用户名: 密码: 验证码:
超临界水氧化含油污泥技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界水氧化技术(Supercritical Water Oxidation,SCWO)是一种能够彻底破坏有机物结构的新型氧化技术。大多数有机污染物和氧气都能够极好地溶解在超临界水(Supercritical Water,SCW)中,形成一个有机物氧化的良好环境。从而可以很好地将废物中所含的有机物用氧化剂分解成水、CO2等简单无害的小分子化合物。
     本文以过氧化氢作氧化剂,使用自行设计的实验装置,以实际油田含油污泥和模拟的含油污泥为研究对象,研究超临界水氧化法处理油田含油污泥。实验研究了反应温度、反应压力、反应停留时间、氧化剂量等因素对含油污泥中有机物去除率的影响,并且提出了以HCHO作共氧化剂、NaHCO3在低温时作催化剂来促进含油污泥中有机物去除率。并对超临界水氧化反应机理进行了讨论。
     实验结果表明:最佳反应温度420℃—440℃;最佳反应压力24MPa—30MPa;反应停留时间10min—15min;氧化剂过氧比,过氧化氢量与化学需求量之比为4—7;含油污泥量,污泥中所含有机物COD为2000mg/L—6000mg/L;最佳pH值为10。HCHO具有很好的共氧化作用,在反应温度440℃、反应压力24MPa、反应时间10min、氧化剂过氧比为4、初始油田含油污泥COD为2000mg/L、15mg/L共氧化剂HCHO条件下,油田含油污泥COD去除率达99.9%,最后出水COD<10mg/L。超临界水氧化含油污泥为自由基反应机理,反应中间产物为醋酸和一氧化碳。含油污泥的超临界水氧化反应经过醋酸、一氧化碳中间步骤,然后再进一步氧化分解为二氧化碳和水。
Supercritical water oxidation technology is a new type technology of the complete destruction of the organic matter structure. Most organic pollutants and oxygen can dissolve in supercritical water, and they can form a good environment. Thus the organic matter in the waste can be decomposed by oxidants into water, carbon dioxide and simple small molecule compounds.
     Hydrogen peroxide is the oxidant in this paper, self-designed experimental device is used, the actual oily sludge and the simulation oily sludge are destruction by hydrogen peroxide in supercritical water. The reaction temperature, the reaction pressure, the reaction residence time and oxidants are study on the removal rate of organic matter of oily sludge. Formaldehyde has been used as a co-oxidant, sodium bicarbonate has been used as catalyst to promote organic matter removal rate of oily sludge at low temperature. And supercritical water oxidation reaction mechanism was discussed.
     The experimental results show that: the best reaction temperature is 420℃—440℃; best reaction pressure is 24MPa—30MPa; best reaction residence time is 10min—15min; the initial hydrogen peroxide, th ratio of the actual amount and theoretical demand is 4—7; oily sludge volume, initial COD is 2000mg/L—6000mg/L; optimum pH value is 10; the co-oxidative effect of formaldehyde on oil-field sludge is characterized for oilfield sludge concentrations (50000mg/L) and formaldehyde concentration (15mg/L) for a range of temperatures (380℃-440℃), the COD removal rate is 99.9% at T=440℃, p=24MPa,τ=10min, [COD]initial=2000mg/L, with formaldehyde in supercritical water, and finally effluent COD <10mg/L. Radical reaction mechanism is the mechanism of supercritical water oxidation oily sludge, acetic acid and carbon monoxide are the reaction intermediate product. First acetic acid and carbon monoxide are generated in supercritical water, and then further oxidized to carbon dioxide and water.
