用户名: 密码: 验证码:
双酶体系的构建及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是生命活动中具有催化功能的蛋白质。由于多酶协同作用在生命过程与生命活动中的重要性,多酶协同催化成为酶催化领域中极富挑战性和创新性的研究课题。本论文立足于双酶体系,以仿生学为导向,对一些重要的双酶体系进行抗氧化、自修复以及微马达等方面的设计、构建及应用研究。
     具体研究结果如下:
     1)双酶抗氧化体系:以铁蛋白和卟啉为构筑基元,设计构建具有谷胱甘肽过氧化物酶(GPx)和超氧化物歧化酶(SOD)活力的双酶模拟物。首先通过计算机模拟设计了GPx的催化中心,再利用基因工程方法将硒代半胱氨酸(Sec)精确地引入铁蛋白中,得到的含硒铁蛋白单体经自组装可形成具有多催化位点的GPx模拟物Se-Fn。然后利用化学合成手段制备的具有良好水溶性并带有醛基的SOD模拟物:[Mn-THPP-(PEG2000-BA)4],通过醛基和Se-Fn的赖氨酸残基(Lys)上氨基之间的共价相互作用,使其交联形成具有双酶活力的单分散性微凝胶纳米酶模型,并最终证明了该酶模型在亚细胞水平上具备较好的协同抗氧化能力。
     2)双酶自修复体系:在以动态亚胺键交联牛血清白蛋白和戊二醛形成的蛋白凝胶中,借助动态亚胺键的酸刺激响应性,向体系中引入葡萄糖氧化酶(GOx)和过氧化氢酶(CAT)协同调控pH变化,构建双酶自修复体系。其中葡萄糖氧化酶能催化氧化葡萄糖(Glu)生成葡萄酸内酯和H2O2。产物H2O2可被过氧化氢酶(CAT)酶迅速清除,产生H2O和02,避免了H2O2对体系亚胺键结构的破坏。而另一个产物葡萄酸内酯则进一步水解生成葡萄糖酸,降低体系的pH,促进亚胺键的形成。因此,通过向凝胶中加入葡萄糖,利用GOx与CAT双酶协同催化作用,可改变体系pH,从而调控牛血清白蛋白和戊二醛之间交联,实现体系的自修复。
     3)双酶微马达体系:利用GOx与CAT双酶催化产生气体的反向推动原理,设计构建了微马达体系。我们以硅胶为载体,在硅胶表面修饰过氧化氢酶(CAT),然后置于葡萄糖氧化酶和葡萄糖共存的体系中。由于葡萄糖氧化酶氧化葡萄糖产生H202,过氧化氢酶分解H2O2放出氧气为动力,推动微马达运动。由于微马达表面结构的不对称性,使得该体系存在不同的运动方式,即直线运动和旋转运动。该体系的构建为其在微纳物体运输和生物传感等领域的应用提供了新的思路。
Enzymes are nature evolution of proteins with high specificity and strong catalyticability, which can catalyze certain chemistry reaction in mild conditions. Because ofthe unique supramolecular interaction between enzyme and its substrate, it becomes thefirst choice when studying the bionic system. Enzyme catalytic process is verycomplexity, but with the development of the genomics, proteomics, and computersimulation, people have a deeper understanding of the enzyme catalysis andapplication.
     Multi-enzyme synergistic catalytic system is one of the challenging researchtopics in the field of enzyme-catalyzed. Due to the complexity of the systems and theunstability property of the enzyme, limiting the development of the multi-enzymesynergistic catalysis system. However, the amazing ability of native enzymesdemonstrated the efficiency and specificity under mild conditions, still attractedscientists extensive attention. Therefore, the study of multi-enzyme synergisticcatalysis and its related application, has become a common concern in chemistry,biology and life sciences. Explore of multi-enzyme synergistic catalysis system hasgreat significance in understanding the evolution process of enzyme and therelationship between the tructure and function of enzyme. Herein, as guidance ofbionics, we used the dual-enzyme system for exploring antioxidant, self-healing andmicro motor.
     1. Construction of dual enzymatic antioxidant system
     The antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), andglutathione peroxidase (GPx) contribute dominatingly to enhance cellularantioxidative defense against oxidative stress in the human body. Thereinto, SOD is ametalloenzyme that catalyzes the dismutation of superoxide radical anion (O2-)toH2O2and dioxygen. H2O2is then detoxified either to H2O and O2by catalase (CAT)or to H2O by glutathione peroxidase (GPx). Studies indicated that each enzyme has aspecific as well as an irreplaceable function and they act in a cooperative or synergistic way to ensure a global cell protection, and only when an appropriatebalance between the activities of these enzymes is maintained, the optimal protectionof cells could be achieved.
     In recent years, there were considerable interests in preparing the enzyme mimicswith the properties of SOD or GPx for elucidating catalytic mechanism and forpotential pharmaceutical application. In order to further study the cooperation of theseenzymes in antioxidation and to generate efficient therapeutic agents, somebifunctional artificial enzymes with antioxidant enzyme activities have beenconstructed by chemical methods.
     Here, based on the understanding of the synergy of the natural antioxidant enzymes,we have carried out work as follow. Using computational design and geneticengineering methods, the main catalytic components of GPx were fabricated onto thesurface of ferritin. The resulting seleno-ferritin (Se-Fn) monomers can self-assembleinto nanocomposites which exhibit remarkable GPx activity due to the well organizedmulti-GPx catalytic centers. Subsequently, a porphyrin derivative was synthesized asSOD mimic to crosslink Se-Fn nanocomposites for the formation of a synergistic dualenzyme microgel, and this dual enzyme microgel has been proven to displaysignificantly better antioxidant ability than single GPx or SOD mimic in protectingcell from oxidative damage.
     2. Construction of dual enzymatic self-healing system
     The abilities to spontaneously heal injury and recover functionality are keyfeatures that increase the survivability and lifetime of the organism. In contrast,synthetic materials usually fail after damage or fracture. Inspired by nature, thedemand for self-healing materials is rapidly development because they can offer anew rote toward safer, longer-lasting products and lower production costs. Over thepast few decades, there were three kinds of conceptual self-healing systems have beenreported, such as capsule system, vascular system, and intrinsic system.
     As one of the acidity reversible covalent bonds, imine bond—from an amine andan aldehyde has been widely used in the construction of exotic molecules and extendstructures on account of the inherent ‘proof-reading’ and ‘error-checking’ associatedwith these reversible reactions. But more importantly, the equilibrium of imine bondformation between an imine and its corresponding precursor(s) can influenced by theexternal considerations, such as solvent, pH, and temperature.
     Herein, we reasoned that one such reaction, the glutaraldehyde by the reversible covalent attachment of the GOx and the bovine serum albumin (BSA) to the lysineresidue, could be well suited for the formation and functionalization of proteinhydrogels system. The BSA as a scaffolding sustain the hydrogels system and theGOx as a catalytic center play a key role to adjust the pH of the system by add extratraces of glucose. The glucose is oxidized to gluconolactone under the catalytic of theGOx, then gluconolactone hydrolyzed to gluconic acid to reduce the system pH. TheH2O2that generated by the catalytic reaction will be decomposition by the enzymecatalase (CAT) to avoid the glutaraldehyde is oxidized. With the change of the pH, theimine bonds provide us the opportunity to drive the reaction forward or backwards.
