用户名: 密码: 验证码:
纳米多孔金对CO、葡萄糖及苯甲醇氧化的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
很久以来,金都被认为是无催化活性的惰性金属。但自从Haruta发现高分散性负载型纳米金颗粒在低温下对CO氧化有很高的催化活性以来,金的催化性能引起了科学界的广泛关注。纳米金被广泛用于各种重要的催化反应,气相反应如CO的选择性氧化、氮氧化物的还原、水汽转换反应以及丙烯的环氧化,液相反应如苯甲醇、乙二醇、甘油、环己烯、苯乙烯的氧化以及过氧化氢的合成等。纳米多孔金(Nanoporous gold,简称NPG)作为一种全新的纳米金材料,近几年对其性质特别是催化性能的研究成为热点。NPG是用去合金法将金银合金中的银腐蚀掉而形成的一种拥有独特的双连续多孔结构的纳米多孔材料。作为一种无负载的金催化剂,NPG对许多反应,如CO低温氧化、甲醇电氧化以及过氧化氢的还原,都有良好的催化活性。
     本文中我们进行了纳米多孔金催化剂对CO、葡萄糖和苯甲醇氧化的催化性能研究。其主要内容包括:
     1、制备了残留银含量不同的NPG催化剂,对其形貌和表面金银比例进行了表征,研究了NPG中残留银含量在常温及变温条件下对CO氧化反应的催化活性的影响。结果发现残留Ag的存在对NPG催化氧化CO的活性起重要的作用。NPG的催化活性与其含银量及银的表面氧化态有密切关系,而受孔壁尺寸大小的影响不明显。常温下NPG样品对CO的催化活性很低,而且残留银含量越高催化活性越低。含有适量残留银的NPG样品在>150℃的O_2气氛中退火或经升温(>150℃)CO氧化反应后,即使温度降低至50℃仍对CO氧化表现出显著的催化活性,虽然其孔壁尺寸由于经过高温过程已达到50 nm以上。在变温反应过程中,NPG样品中由于残留银量的不同而显示出了不同的催化特性,很多特征与文献报道的负载型Au/Ag合金催化剂的性能相似,因此含有一定量残留银的NPG催化剂事实上是一种全新的无负载纳米多孔Au/Ag合金催化剂,其孔壁表面的Au/Ag原子比例约为2:1时表现出最好的催化活性。我们认为NPG孔壁表面的Ag在氧化气氛下升温过程中可能形成了一层表面类氧化银结构,而这种结构对CO的催化氧化起到了至关重要的作用。
     2、研究了纳米多孔金中羟基的存在对NPG催化氧化CO活性的促进作用,结果显示经过碱溶液浸泡处理的NPG对CO氧化的催化活性大大提高。经1M NaOH溶液(pH14)720 min浸泡处理的多孔金NPG-720,室温下(25℃)其对CO氧化的催化活性比未处理样品提高了约十倍,并且在较高温度下能一直保持高活性,稳定性非常好。采用氨水为碱溶液的对比实验表明NPG活性的大幅提高是羟基OH~-起关键作用而不是Na~+离子。研究还表明碱溶液的pH值以及浸泡时间是决定羟基促进效应强弱及稳定性大小的两个关键因素。研究结果还显示,NPG催化剂中的银残留量不同,羟基对其活性促进作用的程度不同,银残留量越低,羟基的活性促进效应越强。如残留银含量较高的多孔金NPG-16经碱溶液浸泡处理后,室温下对CO氧化的催化活性几乎没有促进作用,但在升温反应过程中其活性却大大提高。
     3、分别采用电化学腐蚀和自由腐蚀的方法制备了不同孔壁尺寸的NPG催化剂,不同残留银含量的NPG催化剂,研究了NPG孔壁尺寸及银残留量对D-葡萄糖氧化的催化活性影响。结果显示小孔径多孔金NPG-15(孔壁尺寸6 nm)的催化活性要远高于大孔径多孔金NPG-720(孔壁尺寸30 nm)。研究还显示,多孔金催化剂中的残留银含量越高,其催化活性越低,银的存在对催化葡萄糖氧化反应是不利的。此外,我们制备了多孔AuPt合金,结果发现Pt的引入可使多孔金催化剂的催化稳定性大大提高。
     4、开展了NPG在无溶剂体系下对苯甲醇选择性催化氧化为苯甲醛的研究。实验证明反应温度越高,苯甲醇的转化率和生成苯甲醛的选择性越高;氧分压越高,苯甲醇的转化率也越高,而生成苯甲醛的选择性却越低。每个温度下反应的进行都需要一定的诱发时间,反应温度越低诱发时间越长,而少量水的加入却能使反应在较低温度下立即进行而无诱发时间。用淀粉KI试纸检测的方法证明在反应过程中有类过氧化物中间体生成。另外,K_2CO_3粉末的存在对NPG催化氧化苯甲醇有较明显的促进作用。
Gold has been generally considered catalytically inactive for a long time. However, Haruta et al. reported that nanosized gold particles supported on oxides show high catalytic activity for CO oxidation, and then supported gold catalysts attracted increasing interest because they exhibited exceptional catalytic activity. Nanogold was widely used for many important reactions, for gas phase reaction including the selective oxidation of CO, NO reduction, water gas shift reaction and epoxidation of propene; for liquid phase reaction including the oxidation of benzyl alcohol, glycol, glycerol, cyclohexene and styrene, as well as the synthesis of hydrogen peroxide, and so on. In recent years, studying on the properties of nanoporous gold (NPG), especially its catalytic performance, has become a new hotspot. NPG, made by dealloying of Ag from Ag/Au alloys, has a unique bi-continuous foam structure. As an unsupported gold catalyst, NPG has displayed exceptional catalytic performances for many reactions, such as low-temperature CO oxidation, electro-oxidation of methanol and reduction of hydrogen peroxide.
     In this paper, we carried out the studying on the catalytic performance of NPG for CO, D-glucose and benzyl alcohol oxidation.