引文
[1]徐如良,王乐勤,孟庆鹏.工业油罐底泥处理现状[J].石油化工安全技术,2003;19(3):36~39
    [2] Mait Kriipsalu, Marcia Marques, Diauddin R. Nammari, etal. Bio-treatment of oil sludge: The contribution of amendment material to the content of target contaminants, and biodegradation dynamics [J]. Hazardous Materials, 2007, 148(3):616-622
    [3] M. J. Ayotamuno, R. N. Okparanma, E. K. Nweneka, et al. Bio-remediation of a sludge containing hydrocarbons [J]. Applied Energy, 2007, 84(9): 936-943
    [4] Bambang VERIANSYAH and Jae-Duck KIM. Supercritical water oxidation for the destruction of toxic organic wastewaters: A review [J]. Environmental Sciences 2007, 19(5): 513-522
    [5] Onur ?. S??üt and Mesut Akgün. Treatment of textile wastewater by SCWO in tube reactor [J]. Supercrit Fluids. 2007, 43(1):106-111
    [6]国家环保局,水和废水监测分析方法[M].第三版北京:中国环境科学出版社,1989
    [7]中国石油天然气总公司发布.碎屑岩油藏注水水质推荐指标及分析方法[M].北京:石油工业出版社,1996,1-2
    [8]邹斌,魏平方,邓皓.新型絮凝剂室内评价试验[J].油气田环境保护,2000,10(1):26-28
    [9]刘万毅,吴尚芝.复合絮凝剂PAFCS的絮凝研究[J].工业水处理,1996,16(4):29~30
    [10]刘晓娟,张宁生.油田含油污泥微波处理实验研究[J].油田化学,2004,21(3):287-289
    [11]卢广平,陈宝智,王敬.絮凝剂对含油污泥过滤性能的影响[J].环境保护科学,2005,31(3):34~37
    [12] Paspek Stephen C. Jr. et al. Method for rendering oily sludges environmentally acceptable. US 4786401
    [13] Shanableh A.Earnest F.Gloyna,Supercritical water oxidation-wasterwaters and sludges [J]. Wat. Sci. Tech1991, 23: 389-398.
    [14] Lee D S. Gloyna E F. Supercritical water oxidation microreactor system. Paper presented at Water Poll,Control Fed. Specialty Conf, New Orleans,Louis-iana. 1988, April 17-19.
    [15] Helling R K. Tester J W. Oxidation of simple com-pounds and mixtures in supercritical water carbon monoxide, ammonia and ethanol [J]. Environ. Sci. Tecnol, 1988, 22: 1319-1324.
    [16] Thornton T D, LaDue D E. Savage P E. Phenol oxidation in supercritical water: formation of dibenzofuran dibenzo-p-dioxin and related compounds [J]. Environ. Sci. Technol. 1991, 25: 1507-1510.
    [17] Emmanuel Fauvel, Christophe Joussot-Dubien, Pierrette Guichardon, et al. Adouble-wall reactor for hydrothermal oxidation with supercritical water flow across the inner porous tube [J]. Supercritical Fluids. 2004, 28: 47–56
    [18] Ding Z Y. Supercritical water oxidation of NH3 over a MnO2/CeO2 catalyst [J]. Industrial Engineering Chemistry Research. 1998, 37(5):1707-1716.
    [19]王涛,杨明,向波涛,等.超临界水氧化法去除尿液中有机物的探索[J].航天医学与医学工程,1997,10(5):370-372.
    [20]向波涛,王涛,刘军,等.超临界水氧化法处理含硫废水研究[[J].化工环保,1999,(2):75-79.
    [21]丁军委,陈丰秋,吴素芳,等.苯胺在超临界水中氧化反应动力学的研究[J].高校化学工程学报,2001,2:66-70.
    [22]王涛,何胜悦,刘崇义,等.超临界水氧化法处理对苯二酚废水的初步研究[J].化工学报,1996,47(3):381-384.
    [23]林春绵,袁细宁,沈雁,等.ε-酸在超临界水中的氧化降解[J].高校化学工程学报,2000,14(5):481-484.
    [24]林春绵,周红艺,潘志彦,等.超临界水氧化法降解苯酚的研究[J].环境科学研究,2000,13(2):1-3.
    [25]林春绵,衰细宁,杨馗.超临界水氧化法降解甲胺磷的研究[[J].环境科学学报,2000,20(6):714-718.
    [26]林春绵,方建平,衰细宁,等.超临界水氧化法降解氧化乐果的研究[J].中国环境科学,2000,20(4):305-308.
    [27]潘志彦,林春绵,周红艺,等.超临界水中乙酸氧化降解的研究[[J].浙江工业大学学报,2000,28(4):298-302.
    [28]向波涛,干涛,沈忠耀.乙醇废水的超临界水氧化处理工艺研究[[J].环境科学学报,2002,22(1):17-20
    [29] Cocero M J, Alonso E, Sanz M T etal. Supercritical water oxidation process under energetically self-sufficient operation [J]. Supercritical Fluids,2002,24 :37-46.
    [30]孟令辉,许银华,黄玉东.国外超临界水氧化法在有机危险废物处理上的应用[[J].化工环保,2000,20(5):16-18.