     3. Construction of dual enzymatic micro-motor system
     Life is movement. For the nature forms, the material transport in cellular, DNAreplication, cell division and differentiation, muscle contraction, a series of importantlife activities are dependent on the movement of the biological molecular motors inthe cytoplasm. These motors are nanomachines which can be transform the energy ofbiochemistry to mechanical. In the natural world, the autonomous motion of biomotoris common. Protein motors and bacteria have formed a variety of sophisticated andperfect systems fuelled with chemical energy, and well-controlled nanomachines canexecute translational and rotational movement precisely. The outstanding performanceof these biomotors in nature has stimulated interest in synthesis of manmademicro-/nano-motors which can mimic the behaviors of biomotors to operate inlocally-supplied chemical fuels and achieve various functions. The first generation ofcatalytic motors on the micro-/nano-scale which exhibit autonomous self-propulsionin the presence of hydrogen peroxide makes this idea promising and exhibits potentialapplications in small cargo delivery and biosensing.
     Based on the catalytic decomposition of H2O2, we constructed a dual enzymemicro-motor system. The system applications the bubbles promote motor model.Motors that utilize this type of motion create bubbles on their catalytic side and theforce from the release of the bubbles causes the motion. This is a gradientlikemechanism since bubbles need to be generated on one side and not the other so thereis a change in bubble concentration with distance. We take silica gel as a carrier, anddecorate catalase (CAT) on the surface of silica. Then the silica gel was placed intothe system of glucose oxidase and glucose. Due to the glucose oxidase oxidation ofglucose, H2O2was generated. Catalase decomposition of H2O2release oxygen can bedriving silica sports. Due to the inhomogeneity of the silica surface, there are different sports ways in the system, such as linear motion and rotary motion. We anticipate thatthis system could provide a new approach for micro-and nano objects transport,bio-sensing and other areas in vivo application.
引文
[1] Lehn J M. Supramolecular Chemistry-Concept and Perspectives. Germany:VCH,1995,1-9.
    [2] Steed J W, Atwood J L.赵耀鹏,孙震译,超分子化学,化学工业出版社,7-5025-8697-0,O63/S811.
    [3]张希,沈家骢.超分子科学:认识物质世界的新层面.科学通报2003,14:1477-1478.
    [4] Yan D Y, Zhou Y F, Hou J. Supramolecular self-assembly of macroscopic tubes.Science2004,303:65-67.
    [5] Freeman B A, Crapo J D. Biology of disease. Free radicals and tissue injury. LabInvest1982,47:412-426.
    [6] Turrens J F, Boveris A. Generation of superoxide anion by the NADHdehydrogenase of bovine heart mitochondria. Biochem J.1980,191:421-427.
    [7] Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol.1956,11:298-300.
    [8] Michiels C, Raes M, Toussaaint O, Remacle J. Importance of Se-glutathioneperoxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. FreeRadical. Biol. Med.1994,17:235-248.
    [9] Mills G. C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyteenzyme which protects hemoglobinfrom oxidase breakdown. J. Biol. Chem.1957,229:189-197.
    [10] Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D G, Hoekstra W G.Selenium: Biochemical role as a component of glutathione peroxidase. Science1973,179:588–590.
    [11] Flohé L, Günzler W A, Schock H H. Glutathione peroxidase: a selenoenzyme.FEBS Letts.1973,32:132-134.
    [12] Luo G M, Ren X J, Liu J Q, Mu Y, Shen J C. Towards more efficient glutathioneperoxidase mimics: substrate recognition and catalytic group assembly. Curr. Med.Chem.2003,10:1151-1183.
    [13] Takebe G, Yarimizu J, Saito Y, Hayashi T, Nakamura H, Yodoi J, Nagasawa S,Takahashi K. A comparative study on the hydroperoxide and thiol specificity of theglutathione peroxidase family and selenoprotein P. J. Bio. Chem.2002,277:41254-41258.
    [14] Jiang Z H. The read-through efficiency of selenocysteine and expression ofselenocysteine containing GST in Escherichia coli. PhD Thesis, Jilin University,2005, p136.
    [15] Chu F F, Doroshow J H, Esworthy R S. Expression, characterization, and tissuedistribution of a new celluar selenium-dependent glutathione peroxidase,GSH-PX-GI. J.Biol. Chem.1993,268:2571-2576.
    [16] Mork H, Lex B, Scheurlen M. Expression pattern of gastrointestinalselenoproteins-targets for selenium supplementation. Nutrition and Cancer1998,32:64-65.
    [17] Yamamoto Y, Nagata Y, Niki E. Plasma glutathione peroxidase reducesphosphatidylcholine hydroperoxide. Biochem. Biophys. Res. Commun.1993,193:133-138.
    [18] Ciappellano S, Testolin G, Porrini M. Effects of durum wheat dietary selenium onglutathione peroxidase activity and Se content in long-term-fed rats. Ann. Nutr.Metab.1989,33:22-30.
    [19] Bellomo G, Maggi E, Palladini G. Endogenous and exogenous antioxidants and thegeneration of antigenic epitopes in oxidatively-modified LDL. Biofactors1997,6:91-98.
    [20] Nakagawa Y, Imai H. Novel functions of mitochondrial phospholipidshydroperoxide glutathione peroxidase (PHGPx) as an anti-apoptotic factor. J.Health Sci.2000,46:414–417.
    [21] Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohé L. Dualfunction of the selenoprotein PHGPx during sperm maturation. Science1999,285:1393–1396.
    [22] Imai H, Suzuki K, Ishizaka K, Ichinose S, Oshima H, Okayasu I. Emotod K,Umedad M, Nakagawa Y. Failure of the expression of phospholipid hydroperoxideglutathione peroxidase in the spermatozoa of human infertile males. Biol Reprod.2001,64:674-683.
    [23] Zini A, Schlegel P. N. Expression of glutathione peroxidases in the adult male ratreproductive tract. Fertil Steril1997,68:689-695.
    [24] Epp O, Ladenstein R, Wendel A. The refined structure of the selenoenzymeglutathione peroxidase at0.2-nm resolution. Eur. J. Biochem.1983,133:51-69.
    [25] Ren B, Huang W, kesson B, Ladenstein R. The crystal structure ofseleno-glutathione peroxidase from human plasma at2.9resolution. J. Mol. Biol.1997,268:869-885.
    [26] Flohé L, Loschen G, Günzler W A, Eichele E. Glutathione peroxidase, the kineticmechanism. Hoppe-Seyler's Z Physiol. Chem.1972,353:987-999.
    [27] Ursini F, Maiorini M, Gregolin C. Purification from pig liver of a protein whichprotects liposomes and biomembranes from peroxidative degradation and exhibitsglutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochem.Biophys. Acta.1982,710:197-211.