     1. NPG catalysts with various residual silver contents were fabricated, and their micro-morphologies were characterized; then we investigated the effect of residual Ag on the catalytic activity of NPG for CO oxidation at room temperature and changing temperature, the results showed that the existence of Ag played a key role for the CO oxidation. The catalytic activity of these NPG catalysts for CO oxidation is closely correlation with surface silver contents and oxidation state, whereas the ligament size effect is not obvious. The original NPG samples exhibited very low catalytic activity for CO oxidation at room temperature, and the presence of residual Ag is found to be unfavorable under this condition. Upon Pretreated in oxygen at elevated temperature (above 150℃), NPG with appropriate Ag residues showed enhanced catalytic activity for CO oxidation at low temperature, though the ligament sizes dramatically increased to above 50 nm synchronously. Especially, for the temperature changing reaction, these samples exhibited a similar catalytic performance to supported Au/Ag alloy particle catalysts previous reported, which strongly implies NPG with certain Ag residues to be virtually a novel unsupported nanoporous Au/Ag alloy catalyst, and the best activity can be obtained with surface Au/Ag ratio around 2:1. We suppose that a thin surface silver oxide-like structure on NPG ligaments might play an important role for the catalytic activity of these catalysts toward CO oxidation.
     2. According to the corresponding references, we reported the promotional effect of hydroxyl on the CO oxidation over nanoporous gold (NPG) catalysts. The experimental results showed that the catalytic activity of NPG catalyst pretreated with alkaline solution was enhanced obviously; ammonia comparative experiment proved that OH~- was the promoter, not Na~+; the high catalytic activity of alkaline pretreatment NPG catalysts for CO oxidation was closely related with pH value of alkaline solution and immersing time; moreover, an investigation of the catalytic activity of NPG-16 (24.9at%Ag) pretreated with alkaline solution for CO oxidation was carried out, and we got that after being pretreated with alkaline solution the activity of this sample was still very low at temperature, while increasing temperature a significant activity increasing was obtained.
     3. We prepared two different sizes NPG samples with electrochemical corrosion method and free corrosion method, respectively; subsequently, we used these samples as catalysts for D-glucose oxidation, obtaining that the catalytic activity of 6nm NPG sample was much higher than the 30nm one's. Meanwhile, the effect of residual Ag on catalytic activity of free corrosion NPG for D-glucose oxidation was investigated, and the more Ag residues, the less catalytic activity; moreover, nanoporous Au-Pt alloy was made, and the addition of Pt greatly improved the catalytic stability for D-glucose oxidation.
     4. We took NPG as the catalyst for solvent-free selective oxidizing benzyl alcohol to benzaldehyde. Experiment showed that increasing the temperature increased the conversion of benzyl alcohol and the selectivity of benzaldehyde; however, the increasing of pO_2 increased the conversion of benzyl alcohol, whereas reduced the selectivity of benzaldehyde. An induction phase was needed before the reaction carryied out, and the lower reaction temperature, the longer induction phase, but the addition of a little water could initiate this reaction under lower temperature. The result of KI-containing starch detection showed that hydroperoxy species were probably involved in the oxidation as intermediate. Moreover, the introducing of anhydrous K_2CO_3 significantly promoted the activity of NPG catalyst for benzyl alcohol oxidation.
