用户名: 密码: 验证码:
变形镁合金强韧化与电磁—悬浮连铸技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及常用镁合金是密排六方结构,塑性成形能力差,所以铸造镁合金得到了大量应用,变形镁合金的发展严重滞后,很大程度上制约着镁合金的发展和应用。变形镁合金比铸造镁合金具有更优越的性能,具有更高的强度和更好的塑性,可以制备更多样性的产品和满足更多工况条件下应用的结构件。因此,开发和制备具有高强韧的变形镁合金显得尤为必要。本文工作重点是依据金属强韧化原理,开展变形镁合金的强韧化研究,探索变形镁合金强韧化的新思路,为制备高强韧的变形镁合金提供良好的基础研究。
     本文选用AZ31、AZ61和ZK60三种典型的变形镁合金为基础,依据金属强韧化原理,展开了变形镁合金微合金化、电磁连铸、电磁-悬浮成型、热挤压变形以及等温时效处理的实验研究。利用金相显微镜(MEF-4A)、X射线衍射仪(XRD-6000)、扫描电镜(JSM-5600LV)、电子探针(EPMA-1600)、透射电镜(TG220S-Twin JEM-100CXⅡ)、布氏硬度仪(HB-3000-1)和MTS实验机(MTS NEW-810)对变形镁合金进行了组织和性能分析,探讨了变形镁合金的强韧化机理。运用有限差分法(FDM)建立了变形镁合金AZ31圆柱锭电磁-悬浮连铸过程三维数学模型。
     论文研究得出如下主要结论:
     通过大量的实验研究,确定出镁合金电磁连铸的最佳工艺参数。利用微合金化和电磁场复合作用制备出表面光滑、无氧化夹杂和偏析瘤的高质量变形镁合金铸锭,并得到晶粒细小,析出相弥散的均匀组织。研究结果表明,微合金化和电磁场复合作用制备的电磁连铸锭力学性能较普通连铸锭均有较大提高。通过利用不同功率电磁场对变形镁合金ZK60进行电磁连铸的研究结果表明,当电磁场功率为10kW时,合金的微观组织和力学性能均达到最佳。
     自行设计了电磁-悬浮成型设备,实现了变形镁合金的电磁-悬浮铸造和电磁-悬浮连铸。制备了适合于加入非金属颗粒的复合悬浮剂线材,提高了非金属颗粒与金属熔体的润湿性。利用镁粉颗粒作为单一悬浮剂和ZrB_2/AZ31复合悬浮剂研究了变形镁合金电磁-悬浮铸造。研究结果表明,单一悬浮剂和复合悬浮剂均能改善合金的微观组织,单一悬浮剂能有效提高合金的力学性能,复合悬浮剂的加入提高了合金的抗拉强度,但合金的伸长率有所降低。利用ZrB_2/AZ31复合悬浮剂对变形镁合金AZ31电磁-悬浮连铸的实验研究表明,复合悬浮剂线材能实现变形镁合金的电磁-悬浮连铸,而且能改善合金的微观组织,得到铸锭内外均匀的细晶组织。
     利用电磁连铸温度场数值模拟的计算模型,对加入复合悬浮剂后合金的热物性参数进行了处理,同时对AZ31镁合金电磁-悬浮连铸过程的温度场进行了模拟计算,并验证了模拟程序的准确性。在此基础上进行了不同悬浮剂含量对温度场影响的分析,结果表明,随着悬浮剂含量的增加,合金初始温度降低,凝固时间缩短,导热能力下降,但冷却速度增加;随着悬浮剂含量的增加,稳态的液穴深度减小,凝固壳的起始位置升高,凝固壳的厚度增加,液穴坡度变小。
     通过对变形镁合金AZ31X、AZ61X和AZ61XE电磁连铸锭的热挤压研究结果表明,变形镁合金电磁连铸锭热挤压后均能得到由3-15μm的动态再结晶晶粒组成的均匀组织,同时合金的强度、硬度和伸长率均有很大提高。对变形镁合金AZ31X、AZ61X和AZ61XE挤压棒料进行时效处理的研究,结果表明,变形镁合金AZ31X时效处理后主要由弥散分布的不连续析出相组成,而变形镁合金AZ61X和AZ61XE主要由分布于晶界的不连续析出相和晶内的连续析出相混合组织组成。变形镁合金AZ31X力学性能表现出时效不敏感性,而变形镁合金AZ61X和AZ61XE表现出较好的时效热处理性。
Due to hexagonal close-packed structure of magnesium alloys and their relatively poor workability, the main fabrication route of magnesium alloy parts remains die-casting, and the development of wrought magnesium alloys are relatively slow. Wrought magnesium alloys have higher strength and toughness, and can be made more diverse products to meet different conditions. So it is necessary to investigate wrought magnesium alloys with high strength and tougness. In this paper the focus of investigation is strengthening and toughening of wrought magnesium alloys, and finding a new method to produce high performance wrought magnesium alloys.