    [28] Carsol M A, Pouliquen-Sonaglia I, Lesgards G, Marchis-Mouren G, Puigserver A,Santimone M. A new kinetic model for the mode of action of soluble andmembrane-immobilized glutathione peroxidase from bovine erythrocytes-effects ofselenium. Eur. J. Biochem.1997,247:248-255.
    [29] McCord J M, Fridovich I. Superoxide dismutase: an enzymic function forerythrocuprein (hemocuprein). J. Biol. Chem.1969,244:6049-6055.
    [30] Fridovich I, Superoxide radical and superoxide dismutase. Acc. Chem. Res.1972,5:321-326.
    [31] Klug-Roth D, Fridovich I, Rabani J. Pulse radiolytic investigations of superoxidecatalyzed disproportionation. Mechanism for bovine superoxide dismutase. J. Am.Chem.Soc.1973,95:2786-2790.
    [32] Hodgson E K, Fridovich I. Production of superoxide radical during thedecomposition of potassium peroxochromate(V). Biochemistry1974,13:3811-3815.
    [33] Pick M, Rabani J, Yost F, Fridovich I. Catalytic mechanism of themanganese-containing superoxide dismutase of Escherichia coli studied by pulseradiolysis. J. Am. Chem. Soc.1974,96:7329-7333.
    [34] Cassell R H, Fridovich I. Role of superoxide radical in the autoxidation ofcytochromec. Biochemistry1975,14:1866-1868.
    [35] Misra H P, Fridovich I. The oxidation of phenylhydrazine: superoxide andmechanism. Biochemistry1976,15:681-687.
    [36] Fridovich I. How innocuous is superoxide? Comments. Acc. Chem. Res.1982,15:200-200.
    [37] Djinovi K, Gatti G, Coda A et al.. Structure solution and molecular dynamicsrefinement of the yeast Cu-Zn enzyme superoxide dismutase. Acta Crystallogr. B.1991,47:918–927.
    [38] Borgstahl G E, Parge H E, Hickey M J, Beyer W F, Hallewell R A, Tainer J A. Thestructure of human mitochondrial manganese superoxide dismutase reveals a noveltetrameric interface of two4-helix bundles. Cell. October1992,71:107–118.
    [39] Corpas F J, Barroso J B, del Río L A. Peroxisomes as a source of reactive oxygenspecies and nitric oxide signal molecules in plant cells. Trends Plant Sci.2001,6:145–150.
    [40] Kim E J, Chung H J, Suh B, et al. Transcriptional and post-transcriptionalregulation by nickel of sod N gene encoding nickel-containing superoxidedismutase from Streptomyces coelicolor Muller. Mol. Microbiol.,1998,27:187-195.
    [41] Youn H D, Kim E J, Roe J H, et al. A novel nickel-containing superoxide dismutaserom Streptomyces spp. J. Biol. Chem.1996,318:889-896.
    [42] Thomas K A, Rubin B H, Bier C J, et al. The crystal structure of bovine Cu2+,Zn2+superoxide dismutase at5.5-A resolution. J. Biol. Chem.1974,249:5677-5683.
    [43] Burger A R, Lippard S J, Pantoliano M W, et al. Nuclear magnetic resonance studyof the exchangeable histidine protons in bovine and wheat germ superoxidedismutases. Biochemistry1980,19:4139-4143.
    [44] Lah M S, Dixon M M, Pattridge K A, Stallings W C, Fee J A, Ludwig M L.Structure-function in Escherichia coli iron superoxide dismutase: Comparisons withthe manganese enzyme from Thermus thermophilus. Biochemistry1995,34:1646-1660.
    [45] Loew, Oscar. A New Enzyme of General Occurrence in Organisms. Science.1900,11:701–702.
    [46] Murthy M R, Reid T J, Sicignano A, Tanaka N, Rossmann MG. Structure of beefliver catalase. J. Mol. Biol.1981,152:465–99.
    [47] Marcel Z, Franz K. Understanding the structure and function of catalases: cluesfrom molecular evolution and in vitro mutagenesis. Progress in biophysics andmolecular biology.1999,72:19-66.
    [48] Meier A E, Whittaker M M, Whittaker J W. EPR polarization studies on Mncatalasefrom lactobacillus plantarum. Biochemistry,1996,35:348-360
    [49] Mugesh G, du Mont W W, Sies H. Chemistry of biologically important syntheticorganoselenium compounds. Chem. Rev.2001,101:2125-2179.
    [50] Mugesh G, Singh H. B. Synthetic organoselenium compounds as antioxidants:glutathione peroxidase activity. Chem. Soc. Rev.2000,29:347-357.
    [51] Mugesh G, du Mont W W. Structure-activity correlation between natural glutathioneperoxidase (GPx) and mimics: a biomimetic concept for the design and synthesis ofmore efficient GPx mimics. Chemistry-A European Journal.2004,7:1365-1370.
    [52] Mugesh G, Singh H B. Heteroatom-directed aromatic lithiation: a versatile route tothe synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res.2002,35:226-236.
    [53] Sies H, Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavengerof peroxynitrite. Adv. Pharmacol.1997,38:229-246.
    [54] Mugesh G, du Mont W W. Structure-activity correlation between natural glutathioneperoxidase (GPx) and mimics: a biomimetic concept for the design and synthesis ofmore efficient GPx mimics. Chemistry-A European Journal.2004,7:1365-1370.
    [55] Liu J Q, Gao S, Luo G M, Yan G, Shen J C. Artificial imitation of glutathioneperoxidase with6-selenium-bridged β-cyclodextrin. Biochem. Biophys. Res.Commun.1998,247:397-400.
    [56] Liu J Q, Luo G M, Ren X J, Mu Y, Bai Y, Shen J. A bis-cyclodextrin diselenide withglutathione peroxidase-like activity. Biochim. Biophys. Acta.2000,1481:222-228.
    [57] Ren X, Yang L, Liu J, Su D, You D, Liu C, Zhang K, Luo G, Mu Y, Yan G, Shen J. Anovel glutathione peroxidase mimic with antioxidant activity. Arch. Biochem.Biophys.2001,387:250-256.
    [58] Ren X, Liu J, Luo G, Zhang Y, Luo Y, Yan G, Shen J. A novel selenocystine-β-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. BioconjugateChem.2000,11:682-687.
    [59] Ren X, Xue Y, Liu J, Zhang K, Zheng J, Luo G, Guo C, Mu Y, Shen J. A novelcyclodextrin-derived tellurium compound with glutathione peroxidase activity.ChemBioChem.2002,3:356-363.
    [60] Ren X, Xue Y, Zhang K, Liu J, Luo G, Zheng J, Mu Y, Shen J. A noveldicyclodextrinyl ditelluride compound with antioxidant activity. FEBS Lett.2001,507:377-380.
    [61] Wu Z P, Hilvert D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem.Soc.1990,112:5647-5648.
    [62] House K L, Dunlap R B, Odom J D, Wu Z P, Hilvert D. Structural characterization ofselenosubtilisin by selenium-77NMR spectroscopy. J. Am. Chem. Soc.1992,114:8573-8579.
