用户名: 密码: 验证码:
葡萄籽原花青素对大鼠硒性白内障的抑制作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨不同剂量葡萄籽原花青素对大鼠硒性白内障的抑制作用
     方法:将80只8日龄的SD大鼠随机分为对照组模型组和GSPE低中高剂量组对照组给予生理盐水皮下注射,模型组于第10日龄起给予亚硒酸钠20μmol/kg颈背部皮下注射,隔日1次,连续3次GSPE各组除给予同样造模外,从第8日龄起还分别给予低剂量组50mg/kg中剂量组100mg/kg高剂量组200mg/kg的GSPE灌胃,每天1次连续14天待乳鼠睁眼后用裂隙灯显微镜观察晶状体的浑浊程度,分级以及拍照,并每天测量晶状体核性浑浊斑块的最大直径变化光镜下HE染色观察各组晶状体组织的细胞形态
     结果:模型组全部形成典型的核性白内障,造模成功率100%与模型组相比,GSPE各组的晶状体浑浊程度和核性浑浊斑块的最大直径明显减小(P<0.05或P<0.01或P<0.001)光镜下HE染色发现GSPE干预后,晶状体组织的损伤程度减轻,且与GSPE有剂量关系
     结论:该实验证实了GSPE能明显抑制亚硒酸钠引起的核性白内障的形成和发展,且有时间–剂量关系,其最低有效剂量为50mg/kg
     目的:探讨葡萄籽原花青素提取物抑制大鼠硒性白内障的机理研究
     方法:将80只8日龄的SD大鼠随机分为对照组模型组GSPE低中高剂量组对照组给予生理盐水皮下注射,模型组于第10日龄起给予亚硒酸钠20μmol/kg颈背部皮下注射,隔日1次,连续3次GSPE各组除给予同样造模外,从第8日龄起还分别给予低剂量组50mg/kg中剂量组100mg/kg高剂量组200mg/kg的GSPE灌胃,每天1次连续14天实验结束后测量各组晶状体中丙二醛(MDA)超氧化物歧化酶(SOD)过氧化氢酶(CAT)谷胱甘肽过氧化物酶(GSH-PX)一氧化氮(NO)钙离子(Ca~(2+))含量及晶状体组织抑制羟自由基(OH-)的能力用免疫组织化学法观察iNOS calpainⅡ蛋白在各组晶状体上皮细胞中(LECs)的表达情况,并用平均吸光度(AOD)反应各组的表达量用实时荧光定量RT-PCR法检测iNOS calpainⅡmRNA在各组晶状体中的表达情况
     结果:与对照组比,模型组晶状体中抗氧化酶(SOD CAT GSH-PX)的活性及抑制羟自由基的能力显著下降,同时MDA Ca~(2+) NO的含量和iNOS calpainⅡ蛋白吸光度及mRNA的表达水平显著上升(P<0.01或P<0.001);与模型组相比,GSPE各组抗氧化酶(SOD CAT GSH-PX)的活性及抑制羟自由基的能力明显升高,同时MDA Ca~(2+) NO的含量和iNOS calpainⅡ蛋白及mRNA的表达水平明显下降(P<0.05或P<0.01或P<0.001),且与GSPE有剂量依赖性
     结论:该实验证实了GSPE能显著抑制亚硒酸钠引起的核性白内障的形成,其作用机制可能与增强抗氧化酶(SOD CAT GSH-PX)的活性,阻止脂质过氧化产物MDA及自由基羟基的产生,以及抑制晶状体中iNOS和calpainⅡ的激活有关
Objective: To investigate whether grape seed proanthocyanidin extract (GSPE)prevented selenite-induced cataract formation in rats.
     Methods: Eighty eight-day-old Sprague-Dawley rat pups were divided randomly into5groups: control group, model group, low dose, medium dose and high dose of GSPEgroup. Control group received physiological saline subcutaneous injection. Model groupreceived subcutaneous injection of sodium selenite (20μmol/kg body weight) onpostpartum day10, and once every other day for continual three times thereafter. GSPEtreated groups respectivly received GSPE (50,100,200mg/kg body weight) intragastricadministration2days prior to the selenite injection (that is, on postpartum day8), and oncedaily for fourteen consecutive days thereafter. The lenses opacity were observed gradedand photographed under slit lamp microscopy and the maximal diameter of the nuclearcataract plaques was measured. The histomorphology of lenses was observed with HE stainunder light microscope.