     In this paper, three typical wrought magnesium alloys, AZ31, AZ61 and ZK60 are choosed as the base alloys, the technology of microalloying, electromagnetic continuous casting (EMC), hot extrusion, aging treatment and electromagnetic-suspension forming is employed. The microstructure and mechanical properties are investigated by MEF-4A Metallographic Microscope, XRD-6000 diffractometer, JSM-5600LV Scanning Electron Microscope, EPMA-1600 Electron Probe microanalyser, TG220S-Twin JEM-100CXII Transmission Electron Microscope, HB-3000-1 Brinell Hardness Tester and MTS NEW-810 Materias Test System, and the mechanism of strengthening and toughening is explored. calculated. A 3-D mathematical model of the electromagnetic suspension continuous casting casting process for AZ31 round billet has been developed using the finite differential method (FDM).
     The results of the study are showed bellow:
     An optimized EMC technical parameters has been obtained after many experiment. The billets with EMC and microalloying have smooth surface, and the defects, such as segregation, trapped oxide on the billet surface can be eliminated. The refined grains andβ-Mg_(17)Al_(12) phases with small size are observed. The electromagnetic field and microalloying can improve the mechanical properties of wrought magnesium alloys. The EMC of ZK60 magnesium alloy casting with different electromagnetic powers are investigated, the results show that the best refined grains and combination property are obtained when the electromagnetic power was 10 kW.
     The electromagnetic suspension casting and electromagnetic suspension continuous casting system are designed, and experiments for wrought magnesium alloys are carried out by the systems. The complex suspension particles easily adding non-metal particles are produced, the wettability between the non-metal particles and melting metal is improved. The electromagnetic suspension casting with magnesium powder and complex suspension particles can both impoved the microstructures of wrought magnesium alloys, properties are increased by simple suspension particles, UTS (Ultimate tensile strength) of magnesium alloy is improved by complex suspension particles, but the Elongation is decreased. The electromagnetic suspension continuous casting for AZ31 magnesium alloy is investigated by ZrB2/AZ31 complex suspension particles, the results show that the microstuctures are improved, and the refined grains from the boundary to the center of the billet.
     The mathematical model of the electromagnetic continuous casting process was utilized to predict the temperature in the billet of electromagnetic suspension continuous casting, after some thermophysical properties were processed. The model had been validated by comparing the calculated temperature profiles with the measured temperature profiles. The effect of amount of suspension particles on temperature field in the billet was studied. The conclusion was drawn that initial temperature of the alloy drops, solidification time of billet shortens, heat-transfer capability declines, comprehensive cooling ability enhances, solidification shell thickness increases, sump depth decreases, initial position of solidification shell enhances and slope gradient of sump profile decreases with increasing the amount of suspension particles.
     Hot extrusion of AZ31X, AZ61X and AZ61XE magnesium alloys are investigated, the results show that the microstructures of as-extruded magnesium alloys are made of 3-15μm fine homogeneous grains due to DRX (Dynamic recrystallization), and the UTS, Hardness and Elongation are improved greatly. Discontinuous precipitation occurs for AZ31X magnesium alloy after aging heat treatment, but the microstructures of AZ61X and AZ61XE are form of discontinuous precipitation phase on the grain boundary and continuous precipitation phase in the grains. The aging heat effect of AZ61X and AZ61XE magnesium alloys are better than that of AZ31X magnesium alloy.
引文
[1]K.U.Kainer.Magnesium alloys and technologies[M].New York:Jon Wiley & Sons Ltd,2003.
    [2]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004.
    [3]任政,张兴国,房灿峰,等.Mg-Al基镁合金晶粒细化的研究进展[J].材料导报,2008,22(1):98-101.
    [4]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社,2007.
    [5]Arne K.Dahle,Young C.Lee,Mark D.Nave,et al.Development of the as-cast microstructure in magnesium-aluminium alloys[J].Journal of Light Metal,2001,1:61-72.
    [6]A.K Dahle,D.H.StJohn.Developments and challenges in the utilization of magnesium alloys[J].Material Forum,2000,24:167-168.
    [7]陈振华.耐热镁合金[M].北京:化学工业出版社,2007.
    [8]徐河,刘静安,谢水生.镁合金制备与加工技术[M].北京:冶金工业出版社,2007.
    [9]Robert S,Busk.Magnesium products design[M].New York:M.Dekker,1987.
    [10]Ginsberg,Hans.Aluminium and magnesium[M].Stuttgart:Ferdinand Enke Verlag,1971.
    [11]丁文江,彭立明,付彭怀,等.高性能镁合金及其成形加工技术与应用研究进展[J].新材料产业.2008,2:58-63.
    [12]卢晨,卫中山.镁合金的研究与应用进展[J].汽车工艺与材料,2005,9:1-3.
    [13]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用前景[J].航空工程与维修,2002,4:41-42.
    [14]周进生,鲍荣华.全球原镁供需及趋势分析[J].中国矿业,2008,17(4):8-10.
    [15]张同俊,李星国.镁合金的应用和中国镁工业[J].材料导报,2002,16(7):11-13.
    [16]B.L.Mordike,T.Ebert.Magnesium properties-applications-potential[J].Materials Science and Engineering A,2001,302:37-45.
    [17]刘静安.镁合金加工技术发展趋势与开发应用前景[J].轻合金加工技术,2001,29(11):1-7.
    [18]曾荣昌,柯伟,徐永波,等.Mg合金的最新发展及应用前景[J].金属学报,2001,7:673-685.
