用户名: 密码: 验证码:
基于参数辨识及补偿控制的异步电动机智能控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以转子磁场定向控制的异步电动机调速系统为研究对象,以提高系统的动态响应和鲁棒性为主要目标,研究和建立转子电阻等参数变化情况下的异步电动机动态数学模型,以及基于此动态数学模型的参数辨识、模糊神经网络控制、神经网络控制、非线性控制和自适应控制等控制策略、控制结构和控制技术。
    1.在实时控制中,参数在线辨识算法的复杂程度直接影响系统控制的实时性和动态性能,而参数变化情况下系统的数学模型,不仅能够用于分析参数变化对系统性能的影响,而且对提高辨识算法的快速性和准确性有重要的作用。为此本文在异步电机动态数学模型基础上,应用状态增量的方法,研究、推导和建立了异步电机转子电阻和电感变化情况下的数学模型,并应用该模型分析了参数对系统性能的影响。模型以Laplace算子的传递函数形式表示,具有结构简单、物理概念清晰、使用方便等特点,为研究分析电机转子电阻等参数对系统性能的影响和参数辨识等提供了一种新的简单实用的方法。
    2.应用人工神经网络的方法,在所建立的状态增量型动态数学模型研究的基础上,提出了转子电阻、系统转动惯量、粘性摩擦系数和负载转矩的辨识方法,在此基础上通过在前向通道串入一个校正装置的方法,提出了转子电阻和负载转矩扰动影响的补偿和校正的方案,辨识方法和校正方案具有结构简单、使用方便的优点。同时应用非线性控制理论,还提出了一种转子电阻和负载转矩参数辨识的方法,在此基础上设计和建立了非线性控制器和自适应控制系统,实现了良好的系统跟踪响应性能。
    3.提出了一种以转矩电流为指导值和目标函数的神经网络控制方案,建立了考虑转子电阻变化情况下进行补偿控制的系统。在建立输出参考模型和教师指导控制器的基础上,推导和建立了以转矩电流为目标函数和以电机输出转速为目标函数的两种神经网络控制方案的计算控制算法,在电机的动态响应和参数变化对系统的影响方面进行了研究分析。计算机仿真结果证明,转子电阻补偿器能有效地改善控制系统的动态响应,以
The speed regulating system of vector control on induction machine is chosen as the object of study in this dissertation. The main aim of study is to improve the performances of the system in dynamic responses and robust. Starting with the dynamic mathematical model study in the conditions of parameter variations, the study is deeply done on the control structures and control strategies of parameter identification, fuzzy-neural control, neural control, nonlinear control and adaptive control.
    In real time control, the complexity degree of online parameter identification algorithm directly affects the performances of real time system and dynamic responses. The mathematical models in the condition of parameter variations are not only used to analyze the effects of parameters on system performance, but also play the important role in improving the celerity and veracity of identification algorithms. Therefore, the dissertation presents the mathematical models considering rotor resistance and inductance variation the state increment method. Because the models have the formats of Laplace transfer function, they have the advantages of simple structure, clear concept and feasible application, which supply some new and simple methods to study the vector control of induction machine.
    Based on the above research, some identification methods of rotor resistance, moment of inertia, viscous coefficient and load torque are presented by using neural network. The projects for the compensations of rotor resistance variation and load torque disturbance are covered. In order to realize good tracking performance, this dissertation also establishes a non-linear controller and adaptive system based on a new identification method of rotor resistance variation and load torque disturbance with non-linear control theory.
    A novel neural network control strategy with torque current teacher controller and target function is proposed. In addition, the new control system including neural network controller
    and rotor resistance variation compensation is also built. The control algorithms of the system for both torque current target function and motor speed target function are studied. The computer simulation results parameter variations and dynamic responses show that the system has strong robustness and good dynamic performances. After the research of neural network controller, we deeply study the fuzzy-neural network controller and combine it with compensation unit of rotor resistance variation to form the intelligent control system. The controller has the regulation functions of the center point parameters and width parameters of membership functions to improve the learning ability. The simulation results demonstrate the validity and good robustness of this scheme. In order to study above controllers, the methods using torque current target function are compared with the traditional method using motor speed target function under both neural network controller and fuzzy-neural network controller. Four control algorithms are proposed and discussed. Both theoretical analysis and computer simulations prove that the intelligent controllers using torque current target function have better performances in dynamic accuracy.