     Results: The results showed subcutaneous injection of sodium selenite led to severenuclear cataract in model group, and the achievement ratio of the model group was100%.Compared with model group, the degree of lenses opacity and the maximal diameter ofnuclear cataract plaques were significantly reduced in GSPE treated groups(P<0.05orP<0.01or P<0.001). Moreover, the extent of damage in lenses was marked reduced inGSPE treated groups.
     Conclusion: The results suggested that GSPE markedly prevented selenite-inducedcataract formation, and we found the lowest effective dose of GSPE was50mg/kg.
     Objective: To investigate whether grape seed proanthocyanidin extract (GSPE)prevented selenite-induced cataract formation and the possible mechanism in rat pups.
     Method: Eighty eight-day-old Sprague-Dawley rat pups were divided randomly into5groups: control group, model group, low dose, medium dose and high dose of GSPE group.Control group received physiological saline subcutaneous injection. Model group receivedsubcutaneous injection of sodium selenite (20μmol/kg body weight) on postpartum day10,and once every other day for continual three times thereafter. GSPE treated groupsrespectivly received GSPE (50,100,200mg/kg body weight) intragastric administration2days prior to the selenite injection (that is, on postpartum day8), and once daily forfourteen consecutive days thereafter. The lenses were analyzed for superoxide dismutase(SOD), catalase (CAT), glutathione peroxidase (GSH-PX), malondialdehyde (MDA),calcium (Ca~(2+)), nitric oxide (NO)and anti-hydroxyl radical ability (OH-). The levels ofcalpainⅡ, iNOS protein and mRNA expression in lenses were analyzed byimmunohistochemical as well as real-time quantitative RT-PCR method.
     Result: we observed selenite treatment caused a significant decrease in the activitiesof antioxidative enzymes (SOD, CAT, GSH-PX)and anti-OH-ability, accompanied by asignificant increase in the levels of MDA, NO, Ca~(2+)as well as iNOS, calpainⅡprotein andmRNA expression. Administration of GSPE could dose-dependent preserve the activities ofthese antioxidative enzymes and anti-OH-ability, accompanied by a significant reduce inthe levels of MDA, NO, Ca~(2+)as well as iNOS, calpainⅡprotein and mRNA expression(P<0.05or P<0.01or P<0.001).
     Conclusion: The results suggested that GSPE markedly prevented selenite-induced cataract formation, and the possible mechanism may be attributed to its excellentantioxidant activity. Treatment with GSPE could dose-dependent preserve the activities ofthese antioxidative enzymes and reduce the generation of MDA, and inhibite on calpainⅡ,iNOS activation.
引文
[1] Thylefors B. Avoidable blindness. Bull World Health Organ,1999,77(6):453
    [2] Thylefors B. Global data on blindness.Bull World Health Organ,1995,73(1):115-121
    [3] Nirmalan PK, Krishnadas R, Tamakrishman R, et al. Lens opacities in a ruralpopulation of southern India: the Aravind Comprehensive Eye Study. InvestOphthalmol Vis Sci,2003,44(11):4639-4643
    [4] Olson RJ, Mamalis N, Werner L, et al. Cataract treatment in the beginningof the21st century. Am J Ophthalmol,2003,136(1):146-154
    [5]张婧,陈垠衫,王思玲白内障动物模型的建立及评价参数的研究进展沈阳药科大学学报,2008,25(8):674
    [6] Sakthivel M, Elanchezhian R, Ramesh E, et al. Prevention of selenite inducedcataractogenesis in Wistar rats by the polyphenol, ellagic acid.Experimental Eye Research,2008,86(2):251-259
    [7]刘学东硒性白内障研究现状微量元素与健康,2000,17(1):68
    [8] Thomas R, Hong Ma, Chiho Fukiage, et al. Selenite nuclear cataract: reviewof the model. Molecular Vision,1997,3:8
    [9] Daniel L, Dennis S, Larry J, et al. Confocal microscopy of cataracts fromanimal model systems: relevance to human nuclear cataract. ExperimentalEye Research,1997,64(4):565-572