    [31]鞠美庭,冯成武.连续式超临界水氧化装置处理有机废液的应用研究[[J].水处理技术,2002,28(1):35-37.
    [32] Aki S N V K, Abraham M A. Catalytic supercritical water oxidation of pyridine: kinetics and mass transfer [J]. Chemical Engineering Science. 1999, 54: 3533-3542.
    [33]林春绵,周红艺,潘志彦等.超临界水中葡萄糖氧化降解的研究[[J].浙江工业大学学报,1999,27(4):272-275.
    [34] Pei-Qing Yuan, Zhen-Min Cheng, Wei-Lai Jiang, et al. Catalytic desulfurization of residual oil through partial oxidation in supercritical water [J]. Supercritical Fluids. 2005, 35: 70-75.
    [35]葛晓冬,葛晓阳,王建雅.超临界水氧化法处理废旧轮胎及燃料油回收方法初探.第四届全国环境催化与环境材料学术会议论文集.
    [36] Tadafumi A, Osamu S, Latabilo M, et al. Recovery of telephthalic acid by decomposition of PET in supercritical water, Kagaku Kogaku Ronbushu, 1997, 23:505
    [37] Zheng F, Janusz A, Kozinski. Acomparative study of polystyre decomposition in supercritical water and air environment using diamond anvil cell [J]. Appl. Polymer Sci. 2001, 81:3565
    [38] Lee S B, Hong I K. Depolymerization behaviour for cis-polyisoprene rubber in supercritical tetra hydeofuran [J]. J. Ind. Eng. Chem. 1998, 4(1):26
    [39]向波涛,王涛,杨基础,等.催化超临界氧化反应研究进展[J].化工进展,1996,18 (6):19-21.
    [40] Savage P E. Heterogeneous catalysis in supercritical water [J]. Catalysis Today .2000,62: 167-173.
    [41] Yu J L, Savage P E. Phenol oxidation over CuO/A12O3 in supercritical water [J]. Applied Catalysis B: Environmental. 2000, 28:275-288.
    [42] Zhang X, Savage P E. Fast catalytic oxidation of phenol in supercritical water [J]. Catalysis Today. 1998. 40(4):333-342.
    [43] Yoshito O, Kengo, Seiichiro T K. Kinetics of the catalytic oxidation of phenol over manganese oxide in supercritical water [J]. Industrial and Engineering Chemistry Research, 1999,38(11):4183-4188.
    [44] Krajnc M, I,evec J. Oxidation of phenol over a transition-metal oxide catalyst in supercritical water [J]. Industrial Engineering Chemistry Research. 1997, 36(9):3439-3445.
    [45] Yu J L, Savage P E. Catalyst activity, stability, and transformations during oxidation in supercritical water [J]. Applied Catalysis B: Environmental. 2001, 31(2):123-132.
    [46] Aki S N V K Ding, Y. Abraham M A. Catalytic supercritical water oxidation: stability of Cr2O3 catalyst [J]. A1ChE. 1996, 42:1995-2004.
    [47] Matsumura Y, Urase T, Yamamoto K. Carbon catalyzed supercritical water oxidation of phenol [J]. Supercritical Fluids. 2002, 22:149-156.
    [48] Nunouraa T, l.eea G H, Matsumurab Y. Modeling of supercritical water oxidation of phenol catalyzed by activated carbon [J]. Chemical Engineering Science. 2002, 57:3061-3071
    [49] Nunoura T, Lee G, Matsumura Y. Effect of Carbonaceous Materials on the Oxidation of Phenol in Supercritical Water: A Preliminary Study [J]. Ind Eng Chem Res. 2003, 42: 3718-3720.
    [50] Hutchenson K W, Foster N R, Eds. ACS Symposium Series 608 [C]. Washington,DC: Am, Chem, Soc. 1995: 232.
    [51] Lin K S, Wang H P, Yang Y W. Supercritical water oxidation of 2-chlorlphenol effected by Li+ and CuO/ZeO lites [J].Chemosphere. 1999, 39(9):1385-1396.
    [52] Arslan-Alaton, Feny J L. H4SiW12O40-catalyzed oxidation of nitrobenzene in supercritical water : kinetic and mechanistic aspects [J] Applied Catalysis B: Environmenta1. 2002, 38:283-293.
    [53]漆新华,庄源益,袁有才,等.苯胺的超临界水氧化研究[J].环境化学,2001,20(5):432-436.