引文
[1] 周箴, 万淑芸,王离九. 转子电阻变化对矢量控制的影响.电气自动化,1998,(3):18-20.
    [2] B. Abdellfattah. Implementation of A DSP Based Real-Time Estimation of Induction Motor Rotor Time Constant. IEEE Trans. on Industry Electronics,2002, 17(4): 534-541.
    [3] 陈伯时,陈敏逊. 交流调速系统.北京:机械工业出版社,2000.
    [4] 陶永华,尹怡欣,葛卢生.新型PID 控制及其应用.机械工业出版社,2001.
    [5] G..J.Wang, C.T. Fong and K.J. Chang. Neural-Network-Based Self-Tuning PI Controller for Precise Motion Control of PMAC Motors. IEEE Trans. on Industrial Electronics 2001,48(2):408-415.
    [6] K.S. Fu and M.Walts. A Heuristic Approach to Reinforcement Learning Control System. IEEE Trans. AC,1965,10(4): 390-398.
    [7] K.S. Fu. Learning Control Systems and Intelligent Control System. An Intersection of Artificial Intelligence and Automatic Control, IEEE Trans. AC,1971,16(1): 70-72.
    [8] G.N. Saridis. Intelligent Robotic Control. IEEE Trans. AC,1983,28(5):547-556.
    [9] 孙增圻. 智能控制理论与技术.北京:清华大学出版社,1997.
    [10] 张钟俊,蔡自兴. 智能控制与智能控制系统.信息与控制,1989,(5): 30~39。
    [11] 孙增圻,张再兴. 智能控制理论与技术.控制与决策,1996,11(1): 1~8。
    [12] K.J.Astrom, J.J. Anton and K E. Arzen,Expert Control. Automatica, 1986-22(3): 277-286.
    [13] L.A.Zadeh. Fuzzy sets. Information and Control, 1965, (8):330~353.
    [14] E.H.Mamdani. Application of Fuzzy Algorithms for Control of Simple Dynamic Plant. Proc. IEE, Control and Science, 1974: 1585~1588.
    [15] A Rubaai, R Kotaru and M Kankam. A Continually Online-Trained Neural Network Controller for Brushless DC Motor Drives. IEEE Trans. on Industry Applications, 2000, 30(2): 475~483.
    [16] J.O.P. Pinto and B.K. Bose. A Neural-Network-Based Space-Vector PWM Controller for Voltage-Fed Inverter Induction Motor Drive. IEEE Trans. on Industry Applications, 2000, 36(6):1628~1636.
    [17] F. Filipptti. Neural Network Aided On-Line Diagnostics of Induction Motor Rotor Fault. IEEE Trans. on Industry Applications, 1995, 31(4):829-889.
    [18] 黄苏男, 邵惠鹤, 张钟俊. 智能控制的理论和方法. 控制理论与应用,1994,11(4):386-394.
    [19] 费敏锐,陈伯的,郎文鹏. 智能控制方法的交叉综合及其应用.控制理论与应用,1996,13(3):273~280.
    [20] 李人厚.智能控制理论和方法.西安:西安电子科技大学出版社,1999.
    [21] 王顺晃,舒迪前.智能控制系统及其应用.北京:机械工业出版社,1998.
    [22] 陈伯时,谢鸿鸣. 交流传动系统的控制策略.电工技术学报,2000,15(5):11-15.
    [23] B.K.Bose. Expert System. Fuzzy Logic and Neural Network Applications in Power Electronics and Motion Control.Proc.IEEE,1994,82(8):1303-1323.
    [24] K.J.Hunt. Neural Networks for Control Systems-A Survey. Automatica, 1992, 28(6):1083-1112.
    [25] 王永骥,涂健. 神经元网络控制.北京:机械工业出版社,1998.
    [26] T. Fukuda and T. Shibata. Theory and Applications of Neural Networks for Industrial Control System. IEEE Trans. on Industrial Electronics, 1992,39(6):472-488.
    [27] W.S Tommy and Y.F.Chow. A Recurrent Neural-Network-Based Real-Time Learning Control Strategy Applying to Nonlinear Systems with Unknown Dydamics. IEEE Trans. on Industrial Electronics 1998,45(1):151-161.