引文
[1]卢寿慈,粉体加工技术,北京:中国轻工业出版社,1999.
    [2]X.He,D.Antonelli,Recent Advances in Synthesis and Application of Transition Metal Containing Mesoporous Molecular Sieves,[J].Angew.Chem.Intl.Ed.2002,41,214-229.
    [3]van Noort D,Mandenius.C-F,Porous gold for biosensor applications.[J].Biosensors & Bioelectronics,2000,15:203-209.
    [4]Ertenberg,R.W.,Andraka B.,and Takano,Y.,Prospects of porous gold as a low-temperature heat exchanger for liquid and solid helium.[J].Physica B.2000,284:2022-2023.
    [5]Sing K.S.W.,Everett D.H.,Haul R.A.W.,Moscou L.,Pierotti R.A.,Rouquerol J.&Siemieniewska,T.Reporting Physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984)[J].Pure Appl.Chem.1985,57:603-619.
    [6]S.H.Feng,R.R.Xu,New materials in hydrothermal synthesis,[J].Acc.Chem.Res.2001,34:239-247.
    [7]C.T.Kresge,M.E.Leonwoicz,W.J.Roth,J.C.Vartuli,J.S.Beck,Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,[J].Nature.1992,359:710-712.
    [8]J.S.Beck,J.C.Vartuli,W.J.Roth,M.E.Leonowicz,C.T.Kresge,K.D.Schmitt,C.T-W.Chu,D.H.Olson,E.W.Sheppard,S.B.McCullen,J.B.Higgins,J.L.Schlenker,A new family of mesoporous molecular sieves prepared with liquid cyrstal templates.[J].J.Am.Chem.Soc.1992,114:10834-10843.
    [9]B.Z.Tian,X.Y.Liu,B.Tu,C.Yu,J.Fan,S.Xie,G.D.Stucky D.Y.Zhao,Self-Adjusted General Synthesis of Ordered Stable Mesoporous Minerals via Acid-Base Pairs.[J].Nature Materials,2003,2:159-163.
    [10]D.W.Breck,Zeolite Molecular Sieves- Structure Chemistry and Use,Krieger Publishing Company 1984.593-724.
    [11]DiRenzo F,Cambon H and Dutartre R,A 28-year old synthesis of micelle-templated mesoporous silica.Micropor Mater,1997,10:283-286.
    [12]T.Yanagisawa,T.Shimizu,K.Kuroda,& C.Kato,The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials.[J].Bull.Chem.Soc.Jpn,1990,63:988-992.
    [13]Beck J.S,Vatuli J.C,Roth W.J,et al.A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates[J].J.Am.Chem.Soc.1992,114:10834-10843.
    [14]R.L.Smith and S.D.Collins,Porous silicon formation mechanisms,[J].J.Appl.Phys.1992,71:R1-R2.
    [15]Keller F.;Hunter M.S.;Robinson D.L.,Structural features of anodie oxide films on aluminum,[J].Electrochem.Soc.1953,100:411-416.
    [16]Li,A.P.,Muller,F.,Bimer,A.,Nielsch,K.,Gosele,U.,Hexagonal Pore Arrays With a 50-420 Nm Interpore Distance Formed by Self-Organization in Anodic Alumina,[J].J.Appl.Phys.,1998,84:6023-6026.
    [17]D.G.Bueknail,H.L.Anderson,Polymers Get Organized,[J].Science.,2003,302:1904-1905.
    [18]D.Enke,F.Janowski,W.Schwieger,Porous glasses in the 21st centry-a short review.[J].Micropor.Mesopor.Mater.,2003,60:19-30.
    [19]朱震刚,金属泡沫材料研究.[J].物理,1999,28(2):84-88.
    [20]Nakajima H,Hyun S K,Ohashi K,et al.Fabrication of porous copper by unidirectional solidification under hydrogen and its properties.[J].Colloids and Surfaces,2001,179:209-214.
    [21]曾汉民,高技术新材料要览.北京:中国科学技术出版社,1993,156-160
    [22]Davis G J,Shu Z,Metallic foams:their production,properties and application.[J].J Mater Sci,1983,18:1899-1911.
    [23]Banhart J.Manufacture,characterization and application of cellular metals and metal foams.[J].Progress in Materials Science,2001,46:559-632.