    [10] Costello MJ, Oliver TN, Cobo LM. Cellular architecture in age-relatedhuman nuclear cataracts. Invest Ophthalmol Vis Sci,1992,33(11):3209-3227
    [11] FAN Li-Qiong, CAO Yang, CENG Jie, et al. Difference between human senilecataract and sodium-selenite-induced cataract. Rec Adv Ophthalmol,2005,6(25):23-25
    [12] Bagchi D, Garg A, Krohn RL, et al. Protective effects of grape seedproanthocyanidins and selected antioxidants against TPA-induced hepaticand brain lipid peroxidation and DNA fragmentation, and peritonealmacrophage activation in mice. Gen Pharmacol,1998,30(5):771-776
    [13] Bagchi D, Garg A, Krohn RL, et al. Oxygen free radical scavenging abilitiesof vitamins C and E, and a grape seed proanthocyanidin extract in vitro.Res CommunMol Pathol Pharmacol,1997,95(2):179-189
    [14] Debasis B, Manashi B, Sidney JS, et al. Free radicals and grape seedproanthocyanidin extract: importance in human health and diseaseprevention. Toxicology,2000,148(2-3):187-197
    [15]晏兴云,刘苏原花青素在眼科的应用研究国际眼科杂志社,2007,7(4):1095-1097
    [16] Hiraoka T, Clark JI. Inhibition of lens opacification during the earlystages of cataract formation. Invest Ophthalmol Vis Sci,1995,36(12):2550-2555
    [17] C Younan, P Mitchell, R Cumming. Cardiovascular disease, vascular riskfactors and the incidence of cataract and cataract surgery: the BlueMountains Eye Study. Ophthalmic Epidemiology,2003,10(4):227-240
    [18]韩秀娴,杨国华,鲍玉洲,等氧自由基诱导白内障的可能机理中华医学杂志,1990,70(10):570~572
    [19] Truscott RJ.Age related nuclear cataract—oxidation is the key. Exp EyeRes,2005,80(2):709-725
    [20] Manikandan R, Thiagarajan R, Beulaja S, et al. Effect of Curcumin onSelenite-Induced Cataractogenesis in Wistar Rat Pups. Current EyeResearch,2010,35(2):122–129
    [21] Manikandan R, Thiagarajan R, Beulaja S, et al. Anti-cataractogenic effectof curcumin and aminoguanidine against selenium-induced oxidative stressin the eye lens of Wistar rat pups: An in vitro study using isolated lens.Chemico-Biological Interactions,2009,181(2):202–209
    [22] Biju PG, Rooban BN, Lija Y, et al. Drevogenin D prevents selenite-inducedoxidative stress and calpain activation in cultured rat lens. MolecularVision,2007,13(12):1121-9
    [23] Rooban BN, Lija Y, Biju PG, et al. Vitex negundo attenuates calpainactivation and cataractogenesis in selenite models. Experimental EyeResearch,2009,88(3):575–582
    [24] Suresh K, Gupta, Sushma S, et al. Ocimum sanctum Modulates SeleniteInducedn Cataractogenic Changes and Prevents Rat Lens Opacification.Current Eye Research,2005,30(7):583–591
    [25] Gupta SK, Trivedi D, Srivastava S, et al. Lycopene attenuates oxidativestress induced experimental cataract development: an in vitro and invivo study. Nutrition,2003,19(9):794–799
    [26] Shearer TR, Anderson RS, Britton JL. Influence of selenite and fourteentrace elements on cataractogenesis in the rat. Invest Ophthalmol Vis Sci,1983,24(4):417-423
    [27] Shearer TR, Anderson RS, Britton JL, et al. Early development of selenium-induced cataract slit lamp evalution. Exp Eye Res,1983,36(6):781~8
    [28] Huang LL, Zhang C-Y, Hess JL, Bunce GE. Biochemical changes and cataractformation in lenses from rats receiving multiple,low doses of sodiumselenite. Exp Eye Res,1992,55(5):671-678
    [29] Wang Z, Hess JL, Bunce GE. Deferoxam ine effect on selenite-inducedcataract formation in rats. Invest Ophthalmol V is Sci,1992,33(8):2511-9
    [30]刘学东,龚书明硒性白内障研究现状微量元素与健康研究,2000,17(1):68-69
    [31]张萍亚硒酸钠诱发动物白内障模型的研究进展(一)眼科新进展,1993,3:59-60
    [32] Shearer, TR, David LL, Anderson RS, et al. Selenite cataract: a review.Curr Eye Res,1987,6(2):289-300.