    [28] 陈卫田,施颂椒,张钟俊.基于神经网络的非线性自适应控制.控制理论与应用,1996,13(5):545-552.
    [29] 汪镭, 周国兴, 吴启迪. 人工神经网络在传动领域中的应用.电机与控制学报, 2001,5(1):36-39.
    [30] T. Michael. Identification and Control of Induction Machines Using Artificial Neural Networks. IEEE Trans. on Industry Applications, 1995, 31(3): 613-619.
    [31] M.Andrzej and S. Legowski. Application of Neural Networks to the Optimal Control of Three-Phase Voltage-Controlled Inverters. IEEE Trans. on Industrial Electronics 1994,42(2):394-404.
    [32] 姜平,宋文忠. 神经元自适应PID 控制器的研究. 电气自动化, 1998,(1):11-13.
    [33] 李卓,萧德云,何世忠. 基于神经网络的模糊自适应PID 控制方法. 控制与决策,1996,11(3):340-345.
    [34] Psaltis. Neural Controllers.Proc.of international Conference on Neural Networks,San Diego,USA,1987:551-558.
    [35] R.K.Elsley. A Learning Architecture for Control Based on Back-Propagation Neural Networks.Proc.IEEE.Int.Conf.on Neural Networks,1988: 587-594.
    [36] H.Derrick and B.Widrow. Neural Networks for Self-Learning Control Systems. IEEE Control Systems Mangzine,1990,4(1):18-23.
    [37] C.M.Lin and C.F.Hsu. Neural-Network-Based Adaptive Control for Induction Servomotor Drive System. IEEE Trans. on Industrial Electronics. 2002, 49(1):115-123.
    [38] P. Marino,M. Milano and F. Vasca. Linear Quadratic State Feedback and Robust Neural Network Estimator for Field-Oriented-Controlled Induction Motors. IEEE Trans. on Industrial Electronics. 1999,46(1):150-161.
    [39] D.Fodor,G..Griva and F.Profumo. Compensation of Parameter Variations in Induction Motor Drives Using A Neural Network. Proc.IEEE,Jun,1995:1307-1311.
    [40] M.G..Simoes and B.K.Bose. Neural Network Based Estimation of Feedback Signals for A Vector Controlled Induction Motor Drive. IEEE Trans. on Industry Applications, 1995, 31(3), 620-629.
    [41] K.K. Shyu,H.J. Shieh, and S.S. Fu. Model Reference Adaptive Speed Control for Induction Motor Drive Using Neural Network. IEEE Trans. on Industrial Electronics.1998,45(1):180-182.
    [42] 邱阿瑞,孙健. 基于神经网络的感应电机矢量控制系统. 清华大学学报, 1999,39(9):29-32.
    [43] Y.S.Kung and C.M.Liaw. Adaptive Speed Control for Induction Motor Drives Using Neural Networks. IEEE Trans. on Industrial Electronics. 1995,42(1):25-32.
    [44] M.Kawato. A Hierarchical Model for Voluntary Movement and Its Application to Robotics.Proc.of IEEE Int.Conf on Neural Networks,1987: 573-582.
    [45] H.Gomi and M.Kawato. Learning Control for A Closed Loop System Using Feedback-Error-Learning. Proc.29th,CDC,1990: 3284-3295.
    [46] 黎英,邵宗凯. 基于神经网络的异步电动机定转子电阻在线估计法.电气传动自动化,1999,21(4):33-36.
    [47] A.Ba-Razzouk and C. G. Olivier. Artificial Neural Networks Rotor Time Constant Adaptation in Indirect Field Oriented Control Drives.Proc. IEEE,Jun,1996:701-707.
    [48] C.Y. Huang and T.C. Chen. Robust Control of Induction Motor with A Neural-Network Load Torque Estimator and A Neural-Network Identification. IEEE Trans. on Industrial Electronics,1999,46(5):990-998.
    [49] 汪镭,周兴国,吴启迪. 基于人工神经网络在线参数跟踪的自适应交流传动系统. 自动化学报,1997,23(4):543-546.
    [50] 蒋斌,颜钢峰. 基于RBF 神经网络的模糊自适应控制. 电气自动化,2001,(1):16-18.