    [63] Syed R, Wu Z P, Hogle J M, Hilvert D. Crystal structure of selenosubtilisin at2.0-resolution. Biochemistry1993,32:6157-6164.
    [64] Bell J M, Fisher M L, Wu Z P, Hilvert D. Kinetic studies on the peroxidase activity ofselenosubtilisin. Biochemistry1993,32:3754-3762.
    [65] Mao S Z, Dong Z Y, Liu J Q, Li X Q, Liu X M, Luo G M, Shen J C. Semisynthetictellurosubtilisin with glutathione peroxidase activity. J. Am. Chem. Soc.2005,127:11588-11589.
    [66] Ren X, Jemth P, Board P G, Luo G, Mannervik B, Liu J, Zhang K, Shen J. Asemisynthetic glutathione peroxidase with high catalytic efficiency:selenoglutathione transferase. Chem. Biol.2002,9:789-794.
    [67] Ding L, Liu Z, Zhu Z Q, Luo G M, Zhao D Q, Ni J Z. Biochemical characterizationof selenium-containing catalytic antibody as a cytosolic glutathione peroxidasemimic. J. Biol. Chem.1998,332:251-255.
    [68] Luo G M, Ding L, Liu Z, Yang T S, Ni J Z. A selenium-containing abzyme, theactivity of which surpassed the level of native glutathione peroxidase. Ann. N. Y.Acad. Sci.1998,864:136-141.
    [69] Luo G M, Zhu Z Q, Ding L, Gao G, Sun Q, Liu Z, Yang T S, Shen J C. Generationof selenium-containing abzyme by using chemical mutation. Biochem. Biophys.Research Commun.1994,198:1240-1247.
    [70] Liu L, Mao S Z, Liu X M, Huang X, Xu J Y, Liu J Q, Luo G M, Shen J C. Functionalmimicry of the active site of glutathione peroxidase by glutathione imprintedselenium-containing protein. Biomacromolecules2008,9:363-368.
    [71] Liu X, Silks L A, Liu C, Ollivault S M, Huang X, Li J, Luo G, Hou Y, Liu J. Shen, J.Incorporation of Tellurocysteine into Glutathione Transferase Generates HighGlutathione Peroxidase Efficiency, Angew. Chem. Int. Ed.2009,48:2020-2023.
    [72] Strothkamp K G, Lippard S J, Chemistry of the imidazolate-bridged bimetalliccenter in the copper-zinc superoxide dismutase and its model compounds. Acc.Chem. Res.1982,15:318-326.
    [73] Strothkamp K G, Lippard S J, Lyophilization results in cleavage of the active-sitehistidine bridge in the four-copper form of bovine erythrocyte superoxidedismutase. J. Am.Chem. Soc.1982,104:852-853.
    [74] Martin A E, Lippard S J, Thiocyanate cleaves the imidazolate-bridged dicopper(II)center in a binucleating macrocycle to form the copper(II) thiocyanate complex
    [Cu2(SCN)4.cntnd. A]. Model chemistry for superoxide dismutase. J. Am. Chem.Soc.1984,106:2579-2583.
    [75] Inoue Y, Wada T, Sugahara N, Yamamoto K, Kimura K, Tong L-H, Gao X M, HouZ J, Liu Y, Supramolecular Photochirogenesis.2. EnantiodifferentiatingPhotoisomerization of Cyclooctene Included and Sensitized by6-O-ModifiedCyclodextrins. J. Org. Chem.2000,65:8041-8050.
    [76]胡智华,梅光泉.锰超氧化物歧化酶模拟物模型的研究,铁道医学,1994,22:67-68.
    [77] Riley D P, Weiss R H, Manganese macrocyclic ligand complexes as mimics ofsuperoxide dismutase. J. Am. Chem. Soc.1994,116:387-388.
    [78] Batainic-Haberle I, Spasojevic I, Stevens R D, Hambright P, Neta P, Okada-Matsumoto A, Fridovich I. New class of potent catalysts of O-2(.-) dismutation.Mn(III)ortho-methoxyethylpyridyl-anddi-ortho-methoxyethyl-imidazolylporphyrins. Dalton Trans.2004,15:1696-1702.
    [79] Batinic-Haberle I, Spasojevic I, Stevens R D, Bondurant B, Okado-Matsumoto A,Fridovich I, Vujaskovic Z, Dewhirst M W. New PEG-ylated Mn(III) porphyrinsapproaching catalytic activity of SOD enzyme. Dalton Trans.2006,17:617-624.
    [80] Batinic-Haberle I, Spasojevic I, Fridovich I. Tetrahydrobiopterin rapidly reduces theSOD mimic Mn(III) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin. Free Rad.Biol. Med.2004,37:367-374.
    [81] Batinic-Haberle I, Stevens R D, Fridovich I. Porphyrin-based SODmimics.Electrospray mass spectroscopy of Mn(III) and Fe(III) isomerictetrakis-(N-alkylpyridyl) porphyrins. Free Rad. Biol. Med.1999,27: S18-S18.
    [82] Batinic-Haberle I, Benov L, Spasojevic I, Fridovich R. The Ortho Effect MakesManganese(III)Meso-Tetrakis(N-Methylpyridinium-2-yl)Porphyrin a Powerful andPotentially Useful Superoxide Dismutase Mimic. J. Biol. Chem.1998,273:24521-24528.
    [83] Li Q X, Luo Q H, Li Y Z, Shen M C. A study on the mimics ofCu-Zn superoxide dismutase with high activity and stability: two copper(II)complexes of1,4,7-triazacyclononane with benzimidazole groups. DaltonTrans.2004,15:2329-2335.
    [84] Fu H, Zhou, Y H, Chen W L, Deqing Z G, Tong M L, Ji L N, Mao Z W.Complexation, Structure, and Superoxide Dismutase Activity of theImidazolate-Bridged Dinuclear Copper Moiety with β-Cyclodextrin and ItsGuanidinium-Containing Derivative. J. Am. Chem. Soc.2006,128:4924-4925.
    [85] Hodgson E K, Fridovich I. Interaction of bovine erythrocyte superoxide dismutasewith hydrogen peroxide. Chemiluminescence and peroxidation. Biochemistry1975,14:5299-5303.
    [86] Dong Z, Huang X, Mao S, Liu J, Luo G., Shen J. A Synthetic Bifunctional EnzymeModel with Superoxide Dismutase and Glutathione Peroxidase Activities. Chem.Lett.2005,34:820-821.
    [87] Balakumar A, Lysenko A B, Carcel C, Malinovskii V L, Gryko D T, SchweikartK-H, Loewe R S, Yasseri A A, Liu Z, Bocian D F, Lindsey J S. DiverseRedox-Active Molecules Bearing O-, S-, or Se-Terminated Tethers for Attachmentto Silicon in Studies of Molecular Information Storage. J. Org. Chem.2003,69:1435-1443.