    [33] Hightower K, McCready J, et al. Selenite-induced damage to lens membranes.Exp Eye Res,1994,58(2):225-229
    [34] Hightower KR, Leverenz V, Reddy VN, et al. Calcium transport in thelens. Invest Ophthalmol Vis Sci,1980,19(9):1059-1066
    [35] David LL, Shearer TR, et al. Calcium-activated proteolysis in the lensnucleus during selenite cataractogenesis. Invest. Ophthalmol Vis Sci,1984,25(11):1275-1283
    [36] Taylor A. Cataract: Relationship between nutrition and oxidation. J AmColl Nutr,1993,12(2):138-146
    [37] Jacques PF, Chylack LT, McGandy RB, et al. Antioxidant status in personswith and without senile cataract. Arch Ophthalmol,1996,9(2-3):144-8
    [38] Hilmi O, Serdar M, Ibrahim F, et al. Effects of some probable antioxidantson selenite-induced cataract formation and oxidative stress-relatedparameters in rats. Toxicology,1999,139(3):219–232
    [39] Tamada Y, Fukiage C, Mizutani K, et al. Calpain inhibitor, SJA6017, reducesthe rate of formation of selenite cataract in rats. Curr Eye Res,2001,22(4):280-285
    [40] Doganay S, Borazan M, Iraz M, et al. The effect of resveratrol inexperimental cataract model formed by sodium selenite. Curr Eye Res,2006,31(2):147-153
    [41] Geraldine P, Sneha BB, Elanchezhian R, et al. Prevention of seleniteinduced cataractogenesis by acetyl-L-carnitine: an experimental study.Exp Eye Res,2006,83(6):1340-1349
    [42] LT Chylack. Mechanisms of senile cataract formation. Ophthalmology,1984,91(6):596-602
    [43] Gerster H. Antioxidant vitamins in cataract prevention. Z. Ernahrungswiss,1989,28(5):56-75
    [44] Devamanoharan PS, Henein M, et al. Attenuation of sugar cataract by ethylpyruvate. Mol Cell Biochem,1999,200(1-2),103-109.
    [45] Yagci R, Aydin B, Erdurmus M, et al. Use of melatonin to prevent seleniteinduced cataract formation in rat eyes. Curr Eye Res,2006,31(10),845-850
    [46] Spector A. Oxidative stress induced cataract: mechanism of action.FASEB J,1995,9(11):1173–1182
    [47] Bagchi D, Garg A, Krohn RL, et al. Protective effects of grape seedproanthocyanidins and selected antioxidants against TPA-induced hepaticand brain lipid peroxidation and DNA fragmentation, and peritonealmacrophage activation in mice. Gen Pharmacol,1998,30(5):771-776
    [48] Bagchi D, Garg A, Krohn RL, et al. Oxygen free radical scavenging abilitiesof vitamins C and E, and a grape seed proanthocyanidin extract in vitro.Res CommunMol Pathol Pharmacol,1997,95(2):179-189
    [49] Debasis B, Manashi B, Sidney JS, et al. Free radicals and grape seedproanthocyanidin extract: importance in human health and diseaseprevention. Toxicology,2000,148(2-3):187-197
    [50] Garcia-Ramirez B, Fernandez-Larrea J, SalvadoMJ,et al. Tetramethylateddimeric procyanidins are detected in rat plasma and liver early afteroral administration of synthetic oligomeric procyanidins. J Agric FoodChem,2006,54(7):2543-2551
    [51] MJ Leigh. Health benefits of grape seed proanthocyanidin extract (GSPE).Nutrition Noteworthy,2003,6(1):45-50
    [52]张俊鸽,李平华原花青素抗晶状体氧化损伤的实验研究重庆医科大学学报,
    2007,32(4):13-18
    [1] Javitt JC, Wang F, West SK. Blindness due to cataract: epidemiologyand prevention. Annu Rev Public Health,1996,17(5):159-77
    [2] Nirmalan PK, Krishnadas R, Ramakrishnan R, et al. Lens opacities in a ruralpopulation of southern India: the Aravind Comprehensive Eye Study. InvestOphthalmol Vis Sci,2003,44(11):4639-43
    [3] Duncan G, Williams MR, Raich RA. Calcium, cell signaling and cataract. ProgRet Eye Res,1994,13(3):623-52.