    [19]姜峰,张喜燕,齐琳琳,等.镁基材料合金化研究最新进展[J].材料导报,2004,18(2):45-48.
    [20]Alan A.Luo.Magnesium:current and potential automotive applications[J].JOM,2002,54(2):1543-1851.
    [21]D.Eliezer,E.Aghion,F.H.Froes.Magnesium science,technology and applications [J].Advanced Performance Materials,1998,5:201 - 212.
    [22]F.H.Froes,D.Eliezer,E.Aghion.The science,technology and applications of magnesium[J].JOM,1998,50(9):30-34.
    [23]余琨,黎文献,李松瑞,等.变形镁合金材料的研究进展[J].轻合金加工技术,2001,29(7):6-9.
    [24]师昌绪,李恒德,王淀佐,等.加速我国金属镁工业发展的建议[J].材料导报,2001,15(4):6-11.
    [25]Luo A,Pekgliberyuz M.O.Review Cast Magnesium alloys for elevated temperature applications[J].Journal of Material Science,1994,29:52-59.
    [26]张高会,张平则,潘俊德.镁及镁合金的研究现状与进展[J].世界科技研究与发展,2003,25(1):72-78.
    [27]Albright D L,Ruden T,Davis J.High ductility magnesium alloys in automotive applications[J].Light Metal Age,1992,2:28-32.
    [28]I.J.Polmear.Magnesium alloys and applications[J].Material Science and Technology,1994,10(1):1-16.
    [29]余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.
    [30]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [31]赵云虎,王渠东,丁文江,等.Be对铸造Mg合金组织和力学性能的影响[J].特种铸造及有色合金,2000,(3):10-12.
    [32]P.Cao,Ma Qian,D.H.StJohn.Grain coarsening of magnesium alloys by beryllium[J].Scripta Materialia,2004,51:647-651.
    [33]Pekgularyuz M,Renand J.Creep Resistance in Mg-Al-Ca Casting Alloys[J].Miner Metal Material of Society,2000:279-284.
    [34]Shuang Shou Li,Bin Tang,Da Ben Zeng.Effects and mechanism of Ca on refinement of AZ91D alloy[J].Journal of Alloys and Compounds,2007,437(1-2):317-321.
    [35]Aliervci C A,Gruzleski J E.Effect of strontium on the shrinkage microporosity in magnesium sand castings[J].AFS Transaction,1992,115:353-358.
    [36]金鑫焱,李双寿,曾大本,等.Sr对AM60B铸造镁合金晶粒细化的影响[J].铸造,2005,54(6):566-569.
    [37]李金锋,耿浩然,滕新营.Ba对AZ91镁合金组织和性能的影响[J].热加工工艺,2005,7:5-7.
    [38]M.-X.Zhang,P.M.Kelly,Ma Qian,et al.Crystallography of grain refinement in Mg-Al based alloys[J].Acta Materialia,2005,53:3261-3270.
    [39]QingLin Jin,Jeong-Pil Eom,Su-Gun Lim,et al.Grain refining mechanism of a carbon addition method in a Mg-Al magnesium alloy[J].Scripta Materialia,2003,49:1129-1132.
    [40]Ma Qian,P.Cao.Discussions on grain refinement of magnesium alloys by carbon inoculation[J].Scripta Materialia,2005,52:415-419.
    [41]张春香,关绍康,陈海军,等.硅对Mg-8Mn-4Al-0.3Mn合金显微组织和性能的影响[J].机械工程材料,2004,28(9):19-22.
    [42]孙扬善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报,1999,9(1):55-60.
    [43]吴立鸿,刘俊,关绍康,等.Sn对A270镁合金显微组织及常温压缩性能的影响[J].材料热处理,2006,15(18):13-16.
    [44]周占霞.含氮细化剂对AZ31合金显微组织和性能的影响[D].郑州:郑州大学,2006.
    [45]G.Y.Yuan,Z.L.Liu,Q.D.Wang,et al.Microstructure refinement of Mg-Al-Zn-Si alloys [J].Material Letters,2000,56(1-2):53-58.
    [46]Yuan Guangyin,Sun Yangshan,Ding Wenjiang.Effects of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy[J].Scripta Materialia,2000,43(11):1009-1013.
    [47]Hongbin Liu,Ningning Gong,Lei Pang,et al.Microstructure and mechanical properties of as-cast AZ31 with the addition of Sb[J].Materials Science and Enginneering A,2008,497:254-259.
    [48]袁光银,张为民,孙杨善.Mg-Al基合金加铋合金化对其力学性能的改善作用[J].东南大学学报,1999,29(3):115-119.
    [49]张国英,张辉,方戈亮.Bi,Sb合金化对AZ91镁合金组织、性能影响机理研究.物理学报[J],2005,54(11):5288-5292.
    [50]徐光宪.稀土[M].北京:冶金工业出版社,1987.
    [51]余琨.稀土变形镁合金组织性能及加工工艺研究[D].长沙:中南工业大学,2002.
    [52]王明星,周宏,王林.钇和铈对AM50镁合金显微组织和力学性能的影响[J].中国稀土学报,2007,25(1):69-73.
    [53]郭强,严红革,陈振华,等.A280镁合金多向锻造变形过程中晶粒取向的演变[J].金属学报,2007,43(6):619-624.