    [88] Baker K, Marcus C B, Huffman K, Kruk H, Malfroy B, Doctrow S R. Syntheticcombined superoxide dismutase catalase mimetics are protective as a delayedtreatment in a rat stroke model: A key role for reactive oxygen species in ischemicbrain injury. J. Pharmacol. Exp. Ther.1998,284:215-221.
    [89] Liu Y, Li B, Li L, Zhang H Y. Synthesis of Organoselenium-Modified-Cyclodextrins Possessing a1,2-Benzisoselenazol-3(2H)-one Moiety and TheirEnzyme-Mimic Study. Helv. Chim. Acta2002,85:9-18.
    [90] Yu H J, Ge Y, Wang Y, Lin C T, Li J, Liu X M, Zang T Z, Xu J Y, Liu J Q, Luo G M,Shen J C. A fused selenium-containing protein with both GPx and SOD activities.BBRC2007,358:873-878.
    [91] Yu S J, Huang X, Miao L, Zhu J Y, Yin Y Z, Luo Q, Xu J Y, Shen J C, Liu J Q. ASupramolecular Bifunctional Artificial Enzyme with Superoxide Dismutase andGlutathione Peroxidase Activities. Bioorganic Chemistry.2010,38:159-164.
    [92]王正国.创伤后组织修复研究的现状与展望.中华创伤杂志,1995,11:131.
    [93]付小兵.生长因子与创伤修复.北京:人民军医出版社.1991,42-51.
    [94] Zhao Y, Abreu E, Kim J, Stadler G, Eskiocak U, Terns MP, Terns RM, Shay J W,Wright W E. Processive and distributive extension of human telomeres bytelomerase under homeostatic and nonequilibrium conditions.2011,42:297-307.
    [95] Blaiszik BJ, Kramer S L B, Olugebefola SC, Moore J S, Sottos N R, White S R.Self-Healing Polymers and Composites. Annu. Rev. Mater. Res.2010.40:179–211.
    [96] White S R, Sottos N R, Geubelle P H, et al. Autonomic Healing of PolymerComposites. Nature.2001,409:794-797.
    [97] Toohey K S, Sottos N R, Lewis J A. et al. Self-Healing Materials withMicrovascular Networks. Nat. Mater.2007,6:581-585.
    [98] Zhang M M, Xu D H, Yan X Z, Chen J Z, Dong S Y, Zheng B, Huang F H.Self-Healing Supramolecular Gels Formed by Crown Ether Based Host–GuestInteractions. Angew. Chem. Int. Ed.2012,51:7011-7015.
    [99] Peter T C, Julien L, Laurent V, Kevin R W, Jean-Luc W, Jeremy K M, Sanders,Sijbren O. Dynamic Combinatorial Chemistry.2006,106:3652-3711.
    [100] Keiichi I, Masamichi N, Takeshi K, Yoshifumi A, Atsushi T, and Hideyuki O.Self-Healing of Chemical Gels Cross-Linked by Diarylbibenzofuranone-BasedTrigger-Free Dynamic Covalent Bonds at Room Temperature. Angew. Chem. Int.Ed.2012,51:1138-1142.
    [101] Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing andthermoreversible rubber from supramolecular assembly. Nature2008,451:977–980.
    [102] Klukovich H M, Kean Z S, Iacono S T, Craig S L. Mechanically induced cissionand subsequent thermal remending of perfluorocyclobutane polymers. J. Am.Chem. Soc.2011,133:17882-17888.
    [103] Chen X, Wudl F, Mal A K, Shen H, Nutt S R. New thermally remendable highlycross-linked polymeric materials. Macromolecules2003,36:1802-1807.
    [104] Deng G H, Li F Y, Yu, H X, Liu F Y, Liu C Y, Sun W X, Jiang H F, Chen Y M.Dynamic hydrogels with an environmental adaptive self-healing ability and dualresponsive sol gel transitions. Macro Letters2012,1:275-279.
    [105] Chen X. et al. A thermally re-mendable cross-linked polymeric material. Science2002,295:1698–1702.
    [106] Philip M, Imbesi, Karen L. Wooley. Model Diels Alder Studies for the Creation ofAmphiphilic Cross-Linked Networks as Healable, Antibiofouling Coatings. Macro.Lett.2012,1:473-477
    [107] Ghosh B, Urban M W. Self-repairing oxetane-substituted chitosan polyurethanenetworks. Science2009,323:1458-1460.
    [108] Jens H, Aaron M. Kushner, Joseph Z, and Guan Z B, Self-Healing SupramolecularBlock Copolymers. Angew. Chem. Int. Ed.2012,51:1-6.
    [109] Berg M, Tymoczko J L, Stryer L. Biochemistry (Freeman W H. New York),2006,5th edn.
    [110] Kinbara K, AidaT. Toward intelligent molecular machines: directed motions ofbiological and artificial molecules and assemblies. Chem. Rev.2005,105:1377-1400.
    [111] Porto M, Urbakh M, Klafter J. Atomic scale engines: cars and wheels. Phys. Rev.Lett.2000,84:6058-6061.
    [112] Wang J. Can man-made nanomachines compete with nature biomotors. ACS Nano,2009,3:4-9.
    [113] Mallouk T E, Sen A. Powering nanorobots. Sci Amer.2009,300:72-77.
    [114] Ozin G A, Manners I, Foumier-Bidoz S, Arsenault A. Dream nanomachines.Adv. Mater.2005,17:3011-3018.
    [115] Sanchez S, Pumera M. Nano robots: the ultimate wireless self-propelledsensing and actuating devices. Chem. Asian J.2009,4:1402-1410.
    [116] Wang J, Manesh K M, Motion control at the nanoscale. Small,2010,6:338-345.
    [117] Solovev A A, Xi W, Gracias D H, Harazim S M, Deneke C, Sanchez S, Schmidt OG. Self-propelled nanotools. ACS Nano,2012,6:1751-1756.
    [118] Howard J. Mechanics of Motor Proteins and the Cytoskeleton, Sindauer,Sunderland,2001, p.367.
    [119] Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E,Lammert P E, Crespi V H. Catalytic Nanomotors: Autonomous Movement ofStriped Nanorods. J. Am. Chem. Soc.2004,126:13424–13431.
    [120] Ismagilov R F, Schwartz A, Bowden N, Whitesides G M. Autonomous movementand self-assembly. Angew. Chem. Int. Ed.2002,41:652–654
    [121] Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E, Sen A. Catalyticallyinduced electrokinetics for motors and micropumps. J. Am. Chem. Soc.2006,128:14881–14888.
    [122] Wang Y, Hernandez R M, Bartlett D J, Bingham J M, Kline T R, Sen A, Mallouk TE. Bipolar Electrochemical Mechanism for the Propulsion of CatalyticNanomotors in Hydrogen Peroxide Solutions.Langmuir2006,22:10451–10456.
    [123] Mano N, Heller A. Bioelectrochemical Propulsion. J. Am. Chem. Soc.2005,127:11574–11575.
    [124] Paxton W F, Sen A, Mallouk T E, Motility of Catalytic Nanoparticles throughSelf-Generated Forces. Chem. Eur. J.2005,11:6462–6470.