    [4] Duncan G, Webb SF, Dawson AP, Bootman MD, Elliott AJ. Calcium regulationin tissue-cultured human and bovine lens epithelial cells. InvestOphthalmol Vis Sci,1988,264(2):472-81
    [5] Galvan A, Louis CF. Calcium regulation by lens plasma membrane vesicles.Arch Biochem Biophys,1988,264:472-81
    [6] Churchill GC, Louis CF. Imaging of intracellular calcium stores in singlepermeabilized lens cells. Am J Physiol,1999,276(1-2):C426-34.
    [7] Shearer TR, Ma H, Fukiage C, Azuma M. Selenite nuclear cataract: reviewof the model. Mol Vis,1997,3:8
    [8] Hamakubo T, Kannagi R, Murachi T, et al. Distribution of calpains I andII in rat brain. J Neurosci,1986,6(11):3103-3111.
    [9] Biswas S,Harris F, Singh J,et a1.Role of calpains in diabetes mellitusinduced cataractogenesis: a mini review.Mol Cell Biochem,2004,261(1-2):15l-159
    [10] Ahuja RP, Borchman D, Dean WL, et al. Effect of oxidation on Ca2t-ATPaseactivity and membranelipids in lens epithelial microsomes. Free Radic BiolMed,1999,27(1-2):177-185
    [11] Wang Z, Bunce GE, Hess JL. Selenite and Ca2thomeostasis in the rat lens:effect on Ca2tATPase and passive Ca2ttransport. Curr Eye Res,1993,12(3):213-218
    [12] Kemal O, Fatih K, Zeliha B. May nitric oxide molecule have a role in thepathogenesis of human cataract? Exprimental Eye Research,2003,76(1):23-7
    [13] Beckman JS,Beckman TW, Chen J,et al. Apparent hydroxyl radical productionby peroxynitrite: Implication for endothelial injury from nitric oxideand superoxide. Proc Natl Acad Sci USA,1990,87(4):1620-1624
    [14] Ghafourifar P, Bringold U, Klein SD, et al. Mitochondrial nitric oxidesynthase, oxidative stress and apoptosis. Biol Signals Recept,2001,10(1-2):57-65
    [15] M Inomata, M Hayashi, S Shumiya, et al. Involvement of inducible nitricoxide synthase in cataract formation in Shumiya cataract rat. Curr EyeRes,2001,23,307-311
    [16] Yoshimasa I, et al. Nitric oxide participates in cataract development inselenite-treated rats. Current Eye Research,2001,22(3):215-220
    [17] Biju PG, Rooban BN, Lija Y, et al. Drevogenin D prevents selenite-inducedoxidative stress and calpain activation in cultured rat lens.Mol Vis,2007,12(13):1121-9
    [18] Manikandan R, Thiagarajan R, Beulaja S, et al. Anti-cataractogenic effectof curcumin and aminoguanidine against selenium-induced oxidative stressin the eye lens of Wistar rat pups: An in vitro study using isolated lens.Chemico-Biological Interactions,2009,181(2):202-209
    [19] Thomas R, Hong Ma, Chiho Fukiage, et al. Selenite nuclear cataract: reviewof the model. Molecular Vision,1997,3(1):8
    [20] Rooban BN, Lija Y, Biju PG, et al. Vitex negundo attenuates calpainactivation and cataractogenesis in selenite models. Experimental EyeResearch,2009,88(3):575-582
    [21] Behndig A, Svensson B, Marklund SL, et al. Superoxide dismutase isoenzymesin the human eye. Invest Ophthalmol Vis Sci,1998,39(3):471-475
    [22] Carine M, Martine R, Olivier T, et al. Importance of SE-glutathioneperoxidase, catalase, and CU/ZN-SOD for cell survival against oxidativestress. Free Radical Biology and Medicine,1994,17(3):235-248
    [23] Leopold F, Wolfgant A, et al. Assays of glutathioneperoxidase. Methodsin Enzymology,1984,105(5):114-120
    [24] Dan W, Yongzhi Li, Guihua Hou, et al. Pygeum africanum: effect on oxidativestress in early diabetes-induced bladder. International Urology andNephrology,2009,42(2):401-408
    [25] Daxin T,Douglas B,Marts C.et a1.Influence of age,diabetes,and cataracton calcium,lipid-Calcium.and protein—Calcium relation—ships in humanlenses.Invest Ophthalmol Vis Sci,2003,44(5):2059-2066