    [54]郭强,严红革,陈振华,等.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J].金属学报,2006,42(7):739-744.
    [55]胡伟辉,AZ31镁合金锻造变形时组织与性能的研究[D].重庆:重庆大学,2007.
    [56]S.C.V.Lim,M.S.Yong.Plane-strain forging of wrought magnesium alloy AZ31[J].Journal of Materials Processing Technology,2006,171:393-398.
    [57]Inoue M,Iwai M,Matuzawa K,et al.Effect of impurities on corrosion behavior of pure magnesium in salt water environment[J].Light Metal,1998,48(6):257-262.
    [58]Xia K,Wang J T,Wu X,et al.Equal channel angular pressing of magnesium alloy AZ31[J].Materials Science and Enginneering A.2005,10(411):324-327.
    [59]Venkateswarlu K,Mainak Ghosh,Ray A K,et al.On the feasibility of using a continuous processing technique incorporating a limited strain imposed by ECAP[J].Materials Science and Enginneering A,2008,485(1-2):476-480.
    [60]Suwas S,Gottstein G,Kumar R.Evolution of crystallographic texture during equal channel angular extrusion(ECAE) and its effects on secondary processing of magnesium [J].Materials Science and Enginneering A,2007,471:1-14.
    [61]Q.D.Wang,Y.J.Chen,J.B.Lin.Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method[J].Material letters,2007,61:4599-4602.
    [62]Valle J A,Prado M T,Ruano O A.Texture evolution during large-strain hot rolling of the AZ61 Mg alloy[J].Materials Science and Enginneering A,2003,355:68-78.
    [63]Vespa G,Mackenzie L W F,Verma R,et al.The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium AZ31sheet[J].Materials Science and Enginneering A,2008,487:243-250.
    [64]汪凌云,黄光杰,陈林,等.镁合金板材轧制工艺及组织性能分析[J].稀有金属材料与工程,2007,36(5):910-914.
    [65]Duly D,Simon J P,Brechet Y.On the competition between continuous and distinuous precipitation in binary Mg-Al alloys[J].Acta Metallurgic Materialia,1995,43(1):101-106.
    [66]K.N.Braszczynska-Malik.Discontinuous and continuous precipitation in Magnesiumaluminium type alloys[J].Journal of Alloys and Compounds,2009,477:870 - 876.
    [67]S.Celotto.Tem study of continuous precipitation in Mg-9%Al-1%Zn alloy[J].Acta Materialia,2000,48:1775-1787.
    [68]严琦琦,张辉,陈振华.热处理对挤压镁合金AZ91和ZK60组织与性能的影响[J].金属热处理.2006,31(11):71-74.
    [69]Jayamathya M,Kailasa S V,Kumara K,et al.The compressive deformation and impact response of a magnesium alloy:influence of reinforcement[J].Materials Science and Enginneering A,2005,393:27-35.
    [70]Yong M S,Clegg A J.Process optimization for a squeeze cast magnesium alloy metal matrix composite[J].Journal of Material Processing Technology,2005,168(2):267-271.
    [71]Rohatgi P K.Advances in cast MMCs[J].Advanced Materials & Processes,1990,1:39-45,
    [72]Xie Xianqing,Fan Tongxiang,Zhang Dai,et al.Increasing the mechanical properties of high damping woodceramics by infiltration with a magnesium alloy[J].Coposites Science and technology,2002,62:1341-1346.
    [73]曹利强,柴东琅.低温反应自熔法制备镁基复合材料的新工艺[J].材料热处理学报,2004,25(1):20-22。
    [74]Li L,Lai M O,Gupta M,et al.Improvement of microstructure and mechanical properties of AZ91/SiC Composites by mechanical alloying[J].Journal of Materials Science,2000,35(22):5553-5556.
    [75]Ebert T,Moll F,Kainer K U.Spray forming of magnesium alloys and composites[J].Powder Metallurgy,1997,40(2),126-132.
    [76]Wang H Y,Jiang Q C,Zhao Y Q,et al.In situ synthesis of TiB_2/Mg composite by self-propagating high temperature synthesis reaction of the A-Ti-B system in molten magnesium[J].Journal of Alloys and Compounds,2004,379(1-2):14-17.
    [77]郗雨林,柴东朗,张文兴,等.粉末冶金制备非连续增强MB15镁基复合材料时效行为的研究[J].热加工工艺,2005,1:11-13.
    [78]郗雨林,柴东朗,张文兴,等.粉末冶金法制备SiC晶须增强MB15镁基复合材料[J].稀有金属材料与工程,2005,34(7):1131-1134.
    [79]L.Lu,K.K.Thong,M.Gupta.Mg-based composite reinforced by Mg_2Si[J].Composites of Science Technology,2003,63:627-632.
    [80]S.F.Hassan,M.Gupta.Effect of length scale of Al_2O_3 particulates on microstructural and tensile properties of elemental Mg[J].Materials Science and Engineering A,2006,425:22-27.
    [81]B.W.Chua,L.Lu,M.O.Lai.Influence of SiC particles on mechanical properties of Mg based composite[J].Composite Structures,1999,47:595-601.
    [82]H.Ferkel,B.L.Mordike.Magnesium strengthened by SiC nanoparticles[J].Materials Science and Engineering A,2001,298:193-199.