    [125] Liu R, Sen A, Autonomous Nanomotor Based on Copper–Platinum SegmentedNanobattery J. Am. Chem. Soc.2011,133:20064–20067.
    [126] Catchmark J M, Subramanian S, Sen A, Directed Rotational Motion of MicroscaleObjects Using Interfacial Tension Gradients Continually Generated via CatalyticReactions. Small2005,1:202-206.
    [127] Qin L, Banholzer M J, Xu X, Huang L, Mirkin C A. Rational Design andSynthesis of Catalytically Driven Nanorotors. J. Am. Chem. Soc.2007,129:14870–14871.
    [128] Ke H, Ye S, Carroll R L, Showalter K. Motion Analysis of Self-PropelledPt Silica Particles in Hydrogen Peroxide Solutions. J. Phys. Chem. A2010,114:5462–5467.
    [129] Baraban L, Makarov D, Streubel R, Monch I, Grimm D, Sanchez S, Schmidt O G.Catalytic Janus Motors on Microfluidic Chip: Deterministic Motion for TargetedCargo Delivery. ACS Nano.2012,6:3383-3389.
    [130] Mei Y, Huang G, Solovev A A, Ureňa E B, M nch I, Ding F, Reindl T, Fu R K Y,Chu P K, Schmidt O G, Versatile Approach for Integrative and FunctionalizedTubes by Strain Engineering of Nanomembranes on Polymers. Adv. Mater.2008,20:4085–4090.
    [131] Sanchez S, Solovev A A, Mei Y, Schmidt O G. Dynamics of BiocatalyticMicroengines Mediated by Variable Friction Control. J. Am. Chem. Soc.2010,132:13144–13145.
    [132] Solovev A A, Xi W, Gracias D H, Harazim S M, Deneke C, Sanchez S, Schmidt OG, Self-propelled nanotools. ACS Nano2012,6:1751–1756.
    [133] Ibele M, Mallouk T E, Sen A, Schooling behavior of light-powered autonomousmicromotors in water. Angew. Chem. Int. Ed.2009,48:3308–3312.
    [134] Ibele M E, Lammert P E, Crespi V H, Sen A. Emergent, Collective Oscillations ofSelf-Mobile Particles and Patterned Surfaces under Redox Conditions. ACS Nano2010,4:4845–4851.
    [135] Kagan D, Balasubramanian S, Wang J. Chemically Triggered Swarming of GoldMicroparticles. Angew. Chem. Int. Ed.2011,50:503-506.
    [136] Chaturvedi N, Hong Y Y, Sen A, Velegol D, Magnetic enhancement of phototaxingcatalytic motors. Langmuir2010,26:6308–6313.
    [137] Golestanian R, Liverpool T B, Ajdari A. Propulsion of a Molecular Machine byAsymmetric Distribution of Reaction Products. Phys. Rev. Lett.2005,94:220801.
    [138] Pavlick R A, Sengupta S, McFadden T, Zhang H, Sen A. A Polymerization-Powered Moto. Angew. Chem. Int. Ed.2011,50:9374–9377.
    [1] Freeman B A, Crapo J D, Biology of disease. Free radicals and tissue injury. LabInvest,1982,47:412-416.
    [2] Turrens J F, Boveris A, Generation of superoxide anion by the NADHdehydrogenase of bovine heart mitochondria. Biochem J.1980,191:421-427.
    [3] Spector A. Oxidative stress-induced cataract: mechanism of action. FASEB J.1995,9:1173-1182.
    [4] Salvemini D, Wang Z Q, Zweier J L, Samouilov A, Macarthur H, Misko T P,Currie M G, Cuzzocrea S, Sikorski J A, Riley D P. A nonpeptidyl mimic ofsuperoxide dismutase with therapeutic activity in rats. Science1999,286:304-306.
    [5] Fridovich I. A New Class of Xanthine Oxidase Inhibitors Isolated fromGuanidinium Salts. Biochemistry1965,4:1098-1101.
    [6] McCord J M, Fridovich I. Superoxide dismutase: an enzymic function forerythrocuprein (hemocuprein). J. Biol. Chem.1969,244:6049-6055.
    [7] Michiels C, Raes M, Toussaaint O. Importance of Se-glutathione peroxidase,catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical.Biol. Med.1994,17:235-248.
    [8] Fu H, Zhou Y H, Chen W L, Deqing Z G, Tong M L, Ji L N, Mao Z W.Complexation, Structure, and Superoxide Dismutase Activity of the Imidazolate-Bridged Dinuclear Copper Moiety with β-Cyclodextrin and Its Guanidinium-Containing Derivative. J. Am. Chem. Soc.2006,128:4924-4925.
    [9] Dong Z Y, Liu J Q, Mao S Z, Huang X, Yang B, Ren X J, Luo G M, Shen J C.Aryl thiol substrate3-carboxy-4-nitrobenzenethiol strongly stimulating thiolperoxidase activity of glutathione peroxidase mimic2,2'-ditellurobis (2-deoxy-beta-cyclodextrin). J. Am. Chem. Soc.2004,126:16395-16404.
    [10] Ge Y, Qi Z H, Wang Y, Liu X M, Li J, Xu J Y, Liu J Q, Shen J C. Engineeredselenium-containing glutaredoxin displays strong glutathione peroxidase activityrivaling natural enzyme. Int. J. Biochem. Cell Biol.2009,41,900-906.
    [11] Huang X, Liu, X M, Luo Q, Liu J Q, Shen J C. Artifcial selenoenzymes:Designed and redesigned. Chem. Soc. Rev.,2011,40,1171-1184.
    [12] Mugesh G, du Mont W W, Sies H. Chemistry of biologically important syntheticorganoselenium compounds. Chem. Rev.2001,101:2125-2179.
    [13] Mugesh G, Singh H B. Synthetic organoselenium compounds as antioxidants:glutathione peroxidase activity. Chem. Soc. Rev.2000,29:347-357.
    [14] Mugesh G, du Mont W W. Structure-activity correlation between naturalglutathione peroxidase (GPx) and mimics: a biomimetic concept for the designand synthesis of more efficient GPx mimics. Chemistry-A European Journal.2004,7:1365-1370.
    [15] Mugesh G, Singh H B. Heteroatom-directed aromatic lithiation: a versatile route tothe synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res.2002,35:226-236.
    [16] Liu X, Silks L A, Liu C, Ollivault S M, Huang X, Li J, Luo G, Hou Y, Liu J. Shen,J. Incorporation of Tellurocysteine into Glutathione Transferase Generates HighGlutathione Peroxidase Efficiency, Angew. Chem. Int. Ed.2009,48:2020-2023.
    [17] Hou C X, Luo Q, Liu J L, Miao L, Zhang C Q, Gao Y Z, Zhang X Y, Xu J Y, DongZ Y, Liu J Q. Construction of GPx active centers on natural proteinnanodisk/nanotube: A new way to develop artificial aanoenzyme. Acs Nano2012,6:86928701.