    [26] Trascitt RJW,Marcantonio JM,Tamlinson J,et a1.Calcium-inducedopaciflcation and proteolysia in the intact rat lens.Invest OpthalmolVis Sci,1990,31(11):2405-2411
    [27] Bhuyan KC, Bhuyan DK, Santos O, et al. Antioxidant and anticataractogeniceffects of topical captopril in diquat-induced cataract in rabbits. FreeRad Biol Med,1992,12(4):251-261
    [28] Biswas S,Harris F.Singh J,et a1.Role of calpains in diabetes mellitus—induced cataractogenesis:a mini review.Mol Cell Biochem,2004,261(1-2):15l-159
    [29] Schey KL,Fowler JG.Shearer TR,et a1.Modifications to rat lens majorintrinsic protein in selenite induced cataract.Invest Ophthalmol Via Sci,1999,40(3):657-667
    [30] Ghafourifar P, Bringold U, S, Klein SD, et, al. Mitochondrial nitric oxidesynthase, oxidative stress and apoptosis. Biol Signals Recept,200110(5):57-65
    [31] Onoda M, Inano H. Effect of curcumin on the production of nitric oxideby cultured rat mammary gland. Nitric Oxide,2000,4(5):505-515
    [32] Mitsushi I, Masami H, Seigo S. Involvement of inducible nitric oxidesynthase in cataract formation in Shumiya cataract rat. Current EyeResearch,2001,23(4):307-311
    [33] Manikandan R, Thiagarajan R, Beulaja S, et al. Anti-cataractogenic effect
    of curcumin and aminoguanidine against selenium-induced oxidative stress
    in the eye lens of Wistar rat pups:An in vitro study using isolated lens.
    Chemico Biological Interactions,2009,181(2):202-209
    [1] Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ionsin human disease: an overview. Methods in enzymology,1990,186(1):1-85
    [2] Halliwell B, Gutteridge JM, et al. Free radicals, antioxidants and humandisease: where are we now? J Lab Clin Med,1992,119(6):598–620
    [3] Bruce N, et al. Pollution, pesticides and cancer. J AOAC Int,1992,75(6):1–5
    [4] Y Zhang, H Shi, W Wang. Antithrombotic effect of grape seedproanthocyanidins extract in a rat model of deep vein thrombosis. Journalof Vascular Surgery,2011,53(3):743-753
    [5] Hanefeld M, Herrmann K, et al. On the occurrence of proanthocyanidins,leucoanthocyanidins and catechins in vegetables. Z Lebensm Unters Forsch.1976,161(3):243-8.
    [6] Chen ZY, Chan PT, HO KY. Antioxidative activity of natural flavonoids isgoverned by number and location of their aromatic hydroxyl groups.Chemistry and Physics of Lipids,1996,79(2):157–163
    [7] Debasis B, Manashi B, Sidney JS, et al. Free radicals and grape seedproanthocyanidin extract: importance in human health and diseaseprevention. Toxicology,2000,148(2-3):187-197.
    [8] Debasis B, Manashi B, Sidney JS, et al. Cellular Protection withProanthocyanidins Derived from Grape Seeds. Annal of the New York Academyof Sciences,2002,957(5):260-270.
    [9] Alih D, Cem E, Volkan H, et al. Ingestion of IH636grape seedproanthocyanidin extract to prevent selenite-induced oxidative stress inexperimental cataract. Journal of Cataract&Refractive Surgery,2006,32(6):1041-1045
    [10] Ye X, Krohn RL, W Liu. The cytotoxic effects of a novel IH636grapeseed proanthocyanidin extract on cultured human cancer cells. Mol CellBiochem,1999,196(1-2):99-108
    [11] Bagchi D, Kuszynski CA, Balmoori J. Hydrogen peroxide-inducedmodulation of intracellular oxidized states in cultured macrophageJ774A.1and neuroactive PC-12cells, and protection by a novel IH636grapeseed proanthocyanidin extract. Phytotherapy Res,1998,12(8):568-571
    [12] Bagchi D, Ray SD, Bagchi M et al. Mechanistic pathways of antioxidantcytoprotection by a novel IH636grape seed proanthocyanidin extract.Indian J Exp Biol,2002,40(6):717-26.
    [13] SS Joshi, CA Kuszynski, EJ Benner. Amelioration of the Cytotoxic Effectsof Chemotherapeutic Agents by Grape Seed Proanthocyanidin Extract.Antioxidants&Redox Signaling,1999,1(4):563-570.