    [83]郝海.电磁铸造工艺及其温度场数值模拟[D].大连:大连理工大学.1999.
    [84]吉田政博.轻合金加工技术[J],1989,6:26-35,高革译自日本住友轻金属技报,1987,3:140-148.
    [85]S.K.Das.Thermal modelling of DC continuous casting including submould boiling heat transfer[J].Applied Thermal Engineering,1999,19:897-916.
    [86]Pravdic F,Leitlmeier D,Wogerer C,et al.Vertical direct chill(VDC) casting of magnesium-ptimized casting parameters and safety issues[C].Proceedings of the 6th international conference magnesium alloys and their applications.Geesthacht,Germany,2003:675-680
    [87]Grandfield,J.Young,Oswald.K,et al.Commissioning of a vertical direct chill caster for production of magnesium extrusion billet and slab[C].Eighth Australasian Conference Aluminium Cast House Technology,Brisbane,Qld.,Australia,2003:215-221.
    [88]Caron Ejer,Wells MA,Sediako D,et al.Evaluation of the surface heat flux in the secondary zone during the direct-chill casting of magnesium alloy AZ31[J].Magnesium Technology,2005,229-234.
    [89]Luo AA,Neelameggham NR,Beals RS.Vertical direct chill(VDC) casting of a novel magnesium wrought alloy with Zr and Re additions(ZK10):Alloying issues[J].Magnesium Technology,2006:133-138.
    [90]Kittilsan B,Pinfold P.Recent developments in large format magnesium casting[C].Light Metals,TMS Annual Meeting,1996:987-991.
    [91]Hao H,Maijer D M,Wells M A,et al.Development and validation of a thermal model of the direct chill casting of AZ31 magnesium billets[J].Metallurgical and Materials Transactions A,2004,35:3843-3854.
    [92]Hao H,Maijer D M,Wells M A,et al.Prediction and measurement of residual stresses / strains in a direct chill casting magnesium alloy billet[C].Magnesium Technology,TMS Annual Meeting,2005:223-228.
    [93]Kittilsen B,Oiestad B.Appts for horizontally chill casting magnesium-based alloys comprising mould with two separate water cooling circuits and emergency shut down procedure addressing high reactivity of magnesium.NO302804-B[P].
    [94]Z.Yang,J.P.Li,J.X.Zhang,et al.Review on research and development of magnesium alloys[J].Acta Metall.Sin.(Engl.Lett.),2008,21(5):313-328.
    [95]John F.Grandfield,Arne K.Dahle.Stress induced defect formation in horizontal direct chill cast magnesium alloys[J].Magnesium Technology,2000,219-228.
    [96]Bong Sun You,Chang Dong Yim,Su Hyeon Kim.Solidification of AZ31 magnesium alloy plate in a horizontal continuous casting process[J].Materials Science and Engineering A,2005,413 - 414:139- 143.
    [97]郭鹏,张兴国,郝海等.AZ31镁合金圆锭连铸过程温度场的数值模拟[J].中国有色金属学报,2006,16(9):1750-1756.
    [98]Hu Hongjun,Zhang Dingfei,Yang MingBo.Numerical simulation of thermal stress in cast billets made of AZ31 magnesium alloy during direct-chill casting[J].Journal of Manufacturing Processes,2008,10:82-88.
    [99]史淑艳.超轻镁合金板坯直冷连铸数值模拟及工艺优化[D].大连:大连理工大学.2007.
    [100]李廷举,金俊泽.材料电磁加工的现状与未来展望[J].材料导报,2000,14(12):12-13.
    [101]王晓东,赵恂,李廷举,等.磁力搅拌法的研究与开发[J].材料科学与工艺,2000,8(4):1-5.
    [102]任振国,曹志强,秦学智.电磁半固态铸造的原理及应用现状[J].铸造技术,2004,25(11):880-884.
    [103]Dehong Lu,Yehua Jiang,Guisheng Guan,et al.Refinement of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring[J].Journal of Materials Processing Technology,2007,189:13-18
    [104]赵爱民,毛卫民,崔成林,等.电磁搅拌对弹簧钢60Si2Mn凝固组织的影响[J].北京科技大学学报,2000,22(2):134-137.
    [105]S.Nafisi,D.Emadi,M.T.Shehata et al.Effects of electromagnetic stirring and superheat on microstructural characteristics of Al-Si-Fe alloy[J].Materials Science and Engineering A,2006,432:71-8
    [106]周飞雪译.电磁搅拌对连铸坯质量的影响[J].鞍钢技术,2003,1:57-60.
    [107]K.Biswas,R.Hermann,J.Das et al.Tailoring the microstructure and mechanical properties of Ti-Al alloy using a novel electromagnetic stirring method[J].Scripta Materialia,2006,55:1143-1146.
    [108]张宏丽,贾光霖,王恩刚,等.电磁搅拌改善铸坯内部质量的实验研究[J].东北大学学报(自然科学版),2001,22(3):315-318.
    [109]Shuangming Li,Jinshan Li,Qitang Hao,et al.Research on the dual-frequency electromagnetic shaping of liquid metal[J].Journal of Materials Processing Technology,2003,137:204-207.