    [18] Borgstahl G O, Parge H E, Hickey M J, Johnson M J, Boissinot M, Hallewell R A,Lepock J R, Cabelli D E, Tainer J A. Human mitochondrial manganesesuperoxide dismutase polymorphic variant Ile58Thr reduces activity bydestabilizing the tetrameric interface. Biochemistry1996,35:4287-4297.
    [19] Batinic-Haberle I, Benov L, Spasojevic I, Fridovich R, The Ortho Effect MakesManganese(III)Meso-Tetrakis(N-Methylpyridinium-2-yl)Porphyrin a Powerfuland Potentially Useful Superoxide Dismutase Mimic. J. Biol. Chem.1998,273:24521-24528.
    [20] Cheung C Y, McCartney S J, Anseth K S. Synthesis of Polymerizable SuperoxideDismutase Mimetics to Reduce Reactive Oxygen Species Damage inTransplanted Biomedical Devices. Adv. Funct. Mater.2008,18,3119-3126.
    [21] Kos I, Benov L, Spasojevi I, Rebou as J S, Batini-Haberle I. High Lipophilicity ofmeta Mn(III) N-Alkylpyridylporphyrin-Based Superoxide Dismutase MimicsCompensates for Their Lower Antioxidant Potency and Makes Them as Effectiveas Ortho Analogues in Protecting Superoxide Dismutase-Deficient Escherichiacoli. J. Med. Chem.2009,52:7868-7872.
    [22] Sawano A, Miyawaki A. Directed evolution of green fluorescent protein by a newversatile PCR strategy for site-directed and semi-random mutagenesis. Nucl AcidsRes,2000,28: E78.
    [23]Tan K L, Board P G, Purification and characterization of a recombinant humanTheta-class glutathione transferase (GSTT2-2). J. Biol. Chem.1996,315:727-732.
    [24] Müller S, Senn H, Gsell B, Vetter W, Baron C, B ck A. The Formation ofdiselenide bridges in proteins by incorporation of selenocysteine residues:biosynthesis and characterization of (Se)2-Thioredoxin. Biochemistry1994,33:34043412.
    [25]Lansman R A, ShadeR O, Shapiro J F, et al. The use of restriction endonucleasesto measure mitochondrial DNA sequence relatedness in natural populations IIITechniques and potential applications. J. Mol. Evol.1981,17:214-226.
    [26]Hauptmann N, Grimsby J, Shih J C, et al. The Metabolism of Tyramine byMonoamine Oxidase A/B Causes Oxidative Damage to Mitochondrial DNA.Arch.Biochem.Biophys,1996,335:295-304.
    [27] Mannervik B. Glutathione peroxidase. Meth. Enzymol1985,11:490–495.
    [28] Seeliger Groot de D B L, Ligand docking and binding site analysis with PyMOLand Autodock/Vina J.Comput. Aided Mol. Des.2010,24:417422.
    [29] Adler A D, Longo F R, Shergalis W. Mechanistic Investigations of PorphyrinSyntheses.I. Preliminary Studies on ms-Tetraphenylporphin. J. Am. Chem. Soc.1964,86:3145-3149.
    [30] Lindsey J S, Schreiman I C, Hsu H C, Kearney P C, Marguerettaz A M.Rothemund and Adler-Longo reactions revisited: synthesis oftetraphenylporphyrins under equilibrium conditions. J. Org. Chem.1987,52:827-836.
    [31] Batinic-Haberle I, Benov L, Spasojevic I, Fridovich R, The ortho effect makesManganese(III)Meso-Tetrakis(N-Methylpyridinium-2-yl)Porphyrin a powerfuland potentially useful superoxide dismutase mimic. J. Biol. Chem.1998,273:2452124528.
    [32] Zhou Y H, Fu H, Zhao W X, Chen W L, Su C Y, Sun H, Ji L N, Mao Z W.Synthesis, Structure, and Activity of Supramolecular Mimics for the Active Siteand Arg141Residue of Copper, Zinc Superoxide Dismutase. Inorg. Chem.2007,46:734-739.
    [33] McCord J M, Fridovich I. Superoxide Dismutase: An enzymic function forerythrocuprein (hemocuprein). J. Biol. Chem.1969,244:60496055.
    [34] Lansman R A, Shade R O, Shapiro J F, Avise J C. The use of restrictionendonucleases to measure mitochondrial DNA sequence relatedness in naturalpopulations. III. Techniques and potential applications. J. Mol. Evol.1981,17:214-226.
    [35] Hunter F E, Scott J A, Hoffsten P E, Guerra F, Weinstein J, Schneider A, SchutzB, Fink J, Ford L, Smith E. Studies on the mechanism of ascorbate-inducedswelling and lysis of isolated liver mitochondria. J. Biol. Chem.1964,239:604-613.
    [36] Pryor W A, Stanley J P, Blair E Autoxidation of polyunsaturated fatty acids: II.A suggested mechanism for the formation of TBA-reactive materials fromprostaglandin-like endoperoxides. Lipids1976,11:370-379.
    [1] Bergman S D, Wudl F. Mendable polymers. J. Mater. Chem.2008,18:41–62.
    [2] Wool R P. Self-healing materials: a review. Soft Matter2008,4:400–418.
    [3] Wu D Y, Meure S, Solomon D. Self-healing polymeric materials: a review ofrecent developments. Prog. Polym. Sci.2008,33:479–522
    [4] Kessler M R. Self-healing: a new paradigm in materials design. Proc. Inst. Mech.Eng.2007,221:479–495.
    [5] Yuan Y C, Yin T, Rong M Z, Zhang M Q. Self healing in polymers and polymercomposites Concepts, realization and outlook: a review. Express Polym. Lett.2008,2:238–250.
    [6] White S R, Sottos N R, Geubelle P H, et al. Autonomic Healing of PolymerComposites. Nature2001,409:794-797.
    [7] Brown E N, White S R, Sottos N R. Microcapsule induced toughening in aself-healing polymer composite. J. Mater. Sci.2004,39:1703–1710.
    [8] Rule J D, Sottos N R, White S R. Effect of microcapsule size on the performanceof self-healing polymers. Polymer2007,48:3520–3529.
    [9] Kirkby E L, Rule J D, Michaud V L, Sottos N R, White S R, Manson J A E.Embedded shape-memory alloy wires for improved performance of self-healingpolymers. Adv. Funct. Mater.2008,18:2253–2260.
    [10] Kirkby E L, Michaud V J, Manson J A E, Sottos N R, White S R. Performance ofself-healing epoxy with microencapsulated healing agent and shape memoryalloy wires. Polymer2009,50:5533–5538.
    [11] Toohey, K. S.; Sottos, N. R.; Lewis, J. A.; et al. Self-Healing Materials withMicrovascular Networks. Nat. Mater.2007,6:581–585.
    [12] Toohey K S, Hansen C J, Lewis J A, White S R, Sottos N R. Delivery of two-partself-healing chemistry via microvascular networks. Adv. Funct. Mater.2009,19:1399–1405.
    [13] Hansen C J, Wu W, Toohey K S, Sottos N R, White S R, Lewis J A. Self-healingmaterials with interpenetrating microvascular networks. Adv. Mater.2009,21:4143–4147.