    [14] Ray SD, Kumar MA, Bagchi D. A novel proanthocyanidin IH636grape seedextract increases in vivo bcl-XL expression and prevents acetaminophen--induced programmed and unprogrammed cell death in mouse liver. ArchBiochem Biophys,1999,369(1):42–58
    [15] Ray SD, Parikh H, Hickey E, et al. Differential effects of IH636grapeseed proanthocyanidin extract and a DNA repair modulator4-aminobenzami-de on liver microsomal cytochrome P4502E1-dependent aniline hydroxyla--tion. Mol Cell Biochem,2001,218(1-2):27-33.
    [16] SD Ray, et al. Prevention and treatment of acetaminophen toxicity withgrape seed proanthocyanidin extract. US Patent,2001,12(5):3-5.
    [17] Ray SD, Patel D, Wong V, et al. In vivo protection of DNA damage associa--ted apoptotic andnecrotic cell deaths during acetaminophen-inducednephrotoxicity, amiodarone-induced lung toxicity and doxorubicin-inducedcardiotoxicity by a novel IH636grape seed proanthocyanidin extract. ResCommun Mol Pathol Pharmacol,2000,107(1-2):137-166
    [18] Ray SD, Wong V, Rinkovsky A, et al. Unique organoprotective propertiesof a novel IH636grape seed proanthocyanidin extract on cadmium chlorideinduced nephrotoxicity, dimethylnitrosamine (DMN) induced splenotoxicityand MOCAPinduced neurotoxicity in mice. Res Commun Mol Pathol Pharmacol,2000,107(1-2):105-128
    [19] H Quesada, JM Del Bas, D Pajuelo. Grape seed proanthocyanidins correctdyslipidemia associated with a high-fat diet in rats and repress genescontrolling lipogenesis and VLDL assembling in liver. InternationalJournal of Obesity,2009,33(5):1007-1012.
    [20] O Karaaslan, MG Ulusoy, Y Kankaya. Protective effect of grape seed extractagainst ischaemia/reperfusion injury in a rat epigastricflap model.Journal of Plastic, Reconstructive&Aesthetic Surgery,2010,63(4):705-710.
    [21] Sen CK, Bagchi D. Regulation of inducible adhesion molecule expressionin human endothelial cells by grape seed proanthocyanidin extract. MolCell Biochem,2001,216(1-2):1-7
    [1] Leigh, Mary J. Health benefits of grape seed proanthocyanidin extract(GSPE). Nutrition Noteworthy,2003,6(1):136
    [2] Poonam A, SH Ansari, Iram N. Bio-Functional Aspects of Grape Seeds-A Review.International Journal of Phytomedicine,2011,2(3):70-71
    [3] E Mansouri, M Panahi, MA Ghaffari. Effects of Grape Seed ProanthocyanidinExtract on Oxidative Stress Induced by Diabetes in Rat Kidney. IranianBiomedical Journal,2011,15(3):100-106.
    [4] D Bagchi, RL Krohn, J Balmoori. Comparative in vitro and in vivo free radicalscavenging abilities of a novel grape seed proanthocyanidin extract andselected antioxidants. Natural Antioxidants,1998,12(6):178-187
    [5] S Ulusoy, G Ozkan, S Ersoz. The Effect of Grape Seed ProanthocyanidinExtract in Preventing Amikacin-Induced Nephropathy. Med Sci,2012,34(2):227-234
    [6] R Ahmad, S Javed. Antiapoptotic potential of herbal drugs in cardiovasculardisorders: An overview. Pharmaceutical Biology,2010,48(4):358-374
    [7] Y Feng, YM Liu, MH Leblanc. Grape seed extract given three hours after injurysuppresses lipid peroxidation and reduces hypoxic-ischemic brain injury inneonatal rats. Pediatric research,2007,61:395-300
    [8] Zhanq J,WmN XF,Lu ZB,Liu NQ,Zhao BL.The efects of meso-2,3-dimereaptosueeinic acid and oligomerie procyanidins on acute leadneumtoxieity in rat hippoeampus.Free Radical Biol Med,2004,137(7):1037-1050
    [9] M Li, Y Ma, H Gao. A novel approach of proteomics to study the mechanismof action of grape seed proanthocyanidin extracts on diabetic retinopathyin rats. Chinese Medical Journal,2008,121(24):2544-2552