    [110]W.D.Griffiths,D.G.McCartney.The effect of electromagnetic stirring on macrostructure and macrosegregation in the aluminium alloy 7150[J].Materials Science and Engineering A,1997,222:140-148.
    [111]W.D.Griffiths,D.G.McCartney.The effect of electromagnetic stirring during solidification on the structure of AL-Si alloys[J].Materials Science and Engineering A,1996,216:47-60.
    [112]金俊泽,曹志强,郑贤淑,等.电磁搅拌作用下形成分离共晶的研究[J].金属学报,1995,31(8):375-378.
    [113]任忠鸣,董华锋,邓康,等.软接触电磁连铸中初始凝固的基础研究[J].金属学报,1999,35(8):851-855.
    [114]Charles Vives.Crystallization of aluminium alloys in the presence of cavitation phenomena induced by a vibrating electromagnetic pressure[J].Journal of Crystal Growth,1996,158:118-127.
    [115]Cui Jinzhong.Solidification of Al alloys under electromagnetic field[J].Transaction Nonferrous metal society of china,2003,13(3):473-483.
    [116]Getselev Z.N.Method of Continuous an Semicontinuous Casting of Metals and Plant for same.U.S.Pat:3467166[P],1969
    [117]张兴国.电磁铸造技术的研究[D].大连:大连理工大学,2001.
    [118]贾非.电磁连续铸造过程工艺优化及组织性能研究[D].大连:大连理工大学,2002.
    [119]Zhang Xingguo,Jin Junze,Cao Zhiqiang.Control of formability of EMC liquid metal column[J].Transaction Nonferrous metal society of china,1996,6(2):117-122.
    [120].张兴国,金俊泽,曹志强.电磁铸造中试工艺参数的研究[J].中国有色金属报,1994,4(12):171-175.
    [121]Zhang Xingguo,Jin Junze,Cao Zhiqiang.The choice of key parameters of EMC[J].Transaction Nonferrous metal society of china,1995,5(3):74-78.
    [122]张兴国,曹志强,林嵩,等.电磁铸造中试铸锭的温度场研究[J].热加工工艺,1994,2:3-5.
    [123]Hao Hai,Zheng Xianshu,Zhang Xingguo,et al.A study on the model of joule heating in the electromagnetic casting[J].Processing of Modeling of Casting and Solidification Processes,1999:515-520.
    [124]Hao Hai,Zhang Xingguo,Hou Xiaoguang,et al.Technological investigation of electromagnetic casting for double-ingot[J].Transaction Nonferrous metal society of china,2000,10(5):590-594.
    [125]贾非,曹志强,张兴国,等.电磁铸造2024铝合金组织性能研究[J].大连理工大学学报,2001,41(5):572-577.
    [126]Hao Hai,Junze Jin,Xingguo Zhang.Joule heating in electromagnetic casting[J].Science and Technology of Advanced Materials,2001,2:93-96.
    [127]李玉梅,张兴国,贾非,等.铝合金电磁连铸技术的基础研究[J].铸造技术,2002,23(2):111-114.
    [128]贾非,金俊泽,曹志强,等.电磁铸造对2024铝合金力学性能和组织的影响[J].金属学报,2002,38(4):393-396.
    [129]Cao Zhiqiang,Jia Fei,Zhang Xingguo,et al.Microstructures and mechanical characteristics of electromagnetic casting and direct-chill casting 2024 aluninum alloys[J].Materials Science and Engineering A,2002,327:133-137.
    [130]H.Hao,X.G.Zhang,J.P.Park,et al.Twin-strand technology and microstructure analysis for the electromagnetic near net-shape casting of aluminuM alloy[J].Journal of Materials Processing Technology,2003,142:526-531.
    [131]Vives C.Electromagnetic refining of aluminum alloys by the CREM process:part Ⅰ.working principle and metallurgical results[J].Metallurgical Transactions B,1989,20(10):623-629.
    [132]Vires C.Electromagnetic refining of aluminum alloys by the CREM process:part Ⅱ.Specific practical problems and their solutions[J].Metallurgical Transactions B,1989,20(10):631-643.
    [133]Tingju Li,Shiji Nagaya,Kensuke Sassa,et al.Study of meniscus behavior and surface properties during casting in a high-frequency magnetic field[J].Metallurgical and Materials Transactions B,1995,26:353-359.
    [134]Vives C.Effects ofelectromagnetic vibrations on the microstructure of continuously cast aluminum alloys[J].Materials Science and Engincering A,1993,173:169-172
    [135]Vires C.Effects offorced electromagnetic vibrations during the solidification of Aluminum Alloy:Part 1.Solidification in the presence of crossed alternating electric fields and stationary magnetic fields[J].Metallurgical and Materials Transactions B,1996,27:445-455.
    [136]Vires C.Effects of forced electromagnetic vibrations during the solidification of Aluminum Alloys:Part 2.Solidification in the presence of collinear variable and stationary magnetic fields[J].Metallurgical and Materials Transactions,1996,2713:457-464.
    [137]Dong Jie,Cui Jianzhong,Ding Wenjiang.Theoretical discussion of the effect of a low-frequency electromagnetic vibrating field on the as-cast microstructures of DC Al-Zn-Mg-Cu-Zr ingots[J].Journal of Crystall Growth,2006,295:179-187.