    [24]汤慧萍,张正德.金属多孔材料发展状况.稀有金属材料与工程,1997,26(1):1-6.
    [25]Liu P S,Liang K M,Functional materials of porous metal made by P/M,electroplating and some other techniques.[J].J Mater Sci,2001,36:5059-5072.
    [26]Liu P S,Yu B,Hu A M,et al.Development yin applications of porous metals.Trans Nanferrous Met Soc China,2001,11(5):629-638.
    [27]许庆彦,陈玉勇,李庆春.多孔铝合金材料吸声性能的研究.宇航材料工 艺,1998,2:39-43.
    [28]宝鸡有色金属研究所,粉末冶金多孔材料(上册).北京:冶金工业出版社,1978,5.
    [29]G.S.Attard,P.N.Bartlett,N.R.B.Coleman,J.M.Elliott,J.R.Owen,J.H.Wang,Nanostructured platinum films from lyotropic liquid crystalline phases,[J].Science.1997,278:838-840.
    [30]O.D.Velev,P.M.Tessier,A.M.Lenhoff,E.W.Kaler,A Class of Porous Metallic Nanostructures,[J].Nature.1999,401:548-548.
    [31]Y.X.Lu,Q.F.Wang,J.Q.Sun,J.C.Shen,Selective dissolution of the silver component in colloidal Au and Ag multilayers:A facile way to prepare nanoporous gold film materials,[J].Langmuir.2005,21:5179-5184.
    [32]H.Zhang,A.I.Cooper,New approaches to the synthesis of macroporous metals,[J].J.Mater.Chem.2005,15:2157-2159.
    [33]F.C.Meldrum,R.Seshadri,Porous gold structures through templating by echinoid skeletal.Plates,[J].Chem.Commun.2000,29-30.
    [34]D.Velev,P.M.Tessier,A.M.Lenhoff,E.W.Kaler,A Class of Porous Metallic Nanostructures,[J].Nature.1999,401:548-548.
    [35]Banhart J,Ashby M F,Fleck N,Metal foams and porous metal structures,International Conference on Metal Foams and Porous Metal Structures.Bremen:Verl MIT publ,1999,5-37.
    [36]刘培生,黄林国,多孔金属材料制备方法.功能材料,2002,33(1):5-8.
    [37]M.Stratmann,M.Rohwerder,A pore view of corrosion,[J].Nature,2001,410:420-423.
    [38]M.Raney,Method of producing finely divided nickel,U.S.Patent.1927,No.1,628,190.
    [39]A.J.Smith,T.Tran and M.S.Wainwright,Kinetics and mechanism of the preparation of Raney(R) copper[J].J.Appl.Electrochem.1999,29:1085-1094.
    [40]Yoon,J.;Chan,M.H.W.Superfluid transition of 4He in porous gold.Phys.Rev.Lett.1997,78,4801-4804.
    [41]Tulimieri,D.J.;Yoon,J.;Chan,M.H.W.Ordering of Helium Mixtures in Porous Gold,Phys.Rev.Lett.1999,82,121-124.
    [42]Csathy,G.A.;Chan,M.H.W.Effect of He-3 on submonolayer Superfluidity, Phys. Rev. Lett. 2001, 87, 045301.
    [43] Bonroy, K.; Friedt, J.; Frederix, F.; Laureyn, W.; Langerock, S.; Campitelli, A.; Sara, M.; Borghs, G.;Goddeeris, B.; Declerck, P. Realization and characterization of porous gold for increased coverage on acoustic sensors Anal. Chem. 2004, 76, 4299-4306.
    [44] Knake, R.; Guchardi, R.; Hauser, P. C. Quantitative analysis of gas mixtures by voltammetric sensing Anal. Chim. Acta 2003,475, 17-25.
    [45]Hieda, M.; Garcia, R.; Dixon, M.; Daniel, T.; Allara, D.; Chan, M. H. W. Ultrasensitive- quartz crystal microbalance with porous gold electrodesApp. Phys. Lett. 2004, 84, 628-630.
    [46]McKenzie, K. J.; Niedziolka, J.; Paddon, C. A.; Marken, F.; Rozniecka, E.; Opallo, M. Hydrophobic silica sol-gel films for biphasic electrodes and porotrodes Analyst 2004,129, 1181-1185.
    [47] Stevens, G. B.; Reda, T.; Raguse, B. Energy storage by electrochemical reduction of CO2 to CO at a porous Au film. J. Electroanal. Chem. 2002, 526, 125-133.
    [48] Fiona C. Meldrum, Ram Seshadri. Bioskeletons as Templates for Ordered, Macroporous Structures, [J].Adv. Mater. 2000,12: 1149-1151.
    