    [54] Park a T J, Lim J S, Lee Y W. Catalytic supercritical water oxidation of wastewater from terephthalic acid manufacturing process [J]. Supercritical Fluids. 2003, 26:201-213.
    [55] Tadafumi A, Ryuji S, Takafumi S, Masaru W. Catalytic hydrodesulfurization of dibenzothiophene through partial oxidation and a water-gas shift reaction in supercritical water [J]. Industrial Engineering Chemistry Research. 1998, 37(7):2634-2638.
    [56] Armbruster U, Martin A, Krepe A. Partial oxidation of propane in sub- and supercritical water [J]. Supercritical Fluids. 2001, 21:233-243.
    [57] Aki, Abraham S, Martin A. Catalytic supercritical water oxidation of pyridine: Comparison of catalysts [J]. Industrial Engineering Chemistry Research. 1999, 38(2): 358-367.
    [58] Ding Z Y. Supercritical water oxidation of NH3 over a MnO2/CeO2 catalyst [J]. Industrial Engineering Chemistry Research. 1998, 37(5): l707-1716.
    [59] Watanabe M, Inomata H, Jr. R L S, Arai K. Catalytic decarboxylation of acetic acid with zirconia catalyst in supercritical water [J]. Applied Catalysis A: Genera1. 2001, 219:149-156
    [60] Thorton T D, Savage P E. Kinetics of phenol oxidation in SCW [J]. AIChE J. 1992, 38: 321-327.
    [61] Li R, Savage P E. 2-chlorophenol oxidation in SCW: Global Kinetics and reaction products [J].AIChE J. 1993, 39(1):178-187.
    [62] Shaw R W, Brill T B, Cllifors A A. Supercritical water-A medium for chemistry [J]. Chem Eng News. l991, 69(51):26-39 [63」Holgate H R, Tester J W. Oxidation of H2 and CO in sub- and supercritical water: reaction kinetics, pathways, and water- density effect.l experimental results [J]. Phys Chem, 1994, 98:800-809.
    [64] Koo M, Lec W K, Lee C H. New reactor system for supercritical water oxidation and its application on phenol destruction [J]. Chem Eng Sci. 1997, 52(7):1201-1214.
    [65] Thomason T B.Supenrritical water destniction of aqueous wastes [J]. Hazardous waters,1984, 1(4):453-467.
    [66] Dioxin C N, Abraham M A. Conversion of methane to methanol by catalytic supercritical water oxidation [J]. Supercritical Fluids. 1992, (5):269-273.
    [67]戴航,黄卫红,钱晓良,等.超临界水氧化法处理造纸废水的初步研究[J].工业水处理,2000,20(8):23-25.
    [68] Lee G, Nunoura T, MatsumuraY, Yamamoto K. Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions [J]. Supercritical Fluids. 2002, (24): 239-250.
    [69] Watanabe N1, Inomata H, Osada M, Sato T, Adschiri T. Catalytic effects of NaOH and ZrO2 for partial oxidative gasification of n-hexadecane and lignin in supercritical water [J]. Fuel. 2003, 82:545-552.
    [70] Watanabe M, Osada M, Lnomata H. Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673 K [J]. Applied Catalysis A: Genera1,2003, 8490: 1-9.
    [71] J.M. Ploeger, P.A. Bielenberg, P.L. Russell, W.T. Jefferson. Co-oxidation of methylphosphonic acid and ethanol in supercritical water I: Experimental results [J]. Supercritical Fluids. 2006, 39(2): 233–238.
    [72] J.M. Ploeger, W.H. Green, W.T. Jeffersond, Co-oxidation of methylphosphonic acid and ethanol in supercritical water. II: Elementary reaction rate model [J]. Supercritical Fluids. 2006, 39(2): 239–245.
    [73] G. Anitescua, V. Munteanub, L.L. Tavlaridesa, Co-oxidation effects of methanol and benzene on the decomposition of 4-chlorobiphenyl in supercritical water [J]. Supercritical Fluids. 2005, 33(2): 139–147.
    [74] V.P. Ivette, R. Steven, B. Richard, Supercritical water oxidation of phenol and 2,4-dinitrophenol [J]. Supercritical Fluids. 2004, 30(1): 71–87.
    [75] M.J. Cocero, E. Alonso, M.T. Sanz, F. Fdz-Polanco, Supercritical water oxidation process energetically self-sufficient operation [J]. Supercritical Fluids. 2002, 24(1): 437–446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700