    [138]Yubo Zou,Jianzhong Cui,Jie Dong,et al.Effects of low frequency electromagnetic field on the as-cast microstructures and mechanical properties of super high strength aluminum alloy[J].Materials Science and Engineering A,2005,408:176-181.
    [139]赵志浩,崔建忠,左玉波,等.低频电磁场对水平半连续铸造7075铝合金的影响[J].东北大学学报(自然科学版),2005,126(1):255-258.
    [140]Zhihao Zhao,Jianzhong Cui,Jie Dong,et al.Effect of low-frequency magnetic field on microstructures of horizontal direct chill casting 2024 aluminum alloy[J].Journal of Alloys and Compounds,2005,396:164-168.
    [141]房灿峰.高性能镁合金电磁改性技术研究[D].大连:大连理工大学,2006.
    [142]Shijie Guo,Jianzhong Cui,Qichi Le,et al.The effect of alternating magnetic field on the process of semi-continuous casting for AZ91 billets[J].Materials letters,2005,59:1841-1844.
    [143]Shijie Guo,Qichi Le,Zhihao Zhao,et al.Microstructural refinement of DC cast AZ80Mg billets by low frequency electromagnetic vibration[J].Materials Science and Engineering A,2005,404:323-329.
    [144]Shijie Guo,Qichi Le,Yi Han,et al.The effect of electromagnetic vibration on macrosegregation in AZ80 magnesium alloys billets[J].Materials Transactions,2006,47(2):392-398.
    [145]Shijie Guo,Qichi Le,Yi Han,et al.The effect of electromagnetic vibration on the microstructure,segregation and mechanical properties of as-cast AZ80 magnesium alloy billet[J].Metallurgical and Materials Transactions A,2006,37:3715-3724.
    [146]张世斌.镁合金软接触电磁连铸研究与工业化实验[D].上海:上海大学,2007.
    [147]Myoung-Gyun Kim,Joon-Pyo Park,Jong Ho Kim.Continuous casting of magnesium alloy billet using electromagnetic fields.The 3rd Asian Workshop and Summer School on Electromagnetic Processing of Materials[C].Shanghai:2008.
    [148]刘政,刘小梅.悬浮铸造技术及其应用[J].江西冶金,1996,16(2):5-18.
    [149]V.Efimov.Suspension casting technological fundamentals.The 48th International Foundry Congress[C].Varna,Bulgaria:1981.
    [150]杜怀生,翟启杰.稀土对悬浮铸造铸钢件中非金属夹杂物的作用[J].铸造,1987,3:25-28.
    [151]符寒光,解培民.悬浮铸造工艺发展与应用[J].现代铸铁,1995,1:33-34.
    [152]王更柱,于春生,申成健.悬浮铸造生产石墨钢轧辊[J].鞍山钢铁学院学报,1997,20(4):5-7.
    [153]王金华.悬浮铸造[M].北京:国防工业出版社,1982.
    [154]Yan Yu,Qijie Zhai,Libo Zhang et al.A Comparison Study between Suspension Casting Process and Low Superheat Casting Process[J].Journal of University of Science and Technology Beijing,1999,6(1):31-34.
    [155]刘满平,孙少纯,周伯仪.悬浮浇注对大断面球铁石墨形态及凝固特性的影响[J].现代铸铁,1998,1:26-29.
    [156]李小平,陈振华,曹标,等.高硅铝合金悬浮铸造的组织细化[J].特种铸造及有色金属,1999,6:20-22.
    [157]王红霞,常艳红,徐林.悬浮铸造对ZA27合金组织性能的影响[J].铸造设备研究,2002,2:4-6
    [1158]王建华.悬浮铸造对ZQSn10-2合金致密度的影响[J].热加工工艺,1996,1:42-43.
    [159]那顺桑,姚青芳.金属强韧化原理与应用[M].北京:化学工业出版社,2006.
    [160]N.V.Ravi Kumar,J.J.Blandin,C.Desrayaud,et al.Grain refinement in AZ91 magnesium alloy during thermomechanical processing[J].Materials and Engineering A,2003,359:150-157.
    [161]Yingxin Wang,Xiaoqin Zeng,Wenjiang Ding.Effect of Al -4Ti -5B master alloy on the grain refinement of AZ31 magnesium alloy[J].Scripta Materialia,2006,54:269-273.
    [162]Mark A Easton,Andreas Schiffl,Ji-Yong Yao,et al.Grain refinement of Mg-Al(-Mn)alloys by SiC additions[J].Scripta Materialia,2006,55:379-382.
    [163]曹林锋,苏学宽,杜文博,等.Ca含量对AZ61-1Si合金显微组织及力学性能的影响[J].金属热处理,2006,增刊:46-19.
    [164]那贤昭,张兴中,仇圣桃,等.软接触电磁连铸技术分析[J].金属学报,2002,38(1):105-108.
    [165]于洋,李宝宽.钢连铸电磁搅拌工艺中电磁力的计算[J].金属学报,2006,42(5):540-544.
    [166]王宏明,任忠鸣,雷作胜,等.钢的软接触电磁连铸技术[J].铸造技术,2005,26(9):782-784.
    [167]Bong-Sun You,Won-Wook Park,In-Sang Chung.The effect of calcium addition to magnesium on the microstructure and compositional changes of oxide film formed at high temperature[J].Materials Transaction A,2001,42(6):1139-1141.