    
    [49] Orlin D.Velev, Eric. W. Kaler. Structured porous materials via colloidal crystal templating: from inorganic oxides to metals. [J].Adv. Mater. 2000, 12(7): 531-534.
    
    [50] Orlin D. Velev, Abraham M. Lenhoff, Eric W. Kaler . A Class of Microstructured Particles Through Colloidal Crystallization [J].Science, 2000, 287: 2240-2243.
    
    [51] Kristen M. Kulinowski, Peng Jiang, Harsha Vaswani, Vicki. L. Colvin, Porous metals from colloidal templates, [J]. Adv. Mater, 2000 12 (11): 833-838.
    
    [52] A. J. Forty, Corrosion Micromorphology of Noble Metal Alloys and Depletion Nature, 1979,282, 597-598.
    
    [53] M. Stratmann, M. Rohwerder, A pore view of corrosion [J]. Nature, 2001, 410, 420-421.
    
    [54] R. C. Newman, S. G. Corcoran, J. Erlebacher, M. J. Aziz, K. Sieradzki, Alloy Corrosion, MRS Bull. 1999, 24, 24-28.
    [55] H. W. Pickering, Characteristic Features of Alloy Polarization Curves, [J]. Corros. Sci. 1983,23, 1107-1120.
    [56] R. C. Newman, K. Sieradzki, Corrosion Science, [J].MRS Bull. 1999, 24, 12
    [57] M. P. Ryan, D. E. Williams, R. J. Chater, B. M. Hutton, D. S. McPhail, Why stainless steel corrodes, [J].Nature, 2002,415, 770 -774.
    [58] Erlebacher, J., Aziz, M. J., Karama, A., Dimitrov, N., Sieradzki, K., Evolution of Nanoporosity in Dealloying, Nature. 2001. 410: 450-453.
    [59] A. J. Forty, Selective dissolution and De-Alloying of Silver-Gold and Similar Alloys in Sir Charles Frank: An 80th Birthday Tribute, ed. R. B. Chamber (Adam Hilger, Bristol, 1991)164-181.
    [60] J. D. Fritz, H. W. Pickering, Selectivve Anodic Dissolution of Cu-Au Alloys: TEM and Current Transient Study, J. Electrochem Soc. 1991. 138. 3209-3218.
    [61] J. Erlebacher, An Atomistic Description of Dealloying- Porosity evolution, the critical potential, and rate-limiting behavior. [J].Electrochem. Soc. 2004, 151, c614~C626.
    [62] Forty, A. J.; Durkin, P. Philos. Mag. A 1980,42,295-318.
    [63] Yoon, J. Ph. D. Thesis The Pennsylvania State University 1997.
    [64] Ding, Y.; Kim, Y. J.; Erlebacher, J. AdV. Mater. 2004, 16, 1897-1900.
    [65] Ding, Y.; Erlebacher, J. J. Am. Chem. Soc. 2003, 125, 7772-7773.
    [66] Ding, Y.; Chen, M. W.; Erlebacher, J. J. Am. Chem. Soc. 2004,126,6876-6877.
    [67] Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. J. Am. Chem. Soc. 2007,129,42.
    [68] S. Kameoka, A.P. Tsai, Catal. Lett. 2008,121,337.
    [69] Haruta M, Yamada N, Kobayashi T, et al. Gold Catalysts Prepared by Coprecipitation for Low - temperature Oxidation of Hydrogen and Carbon Monoxide [J].J Catal, 1989, 115:301-309.
    [70] Haruta M. Novel catalysis of gold deposited on metal oxides [J]. Catal Sur Jpn, 1997,1:61-73.
    [71] Banwenda G R, Tsubota S, Nakamura T et al. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 forCOoxidation[J ]. Catal Lett, 1997,44: 83 - 87.
    [72]Sakurai H,Haruta M,Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium,iron,and zinc oxides[J].Appl Catal A:General,1995,127:93.
    [73]G.C.Bond,C.Louis and D.T.Thompson,Catalysis by Gold(Imperial College Press,London,2006).
    [74]Haruta M.Novel catalysis of gold deposited on metal oxides[J].Catal Surveys of Japan,1997,1:61-73.
    [75]Haruta M,Yamada N,Kobayashi T,et al.Gold Catalysts Prepared by Coprecipitation for Low-temperature Oxidation of Hydrogen and Carbon Monoxide [J].J Catal,1989,115:301-309.
    [76]Hao Z P,An L D,Wang H L.A Supported Gold Catalyst for the Elimination of Hydrogen from CO 2 Feed Gas in the Production of Urea[J].React Ki net Catal Lett,1996,59(2):295-300.
    [77]Grisel R J H,Weststrate CJ,Goossens A,et al.Oxidation of CO over Au/MOx/Al2O3 multi-component catalystsin a hydrogen-rich environment[J].Catalysis Today,2002,72:123-132.
    [78]陶泳,高滋.金的催化作用[J].化学世界,2005,(2):114-117.
    [79]Ueda A,Haruta M.Reduction of nitrogen monoxide with propene over Au/Al 2O3 mixed mechanically with Mn2O3[J].Appl Catal B:Environ,1998,18:115-121.
    [80]Hutchings GJ.Gold catalysis in chemical processing[J].Catal Today,2002,72:11-17.
    [81]Andre eVa D,Idaki eV V,Tabakova T,et al.Low - Temperature Water $ Gas Shift Reaction over Au/a- Fe2O3[J].J Catal,1996,158:354-355.
    [82]Andre eva D,Idaki eV V,Tabakova T,et al.Low - temperature water - gas shift reaction on Au/c - Fe203 catalyst[J].A ppl Catal A:Gen,1996,134:275-283.
    [83]Bonarowska M,Burda B,Juszczyk W,et al.Hydrodechlorination of CCl2F2(CFC-12) over Pd-Au/C catalysts[J].Applied Catalysis B,Environmental,2001,35:13-20.
    [84]L.Prati and M.Rossi,J.Catal.176(1998) 552.
    [85] F. Porta, L. Prati, M. Rossi, S. Colluccia and G. Martra, Catal.Today. 61 (2000) 165.
    
    
    [86] C. Bianchi, F. Porta, L. Prati and M. Rossi, Top. Catal.13 (2000) 231.
    
    [87] L. Prati, Gold Bull. 32 (1999) 96
    
    [88] S. Carrettin, P. McMorn, P. Johnston, K. Griffin and G.J.Hutchings, Chem. Commun. (2002) 696.
    