    [10] Xianhua Li, Yunling Xiao, Haiqing Gao. Grape Seed ProanthocyanidinsAmeliorate Diabetic Nephropathy via Modulation of Levels of AGE, RAGE andCTGF. Nephron Exp Nephrol,2009,111(2):31-41
    [11]陈国海,郑钦象糖尿病性视网膜病变的蛋白质组学研究进展国际眼科杂志,2010,10(5):677-684
    [12] ZH Shao, KR Wojcik, A Dossumbekova. Grape seed proanthocyanidins protectcardiomyocytes from ischemia and reperfusion injury via Akt‐NOS signaling.Journal of cellular biochemistry,2009,107(4):697-705
    [13] R Amarowicz. Biological activity of grapevine phenolic compounds.Grapevine Molecular Physiology&Biotechnology,2009,38(7):389-405
    [14] J Li, H Liu, S Ramachandran. Grape seed proanthocyanidins ameliorateDoxorubicin-induced cardiotoxicity. The American Journal of ChineseMedicine,2010,38(3):569-584
    [15] YB MA, HQ GAO, BA YOU. Anti-atheroscleross effect of grape seedproanthocyanidin extract in rabbits. Acta Academiae Medicinae,2003,6(15):350-357
    [16] Quesada H, Pajuelo D,D′az S. Grape seed proanthocyanidins correctdyslipidemia associated with a high-fat diet in rats and repress genescontrolling lipogenesis and VLDL assembling in liver. InternationalJournal of Obesity,2009,33(9):1007–1012
    [17] P Arora, SH Ansari. Bio-Functional Aspects of Grape Seeds-A Review.International Journal of Phytomedicine,2010,2:177-185.
    [18] M Bagchi, J Balmoori, D Bagchi. Role of reactive oxygen species in thedevelopment of cytotoxicity with various forms of chewing tobacco and panmasala. Toxicology,2002,179(3):247-255
    [19] M Bagchi, CA Kuszynski, J Balmoori. Protective effects of antioxidantsagainst smokeless tobacco-induced oxidative stress and modulation ofBcl-2and p53genes in human oral kerathnocytes. Free Radical Research,2001,35(2):181-194
    [20] T Wu, JH Liao, F Hsu. Grape seed proanthocyanidin extract chelates ironand attenuates the toxic effects of6-hydrxydopamine: implications forparkinson's disease. Journal of food biochemistry,2010,34(2):244-262
    [21] V Frisardi, F Panza, D Seripa. Nutraceutical properties of Mediterraneandiet and cognitive decline: possible underlying mechanisms. Journal ofAlzheimer's Disease,2010,22(3):715-740
    [22] S Asha Devi, BK Sagar Chandrasekar, KR Manjula. Grape seedproanthocyanidin lowers brain oxidative stress in adult and middle-agedrats. Experimental Gerontology,2011,46(11):958-964
    [23] Yetkin A, Husamettin G, Ersin G. The Efficiency of Proanthocyanidin inan Experimental Pulmonary Fibrosis Model: Comparison with Taurine.Inflammation,2012,4(14):235-240
    [24] N Niu, YH Yu, Y Wang. Combined effects of niacin and chromium treatmenton vascular endothelial dysfunction in hyperlipidemic rats. Molecularbiology reports,2009,36(6):1275-1281
    [25] Zhanq B,Osborne NN.Oxidative—induced retinal degeneration is attenuatedby epigelloeateehin gallate.Brain Res,2006,8(12):176-18
    [26] Robert AM,Robert I,Renard G.Effect of proeyanidolie oligomers on cornealcollagen fibrillogenesis.Fr Ophtalmol,2005,28(10):1017-1025
    [27] Ipatova OM, Prozorovskaia NN, Rusina IF.Antioxidant properties of a leafextract from Aronia (Aronia melanocarba)containing proanthocyanidins.Biomed Khim,2003,49(2):165—176
    [28] Ohgami K,llieva I,Shiratori K.Anti—inflammatory Effeets of AroniaExtract on Rat Endotoxin—Induced Uveitis. Invest Ophthalmol Vis,2005,46(1):275-281
    [29] MJ Leigh. Health benefits of grape seed proanthocyanidin extract (GSPE).Nutrition Noteworthy,2003,6(1):45-50
    [30] Bentivegna SS,Whitney KM. Subchronic3-month oral toxicity study of grapeseed and grape skin extracts. Food and Chemical Toxicology,2002,40(12):1731-1743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700