    [168]赵云虎,曾小勤,丁文江,等.Be和Ca对Mg9A10.5Zn合金表面氧化行为的影响[J].中国有色金属学报,2000,12:847-852.
    [169]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [170]徐祖耀,李麟.材料热力学[M].北京:科学出版社,2001.
    [171]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.
    [172]Y.C.Lee,A.K.Dahle,D.H.Stjohn.The role of solute in grain refinement of magnesium [J].Materials Transaction A,2000,31:2895-2906.
    [173]闵学刚,孙扬善,杜温文,等.Ca,Si和RE对AZ91合金的组织和性能的影响[J].东南大学学报,2002,47(2):109-112.
    [174]Nakaura Yusuke,Watanabe Akira,Koichi Ohori.Effects of Ca,Sr addition on properties of Mg-Al based alloys[J].Materials Transaction A,2006,47(4):1031-1039.
    [175]王月.含Sc铝合金的研究进展[J].上海金属,2003,25(1):36-40.
    [176]Nie Zuoren,Jin Tounan,Fu Jingbo,et al.Research on rare earth in aluminum[J]. Materials Science Forum,2002,(396-402):1731-1738.
    [177]付静波,聂祚仁,杨军军,等.含铒先进铝合金[J].稀有金属,2005,29(4):558-562.
    [178]L.L.Rokhlin.Magnesium alloys containing rare earth metals(structure and properties)[M].New York:Taylor and Francis,2003.
    [179]D.H.Xiao,M.Song,F.Q.Zhang,et al.Characterization and preparation of Mg-Al-Zn alloys with minor Sc[M].Journal of Alloys and Compounds,2009,484:416-421.
    [180]F.von Buch,J.Lietzau,B.L.Mordike,et al.Development of Mg-Sc-Mn alloys[M].Materials Science and Engineering A,1999,263:1-7.
    [181]王忠军,张彩碚,邵晓宏,等.添加稀土Er于熔剂中对铸态AZ91镁合金组织与性能的影响[J].中国有色金属学报,2007,17(2):181-187.
    [182]Kubota K,Mabuchi M,Higashi K.Review processing and mechanical properties of fine-grained magnesium alloys[J].Journal of Materials Science,1999,34(10):4311-4320.
    [183]G.Kl(o|¨)sch,B.J.McKay,P.Schumacher.Perliminary investigation grain refinement behavior of ZrB_2 particles in Mg-Al alloys[J].Magnesium Technology,2006,69-75.
    [184]郭鹏.变形镁合金电磁连铸工艺过程的数值模拟[D].大连:大连理工大学,2006.
    [185]Li Z X,Zhang X S,Cao Z Q,et al.Temperature simulation of EMC aluminum ingot with induced heat[J].Transaction Nonferrous Metals Society of China,2001,11(3):369-373.
    [186]HW.Godbee,WT.Ziegler.Thermal Conductivities of MgO,Al_2O_3,and ZrO_2 Powders to 850℃.Ⅱ.Theoretical[J].Journanl of Appllied Physics,1966,37(1):56-65.
    [187]DW Sundstrom,YD Lee.Thermal conductivity of polymers filled with particulate solids [J].Journal of Applied Polymer Science,1972,16:3159-3167.
    [188]RL Hamilton,OK Crosser.Thermal conductivity of heterogeneous two-component systems [J].Industrial & Engineering Chemistry Fundamentals,1962,1(3):187-191.
    [189]王家俊.聚酸亚胺/氮化铝复合材料的制备与性能研究[D].杭州:浙江大学,2001.
    [190]DPH Hasselman,KY Donaldson.Effective thermal conductivity of uniaxial composite with cylindrically orthotropic carbon fibers and interfacial thermal barrier[J].Journal of Composite Materials,1993,27(6):637-644.
    [191]AG Every,DPH Hasselman.The effect of particle size on the thermal conductivity of ZnS/diamond composites[J].Acta Metallurgica Materialia,1992,40(1):123-129.
    [192]Swartz ET,Pohl RO.Heat transport between two surfaces in contact[J].Reviews of Modern Physics,1989,61:605-668.
    [193]Wu Y,et al.Solidification behavior of Al-Si/SiC MMCs during wedge-mold casting[J].Acta Metallurgica Materialia,1994,42:825-837.
    [194]陈振华,许芳艳,傅定发,等.镁合金的动态再结晶[J].化工进展,2006,25(2):140-146.
    [195]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2005.
    [196]D.L.Yin,K.F.Zhang,G.F.Wang,et al.Warm deformation behavior of hot-rolled AZ31Mg alloy[J].Materials Science and Engineering A,2005,392:320-325.
    [197]J.A.del Valle,M,T.Pe'rez-Prado,O.A.Ruano.Texture evolution during large-strain hot rolling of the Mg AZ61 alloy[J].Materials Science and Engineering A,2003,355:68-78.
    [198]L.P.Troeger,E.A.Starke Jr.Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy[J].Materials Science and Engineering A,2000,293:19-29.
    [199]B.Inem.Dynamic recrystallization in a thermomechanically processed metal matrix composite[J].Materials Science and Engineering A,1995,197:91-95.
    [200]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700