    [89] S. Carretin, P. McMorn, P. Johnston, K. Griffin, C.J. Kiely and G.J. Hutchings, Phys.Chem.Chem.Phys.5(2003)1329.
    
    [90] D.I. Enache, J.K. Edwards, P. Landon et al., Science 311 (2006) 362.
    [91] D.I. Enache, D.W. Knight, G.J. Hutchings, Catal. Lett. 103 (2005) 43.
    
    [92] Boxhoorn, G. Process for the manufacture of silver-containing epoxidation catalysts. European Patent Application (Shell Internationale Research Maatschappij B.V., Neth., Appl. EP 87-201439, 19870727, 1988).
    
    [93] Sinha, A. K., Seelan, S., Tsubota, S. & Haruta, M. A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion. Angew. Chem. Int. Edn Engl. 43, 1546-1548 (2004).
    
    [94] Sinha, A. K., Seelan, S., Tsubota, S. & Haruta, M. Catalysis by gold nanoparticles: epoxidation of propene. Top. Catal. 29, 95—102 (2004).
    
    [95] Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F. K.; Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, C. J. Nature 2005,437, 1132.
    [96] Xu, C. X.; Xu, X. H.; Su, J. X.; Ding, Y. J. Catal. 2007,252,243.
    
    [97] Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. J. Phys. Chem. C 2007, 111, 10382.
    
    [98] Zielasek, V.; Jurgens, B.; Schulz, C.; Biener, J.; Biener, M. M.; Hamza, A. V.; Baumer, M. Angew. Chem. Int. Ed. 2006,45, 1.
    [99] Yin, H. M.; Zhou, C. Q.; Xu, C. X.; Liu, P. P.; Xu, X. H.; Ding, Y. J.Phys. Chem. C. 2008, 112,9673.
    
    [100] Zeis, R.; Lei, T.; Sieradzki, K.; Snyder, J.; Erlebacher, J. J. Catal. 2008, 253, 132.
    [1] Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16,405
    [2] Bond G. C.; Thompson D. T. Catal. Rev. Sci. Eng. 1999,41, 319.
    
    [3] Kim, T. S.; Stiehl, J. D.; Reeves, C. T.; Meyer, R.J.; Mullins, C. B. J. Am. Chem. Soc. 2003, 125,2018.
    
    [4] Comotti, M.; Li, W. C.; Spliethoff, B.; Schüth, F. J. Am. Chem. Soc. 2006, 128, 917.
    
    [5] Kung M. C.; Davis R. J.; Kung H. H. J. Phys. Chem. C, 2007, 111,11767.
    
    [6] Valden, M.; Lai, X.; Goodman, D.W. Science. 1998, 281,1647.
    
    [7] Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Lu, P.; Akita, T.; Ichikawa, S.; Haruta, M.J. Catal. 2001,202,256.
    
    [8] Meier, D.C.; Goodman, D.W. J. Am. Chem. Soc. 2004, 126, 1892.
    
    [9] Lopez, N.; Janssens, T. V. W.; Clausen, B.S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Norskov, J. K. J. Catal. 2004, 223, 232.
    
    [10] Wallace, W. T.; Whetten, R. L. J. Phys. Chem. B. 2000, 104, 10964.
    
    [11] Kozlov, A. I.; Kozlova, A. P.; Asakura, K.; Matsui, Y.; Kogure, T.; Shido, T.; Iwasawa, Y. J. Catal. 2000, 196, 56.
    
    [12] Moreau F.; Bond G. C.; Taylor A. O. Chem. Commun. 2004, 1642.
    
    [13] Epling W. S.; Hoflund G. B.; Weaver J. F.; J. Phys. Chem. 1996, 100, 9929.
    
    [14] Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. J. Catal. 2001, 197, 113.
    
    [15] Arrii S.; Morfin F.; Renouprez A. J.; Rousset J. L. J. Am. Chem. Soc. 2004, 126, 119.
    
    [16] Park, E. D.; Lee, J. S. J. Catal. 1999, 186, 1.
    