    [51] W.T.Thomson. A Review of On-Line Condition Monitoring Techniques for Induction Motors-Past,Present and Future. Proc. SDEMPED’99, Gijon, Spain, Sept.1999: 3-17.
    [52] F.Filippetti, G.Franceschini and C.Tassoni. NN Aided On-Line Diagnostics of Induction Machine Stator Faults. Proc.UPEC’95. Vol.1. London. U.K.Sept. 1995,148-151.
    [53] F.Filippetti,G..Franceschini and C.Tassoni. Neural Network Aided On-Line Diagnostics of Induction Motor Rotor Faults. IEEE Trans. on Industry Applications, 1995, 31(4): 892-899.
    [54] A. Bernieri, M. Dapuzzo, L. Sansone, et al. A neural network approach for identification and fault diagnosis on dynamic systems. IEEE Trans. Instrument Measure, 1994,43(1): 867-873.
    [55] 刘向杰,周孝信,柴天佑. 模糊控制研究的现状与新发展. 信息与控制,1999,28(4):283-292.
    [56] L.X.Wang and J.M.Mendel. Fuzzy control of Nonlinear Systems. IEEE Trans. Fuzzy Systems, 1993,1(2): 146-155.
    [57] X.J. Liu and T.Y. Chai. A Class of Neural-Fuzzy Controller and Its Application in AC Speed Adjustment with Varying Frequency.The 36th IEEE Conference on Decision and Control,USA,December,1997:2742-2747.
    [58] 刘向杰, 张焕水, 柴天佑. 三维模糊控制器的结构研究. 自动化学报,1998,24(2):230-235.
    [59] 陈建勤,吕剑虹,陈来九.模糊控制系统的闭环模型及稳定性分析.自动化学报,1994,20(1):1-10.
    [60] 程善美,邓忠华.基于模糊控制器的异步电动机位置控制.微电机,1996,2:20-23.
    [61] 张焰,江弈坚.基于模糊控制的分切机变频调速系统.电气传动,1997,6:12-15.
    [62] 詹波, 吴浩烈. 采用模糊控制的感应电机直接转矩控制. 贵州工业大学学报,1998,8(4):71-75.
    [63] C.M.Liaw. Fuzzy Two-Degrees-of-Freedom Speed Controller for Motor Drives. IEEE. Transactions on industrial electronics. 1995,42(2):209-216
    [64] 谭惊涛,秦忆.基于变结构理论的感应电动机模糊线性调速系统.电工技术学报,2000,15(5):21-25.
    [65] F.J. Lin, R.J. Wai and S.L.Wang. A Fuzzy Neural Network Controller for Parallel-Resonant Ultrasonic Motor Drive. IEEE Trans. on Industrial Electronics, 1998, 45(6), 928-937.
    [66] Y.P.Kuo and S.Y.Li. GA-Based Fuzzy PI/PD Controller for Automotive Active Suspension System, IEEE Trans. on Industrial Electronics, 1999, 46(6): 1051~1056.
    [67] J.Yoshisugu and I. Kenji, Fuzzy Autotuning Scheme Based on aparameter Ultimate Sensitivity method for AC speed Servo System, IEEE Trans. on Industrial Applications, 2000, 36(2): 492~499.
    [68] C.H. Chou and H.C. Lu. A Heuristic Self-Tuning Fuzzy Controller.Fuzzy Sets and Systems,1994,61: 249-264.
    [69] 鲍新福,都志杰,王芳君. 自调整比例因子控制器.自动化学报,1987,13(2):129-133.
    [70] M.Mizumoto.Fuzzy Control Various Fuzzy Reasoning Methods.Information Sciences,1988,45:129-141.
    [71] S. Ren.Huang.Use of Neural Fuzzy Networks with Mixed Genetic/Gradient Algorithm in Automated vehicle Control. IEEE Trans. on Industrial Electronics, 1999, 46(6): 1092~1102.
    [72] 王晓哲, 顾树生. 基于遗传算法的PID 神经网络解耦控制. 决策与控制,1999,14:617-620.
    [73] 孙炜,王耀南.基于模糊高斯基函数神经网络控制的交流伺服系统.电机与控制学报,1999,3(2):81-84.
    [74] R.J. Wai. Hybrid Fuzzy Neural-Network Control for Nonlinear Motor-Toggle Servomechanism. IEEE Trans. on Control Systems Technology, 2002, 10(4):519-532.
