field in Continuous-Casting Moulds.Can. Metall. Q., 1979, 18 (3): 251-266.
    [134] K.C.Mills, A. B.Fox. The role of mould fluxes in continuous casting-so simple yet so complex. ISIJ Int., 2003, 43 (10): 1479-1486.
    [135] H.Shibata, K.Kondo, M.Suzuld, T.Emi. Thermal Resistance between Solidifying Steel Shell and. Continuous Casting Mold with Intervening Flux Film. ISIJ Int., 1996, 36, Suppl.,S179.
    [136] A. Yamauchi, S. Itoyama, Y. Kishimoto et al. Cooling Behavior and Slab Surface Quality in Continuous Casting with Alloy 718 Mold. ISIJ Int., 2002, 42 (10): 1094-1102.
    [137] K.C. Mills, A. Olusanya, R. Brooks et al. Physical properties of casting powders: Part4 Physical properties relevant to fluid and thermal flow. Ironmakingand Steelmaking, 1988, 15(5): 257-264.
    [138] Yin Hebi, Yao Man. Inverse problem-based analysis on non-uniform profiles of thermal resistance between strand and mould for continuous round billets casting. Journal of Materials Processing Technology, 2005, In press.
    [139] K. Schwerdtfeger, M. Sato, K-H Tacke. Stress formation in solidifying bodies, solidification in a round continuous casting mold. Metall. Mater. Trans. B, 1998, 29B: 1057-1068.
    [140] I.V.Samarasekera, D.L.Anderson, J.K.Brimacombe. The thermal distortion of continuous casting billet molds. Metall.Trans.B, 1982, 13B: 91-104.
    [141] B.G.Thomas, A.Moitra, D.Habing et al. A Finite-Element Model for Thermal Distortion of Continuous Slab Casting Molds. Proc. 1st European Conf. On Continuous Casting, Florence, Italy, 1991.
    [142] Thomas B. G. Application of Mathematical Models to the Continuous Slab Casting Mold. Iron and Steelmaker, 1989, 16(12): 53-66.
    [143] I.V.Samarasekera, J.K.Brimacombe. Evolution or revolution? -a new era in billet casting. Canadian Metallurgical Quarterly, 1999, 38: 347-362.
    [144] Moitra, A., B.G. Thomas, W. Storkman. Thermo-mechanical model of Steel Shell Behavior in the Continuous Casting Mold. TMS Annual Meeting, San Diego, 1992.
    [145] J.W Cho, H Shibata, T Emi et al. Thermal Resistance at the Interface between Mold Flux Film and Mold for Continuous Casting of Steels. ISIJ Int., 1998, 38(5): 440-446.
    [146] YIN He-bi, YAO Man. Analysis of the nonuniform slag film, mold friction, and the new cracking criterion for round billet continuous casting. Metall. Mater. Trans.B, 2005, in press.
    [147] 方大成,姚曼,王金城等.一种多点热电偶传感器及其安装方法.中国,ZL03143933.0,2005.1.26.
    [148] 刘晓,于艳,尹合壁等.连铸圆坯结晶器弯月面区域热流分析.2003中国钢铁年会,北京,2003.
    [149] R. B. Mahapatra, J. K. Brimacombe, I. V. Samarasekera. Mold behavior and its influence on quality in the continuous casting of steel slabs: Part2. Mold heat transfer, mold flux behavior, formation of oscillation marks, longitudinal off-corner depressions, and subsurface cracks. Metall. Trans. B, 1991, 22B: 875-888.
    [150] J. K. Brimacombe, F. Weinberg, E. B. Hawbolt. Formation of longitudinal, midface cracks in continuously cast slabs. Metall. Trans. B, 1979, 10B: 279-292.
    [151] D. T. Stone, B. G. Thomas. Measurement and modeling of heat transfer across interfacial mold flux layers. Can. Metall. Q., 1999, 38(5): 363-375.
    [152] S. Sridhar, K. C. Mills, D. T. Mallaband. Powder consumption and melting rates of continuous casting fluxes. Ironmaking Steelmaking, 2002, 29(3): 194-198.
    [153] W. R. Irving, A. Perkins, R. Gray. Effect of steel chemistry and operating parameters on surface defects in continuously east slabs. Ironmaking Steelmaking, 1984, 11(3): 146-151.
    [154] I.V. Samarasekera, J.K. Brimacombe, R. Bommaraju. Mold Behavior and Solidification in the Continuous Casting of Steel Billets. Iron Steelmaker, 1984, 5: 79-93.
    [155] K.E.Blazek. Mould heat transfer during continuous casting. Iron Steelmaker, Sept. 1987-June 1988.
    [156] C.Chow, I.V.Samamsekera. High speed continuous casting of steel billets. Part2: General overview. Ironmaking and Steelmaking, 2002, 29(1): 53-60.