    [17] Yang, J. H.; Henao, J. D.; Raphulu, M. C.; Wang, Y. M.; Caputo, T.; Groszek, A. J.; Kung, M. C.; Scurrell, M. S.; Miller, J. T.; Kung, H. H. J. Phys. Chem.B.2005,109,10319.
    [18]Haruta,M.Chem.Phys.Chem.2007,8,1911.
    [19]Zielasek,V.;J(u|¨)rgens,B.;Schulz,C.;Biener,J.;Biener,M.M.;Hamza,A.V.;Ba(u|¨)mer,M.Angew.Chem.,Int.Ed.2006,45,8241.
    [20]J(u|¨)rgens,B.;K(u|¨)bel,C.;Schulz,C.;Nowitzld,T.;Zielasek,V.;Biener,J.;Biener,M.M.;Hamza,A.V.;Ba(u|¨)mer,M.Gold Bull.2007,40,142.
    [21]Xu,C.X.;Su,J.X.;Xu,X.H.;Liu,P.P.;Zhao,H.J.;Tian,F.;Ding,Y.J.Am.Chem.Soc.2007,129,4.
    [22]Xu,C.;Xu,X.;Su,J.;Ding,Y.J.Catal.2007,252,243.
    [23]Liu,J.H.;Wang,A.Q.;Chi,Y.S.;Lin,H.P.;Mou,C.Y.J.Phys.Chem.B 2005,109,40.
    [24]Wang,A.Q.;Chang,C.M.;Mou,C.Y.J.Phys.Chem.B 2005,109,18860.
    [25]Wang,A.Q.;Liu,J.H.;Lin,S.D.;Lin,T.S.;Mou,C.Y.J.Catal.2005,233,186.
    [26]Wang,A.Q.;Hsieh,Y.;Chen,Y.F.;Mou,C.Y.J.Catal.2006,237,197.
    [27]Wittstock,A.;Neumann B.;Schaefer A.;Dumbuya K.;K(u|¨)bel C.;Biener,M.M.;Zielasek,V.;Steinr(u|¨)ck,H.-P.;Gottfried,J.M.;J(u|¨)rgens,B.;Hamza A.;Ba(u|¨)mer,M.J.Phys.Chem.C.2009.
    [28]Iizuka,Y.;Kawamoto,A.;Aldta,K.;Date,M.;Tsubota,S.;Okumura,M.;Haruta,M.;Catal.Lett.2004,97,203.
    [29]Qu,Z.P.;Huang,W.X.;Cheng,M.J.;Bao,X.H.,J.Phys.Chem.B.2005,109,15842.
    [1] Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16,405.
    [2] Bond G.C.; Thompson D. T. Catal. Rev. Sci. Eng. 1999,41, 319.
    
    [3] Kim, T. S.; Stiehl, J. D.; Reeves, C. T.; Meyer, R.J.; Mullins, C. B. J. Am. Chem. Soc. 2003, 125,2018.
    
    [4] Comotti, M.; Li, W. C.; Spliethoff, B.; Schüth, F. J. Am. Chem. Soc. 2006, 128, 917.
    
    [5] Kung M. C.; Davis R. J.; Kung H. H. J. Phys. Chem. C, 2007, 111,11767.
    
    [6] G.C. Bond, C. Louis and D.T. Thompson, Catalysis by Gold (Imperial College Press, London, 2006).
    
    [7] M. Date ' et al., Angew. Chem., Int. Ed. 43,2129 (2004).
    
    [8] J.T. Calla and R.J. Davis, Ind. Eng. Chem. Res. 44 (2005) 5403.
    
    [9] C.K. Costello, J.H. Yang, H.Y. Law, Y. Wang, J.-N. Lin, L.D. Marks,M.C. Kung and H.H. Kung, Appl. Catal. A 243 (2003) 15.
    
    [10] M. Date, M. Okumura, S. Tsubota and M. Haruta, Angew. Chem.Int.Ed.43 (2004)2129.
    
    [11] M. Date and M. Haruta, J. Catal. 201 (2001) 221.
    
    [12] M.A. Sanchez-Castillo, C. Couto, W.B. Kim, J.A. Dumesic, Angew. Chem. Int. Ed. 43 (2004) 1140.
    
    [13] W.B. Kim, T. Voitl, G.J. Rodriquez-Rivera, J.A. Dumesic, Science 305(2004) 1280.
    
    [14] W.B. Kim, G.J. Rodriquez-Rivera, T. Voitl, S.T. Evans, J.J. Einspahr, P.M. Voyles, J.A. Dumesic, J. Catal. 235 (2005) 327.
    
    [15] W.B. Kim, T. Voitl, G.J. Rodriquez-Rivera, S.T. Evans, J.A. Dumesic,Angew. Chem. Int. Ed. 44 (2005) 778.
    
    [16] V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M.M. Biener, A.V. Hamza,M. Baumer, Angew. Chem. Int. Ed. 45 (2006) 8241.
    [17] C.X. Xu, J.X. Su, X.H. Xu, P.P. Liu, H.J. Zhao, F. Tian, Y. Ding, J. Am.Chem. Soc. 129 (2007) 42.
    
    [18] Broqvist, P.; Molina, L. M.; Gronbeck, H.; Hammer, B. J. Catal. 2004, 227, 217.
    [1] Karski, S.; Witonska, I. J. Mol. Catal. A: Chem. 2003, 191, 87.
    
    [2] Wenkin, M.; Renard, C.; Ruiz, P.; Delmon, B.; Devillers, M. Stud. Surf. Sci. Catal. 1997, 110,517.
    
    [3] Nikov, I.; Paev, K. Catal. Today 1995,24,41.
    
    [4] Biella, S.; Prati, L.; Rossi, M. J. Catal. 2002,206,242.
    
    [5] Mirescu, A.; PrUβe,U. Catal. Comm. 2006, 7, 11.
    