    [14] Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing andthermoreversible rubber from supramolecular assembly. Nature2008,451:977–980.
    [15] Montarnal D, Tournilhac F, Hidalgo M, Couturier J, Leibler L. Versatile one-potsynthesis of supramolecular plastics and self-healing rubbers. J. Am. Chem. Soc.2009,13:7966–7967.
    [16] Zhang M M, Xu D H, Yan X Z, Chen J Z, Dong S Y, Zheng B, Huang F H.Self-Healing Supramolecular Gels Formed by Crown Ether Based Host–GuestInteractions. Angew. Chem. Int. Ed.2012,51:7011-7015.
    [17] Hayes S A, Zhang W, Branthwaite M, Jones F R. Self-healing of damage infiber-reinforced polymer-matrix composites. J. R. Soc. Interface2007,4:381-387.
    [18] Hayes S A, Jones F R, Marshiya K, Zhang W. A self-healing thermosettingcomposite material. Composites A.2007,38:1116-1120.
    [19] Chen X X, DamM A, OnoK, Mal A, Shen H B, et al. Athermally remendablecross-linked polymeric material. Science2002,295:1698-1702.
    [20] Chen X X, Wudl F, Mal A K, Shen H B, Nutt S R. New thermally remendablehighly cross-linked polymeric materials. Macromolecules2003,36:1802-1807.
    [21] Plaisted T A, Nemat-Nasser S. Quantitative evaluation of fracture, healing andrehealing of a reversibly cross-linked polymer. Acta Mater.2007,55:5684-5696.
    [22] Park J S, Takahashi K, Guo Z H, Wang Y, Bolanos E, et al. Towards developmentof a self-healing composite using a mendable polymer and resistive heating. J.Compos. Mater.2008,42:2869–2881.
    [23] Murphy E B, Bolanos E, Schaffner-Hamann C, Wudl F, Nutt S R, Auad M L.Synthesis and characterization of a single-component thermally remendablepolymer network: Staudinger and Stille revisited. Macromolecules2008,41:5203–5209.
    [24] Burnworth, M. et al. Optically healable supramolecular polymers. Nature2011,472:334–337.
    [25] Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Repeatablephotoinduced self-healing of covalently cross-linked polymers throughreshuffling of trithiocarbonate units. Angew. Chem. Int. Ed.2011,50:1660–1663.
    [26] Ghosh B. Urban M W. Self-repairing oxetane-substituted chitosan polyurethanenetworks. Science2009,323:1458–1460.
    [27] Chen X. et al. A thermally re-mendable cross-linked polymeric material. Science2002,295:1698–1702.
    [28] Burattini S. et al. A healable supramolecular polymer blend based on aromatic p–p stacking and hydrogen-bonding interactions. J. Am. Chem. Soc.2010,132:12051–12058.
    [29] Klukovich H M, Kean Z S, Iacono S T, Craig S L. Mechanically induced scissionand subsequent thermal remending of perfluorocyclobutane polymers., J. Am.Chem. Soc.2011,133:17882–17888.
    [30]Deng G H, Li F Y, Yu, H X, Liu F Y, Liu C Y, Sun W X, Jiang H F, Chen Y M.Dynamic hydrogels with an environmental adaptive self-healing ability and dualresponsive sol gel transitions. Macro Letters.2012,1:275-279.
    [31] Matthew E, Belowicha, J. Fraser Stoddart. Dynamic imine chemistry. Chem. Soc.Rev.2012,41:2003–2024.
    [32] Frederick K R, Tung J, Emerick, R S, Masiarz F R, Chamberlain S H, VasavadaA, Rosenberg S, Chakraborty S, Schopter L M, Massey V. Glucose oxidase fromAspergillus niger. Cloning, gene sequence, secretion from Saccharomyces cerevis.J. Biol. Chem.1990,265:3793–3802.
    [1] Berg M, Tymoczko J L, Stryer L. Biochemistry (Freeman, W H. New York),2006,5th edn.
    [2] Kinbara K, AidaT. Toward intelligent molecular machines: directed motions ofbiological and artificial molecules and assemblies. Chem. Rev.2005,105:1377-1400.
    [3] Porto M, Urbakh M, Klafter J. Atomic scale engines: cars and wheels. Phys. Rev.Lett.2000,84:6058-6061.
    [4] Wang J. Can man-made nanomachines compete with nature biomotors. ACS Nano,2009,3:4-9.
    [5] Mallouk T E, Sen A. Powering nanorobots. Sci Amer.2009,300:72-77.
    [6] Ozin G A, Manners I, Foumier-Bidoz S, Arsenault A. Dream nanomachines.Adv. Mater.2005,17:3011-3018.
    [7] Sanchez S, Pumera M. Nano robots: the ultimate wireless self-propelled sensingand actuating devices. Chem. Asian J.2009,4:1402-1410.
    [8] Wang J, Manesh K M, Motion control at the nanoscale. Small,2010,6:338-345.
    [9] Solovev A A, Xi W, Gracias D H, Harazim S M, Deneke C, Sanchez S, Schmidt OG. Self-propelled nanotools. ACS Nano,2012,6:1751-1756.
    [10] Paxton W F, KistleK C,Olmeda C C, Sen A, St Angelo S K, Cao Y Y, Mallouk TE, Lammert P E, Crespi V H. Catalytic nanomotors: autonomous movement ofstriped nanorods. J, Am. Chem. Soc.2004,126:13424-13431.
    [11] Solovev A A, Mei Y F, Urena E B, Huang G S, Schmidt O G. Catalyticmicrotubular jet engines self-propelled by accumulated gas bubbles. Small2009,5:1688-1692.
    [12] Mei Y, Huang G, Solovev A A, Ure a E B, M nch I, Ding F, Reindl T, Fu R K Y,Chu P K, Schmidt O G, Versatile Approach for Integrative and FunctionalizedTubes by Strain Engineering of Nanomembranes on Polymers. Adv. Mater.2008,20:4085–4090.
    [13] Sanchez S, Solovev A A, Mei Y, Schmidt O G.Dynamics of BiocatalyticMicroengines Mediated by Variable Friction Control.J. Am. Chem. Soc.2010,132:13144–13145.
    [14] Paxton W F, Sen A, Mallouk T E, Motility of Catalytic Nanoparticles throughSelf-Generated Forces. Chem. Eur. J.2005,11:6462–6470.
    [15] Kovtyukhova N I. Toward understanding of the propulsion mechanism ofrod-shaped nanoparticles that catalyze gas-generating reactions. J. Phys. Chem.2008,112:6049-6056.
    [16] Wang Y, Hernandez R M, Bartlett D J, Bingham J M, Kline T R, Sen A, MalloukT E. Bipolar Electrochemical Mechanism for the Propulsion of CatalyticNanomotors in Hydrogen Peroxide Solutions. Langmuir2006,22:10451–10456.
    [17] Mano N, Heller A. Bioelectrochemical Propulsion. J. Am. Chem. Soc.2005,127:11574–11575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700