    [157] L. Limoges, L. Beitelman. Continuous casting of high carbon and alloy steel billets with in-mould dual-coil electromagnetic stirring system. Iron Steelmaker, 1997, 24(9): 49-57.
    [158] L. Beitelman. Effect of mold EMS design on billet casting productivity and product quality. Can. Metall. Q., 1999, 38(5): 301-309.
    [159] K. Takatani, K. Nakai, N. Kasai et al. Analysis of Heat Transfer and Fluid Flow in the Continuous Casting Mold with Electromagnetic Brake. ISU Int., 1989, 29(12): 1063-1068.
    [160] MAN YAO, HE-BI YIN, JIN-CHENG WANG et al. Development of an experimental system for the study of the effects of electromagnetic stirring on mold heat transfer. Metall. Mater. Trans.B, 2005, 36B: 475-478.
    [161] N. Fukda, Y. Marukawa, K. Abe et al. Development of mold (HS-Mold) for high speed casting. Can. Metall. Q., 1999, 38(5): 337-346.
    [162] J.A. Kromhout, V. Ludlow, S. McKay et al. Physical properties of mould powders for slab casting. Ironmaking Steelmaking, 2002, 29(3): 191-193.
    [163] A. Grill, J. K. Brimacombe. Influence of carbon content on rate of heat extraction in the mould of a continuous casting machine. Ironmaking Steelmaking, 1976, 3(2): 76-79.
    [164] J. Cho, T. Emi, H. Shibata. Heat transfer across mold flux film in mold suring initial solidification in continuous casting of steel. ISU Int. 1998, 38(8): 834-842.
    [165] Kang Sung Lin, Lee In Jae, Shin Seung Dae et al. ISS-AIME 77th Steelmaking Conf. Proc., Chicago, USA, 1994, 347-356.
    [166] Yin He-bi, Yao Man, Fang Dacheng. Analysis of the variability and non-uniformity of mold heat extraction for round billet continuous casting in plant trial. Ironmaking and Steelmaking, 2005, In press.
    [167] S.N.Singh, K.E.Blazek. Heat transfer and skin formation in a continuous casting mold as a function of steel carbon content. J. of Metals, 1974, 26 (10): 17-27.
    [168] M. Yao, H. Yin, J. C. Wang et al. Monitoring and analysis of local mould thermal behavior in continuous casting of round billets. Ironmaking Steelmaking, 2005, 32(4): 359-368.
    [169] V. N. Neelakantan, S. Sridhar, K.C.Mills et al. Mathematical model to simulate the temperature and composition distribution inside the flux layer of a continuous casting mould. Seand. J of Metall., 2002, 31(3): 191-200.
    [170] A.Yamauchi, K.Sorimachi, T.Yamauchi. Effect of solidus temperature and crystalline phase of mould flux on heat transfer in continuous casting mould. Ironmaking Steelmaking, 2002, 29(3): 203-207.
    [171] 陈超.对圆坯连铸主要技术质量问题的几点认识,2003,5.
    [172] Thomas, B.G., J.T. Parkman. Simulation of Thermal Mechanical Behavior during Initial Solidification. Thermec 97 Internat. Conf. on Thermomechanical Processing of Steel and Other Materials, Wollongong, Australia, 1997.
    [173] Yin Hebi, Yao Man, Fang Dacheng. 3-D inverse problem continuous model for thermal behavior of mould process based on the temperature measurements in plant trial. ISIJ Int., 2005, Accepted.
    [174] Irving W R, Perkins A. Basic parameters affecting the quality of continuously cast slabs. Ironmaking Steelmaking, 1977, 4(5): 292-299.
    [175] Ikeda M, Asabim K, Nakano T et al. Analyzing the behavior of continuous casting mould powder by a simulator. Trans Iron Steel Inst Jpn, 1981, 21: B511.
    [176] Mills K C, Billany T J H, Normanton A S et al. Causes of sticker breakot during continuous casting. Ironmaking Steelmaking, 1991, 18(4): 253-265.
    [177] W.T. Lankford. Some considerations of strength and ductility in the continuous-casting process. Metall. Trans. A, 1972, 3A(6): 1331-1357.
    [178] B.G.Thomas, I.V.Samarasekera, J.K.Brimacombe. Investigation of panel crack formation in steel ingots: Part1. Mathematical analysis and mid-face panel cracks. Metall. Trans. B, 1988, 19B: 277-287.
    [179] Y. Man, Y. Hebi, F. Dacheng. Real-time analysis on non-uniform heat transfer and solidification in mould of continuous casting round billets. ISIJ Int., 2004, 44(10): 1696-1704.
    [180] 袁伟霞.连铸板坯纵裂纹综述.炼钢,1997,(10):47-50.
    [181] M.Yaji, M.Shimizu, H.Yamanaka et al. Method of controlling continuous casting equipment. United States Patent, B22D 011/16, Patent Number 4,553,604, Date of Patent: November 19, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700