    [6] Beltrame, P.; Comotti, M.; Pina, C. D.; Rossi, M. Appl. Catal. A: Gen. 2006, 297, 1.
    
    [7] Comotti, M.; Pina, C. D.; Rossi, M. J. Mol. Catal. A: Chem. 2006, 251, 89.
    
    [8] Comotti, M.; Pina, C. D.; Matarrese, R.; Rossi, M. Angew. Chem. Int. Ed. 2004, 43,5812.
    
    [9] Porta, F.; Rossi, M. J. Mol. Catal. A: Chem. 2003,204, 553.
    
    [10] Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. J. Am. Chem. Soc. 2007, 129,42.
    
    [11] Xu, C. X.; Xu, X. H.; Su, J. X.; Ding, Y. J. Catal. 2007, 252,243.
    
    [12] Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. J. Phys. Chem. C 2007, 111, 10382.
    
    [13] Zielasek, V.; Jürgens, B.; Schulz, C.; Biener, J.; Biener, M. M.; Hamza, A. V.; Baumer, M. Angew. Chem. Int. Ed. 2006,45, 1.
    
    [14] Zeis, R.; Lei, T.; Sieradzki, K.; Snyder, J.; Erlebacher, J. J. Catal. 2008, 253, 132.
    
    [15] Haruta, M. Catal. Today 1997, 36, 153.
    
    [16] Haruta, M.; Date, M. Appl. Catal. A: Gen. 2001, 222,427.
    [1]龚镇.化工百科全书[M].第一卷.北京:化学工业出版社,1990.
    [2]陈松茂,翁世伟主编.化工产品实用手册(三)[M].上海:上海科学技术文献出版社,1990.
    [3]章思规.精细化学品技术手册[M].北京:化学工业出版社,1991.
    [4]中国化工信息中心,中国农药原料、中间体市场与生产工艺技术调查报告,1993.
    [5]徐克勋.有机化工原料及中间体手册[M].北京:化学工业出版社,1998.
    [6]魏文德.有机化工原料大全[M].第二版,北京:化学工业出版社,1999.
    [7]G.J.Hutchings and M.Haruta,Appl.Catal.Gen.,2005,291,2.
    [8]L.Prati and M.Rossi,J.Catal.,1998,176,552
    [9]F.Porta,L.Prati,M.Rossi,S.Colluccia and G.Martra,Catal.Today,2000,61,165.
    [10]S.Biella,G.L.Castiglioni,C.Fumagalli,L.Prati and M.Rossi,Catal.Today,2002,72,43.
    [11]S.Carretin,P.McMorn,P.Johnston,K.Griffin and G.J.Hutchings,Chem.Commun.,2002,7,696.
    [12]S.Biella and M.Rossi,Chem.Commun.,2003,378.
    [13]P.Landon,P.J.Collier,A.F.Carley,D.Chadwick,A.J.Papworth,A.Burrows,C.J.Kiely and G.J.Hutchings,Phys.Chem.Chem.Phys.,2003,5,1917.
    [14]L.Prati and F.Porta,Appl.Catal.,2005,291,199.
    [15]S.D.G(u|¨)len,M.Lucas and P.Claus,Catal.Today,2005,102-103,166.
    [16]A.Abad,P.Concepcion,A.Corma and H.Garcia,Angew.Chem.,2005,44,4066.
    [17]A.Abad,C.Almela,A.Corma and H.Garcia,Chem.Commun.,2006,3178.
    [18]H.Tsunoyama,H.Sakurai,Y.Negishi and T.Tsukuda,J.Am.Chem.Soc., 2005, 127, 9374.
    
    [19] D.I. Enache, D.W. Knight and G. J. Hutchings, Catal. Lett., 2005, 103,43.
    
    
    [20] V. R. Choudhary, A. Dhar, P. Jana, R. Jha and B. S. Uphade, Green Chem., 2005, 7, 768.
    
    [21] D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A.F.Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight and G. J. Hutchings, Science, 2006,311,362.
    
    [22]G. Li, D. I. Enache, J. Edwards, A. F. Carley, D. W. Knight and G. J. Hutchings, Catal. Lett., 2006,110,7.
    
    [23] G. C. Bond and D. T. Thompson, Catal. Rev. Sci. Eng., 1999,41,319.
    [24] Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. J. Am. Chem. Soc. 2007, 129,42.
    
    [25] Xu, C. X.; Xu, X. H.; Su, J. X.; Ding, Y. J. Catal. 2007, 252, 243.
    
    [26] Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. J. Phys. Chem. C 2007, 111, 10382.
    
    [27] Zielasek, V.; Jürgens, B.; Schulz, C.; Biener, J.; Biener, M. M.; Hamza, A. V.; Baumer, M. Angew. Chem. Int. Ed. 2006,45,1.
    
    [28] Zeis, R.; Lei, T.; Sieradzki, K.; Snyder, J.; Erlebacher, J. J. Catal. 2008, 253, 132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700