    [75] F.J. Lin, R.J. Wai and R. Y. Duan. Fuzzy Neural Networks for Identification and Control of Ultrasonic Motor Drive With LLCC Resonant Technique. IEEE Trans. on Industrial Electronics,1999,46(5):999-1011.
    [76] 易继锴、侯媛林. 智能控制技术.北京:北京工业出版社,1999
    [77] 李大凡,王守臣,诸静. 开关磁阻电机的模糊神经网络模型. 中国电机工程学报,2000,20(1):11-14
    [78] 王雷,姚灵石,吴忠强. 利用GA-BP 算法对模糊神经网络进行优化.燕山大学学 报,1999,23(3):273-276.
    [79] 汪光阳,周谦之,周韵玲.基于遗传算法的异步电动机模糊控制器优化设计.电工技术学报,2001,16(1):60-64.
    [80] 周炼,谢运祥.模糊控制在交流调速中的应用现状及前景.微电机.2000,33(2):29-31.
    [81] 费敏锐,陈伯时.专家模糊控制方法. 控制与决策,1996,11(2):256-260.
    [82] 吴勤勤. 一类专家模糊控制器. 工业过程模型化及控制, 1988,311-316.
    [83] 袁曾任,姜莉楠. 基于人工神经元的控制系统模型简化的专家系统. 信息与控制,1992,21(5):278-282.
    [84] 舒怀林, 魏泽国. 交流串极调速双环模糊PI 单片机控制系统. 电气传动,1993(6):16-20.
    [85] Z.Y Zhan and M. Tomizuka. Fuzzy gain schedulmg of PID controllers. IEEE Trans. on Industrial Applications, 1993, 23(5), 571-574.
    [86] D.P.Kuik and P.Tamet. Linguitic PID Controllers.Proc.11th IFAC World Congress, 1990:1312-1316.
    [87] 程善美.交流伺服系统中基于模糊控制的速度控制器.电气传动,1995,4:26-29.
    [88] P. Z. Grabowski , M.P. Kazmierkowski and B.K.Bose. A Simple Direct-Torque Neuro-Fuzzy Control of PWM-Inverter-Fed Induction Motor Drive. IEEE Trans. on Industrial Electronics, 2000,47(4):863-870.
    [89] 管萍,梁文林,李绍滋. 神经-模糊控制在交流变频调速中的应用. 电气自动化, 1998(1):4-7.
    [90] 张昌凡,王耀南. 基于模糊神经变结构控制伺服系统. 工业仪表与自动化装置,2002(2):11-13.
    [91] 达飞鹏,宋文忠. 基于输入输出模型的模糊神经网络滑模控制. 自动化学报, 2000,26(1):136-139.
    [92] 邵世煌.自组织模糊控制器.自动化学报,1987,13(2):149-150.
    [93] 何峰.参数自适应Fuzzy 调节器在变频调速中的应用.电气传动,1990,(6):43-48
    [94] S.N.Vukosavic and M.R.Stojic. On-line Tuning of Rotor Time Constant for Vector-Controlled Induction Motor in Position Control Applications. IEEE Trans. on Industrial Electronics,1993,40(1):130-138.
    [95] A.M. Lee and L.C. Fu. Nonlinear Adaptive Speed and Torque Control of Induction Motor with Unknown Rotor Resistance. IEEE Trans. on Industrial Electronics, 2001,48(2):391-401
    [96] R.Krishnan and F.C.Doran. A Study of Parameter Sensitivity in High Performance Inverter Fed Induction Motor Drive System. IEEE Trans. on Industry Applications, 1987, 23(4): 623-635.
    [97] T. Noguchi, S. Kondo and I. Takahashi. Field-Oriented Control of an Induction Motor with Robust On-Line Tuning of Its Parameters. IEEE Trans. on Industry Applications, 1997, 33(3): 35-42.
    [98] 葛璇. 矢量控制异步电机转子时间常数的实时补偿. 电工电能新技术,1999,(2):49-53.
    [99] 韩曾晋. 自适应控制. 北京:清华大学出版社, 1995.
    [100] S. Wade. A New Method of Rotor Resistance Estimation for Vector-Controlled Induction Machines. IEEE Trans. on Industrial Electronics, 1997,44(2):247-257
    [101] Riccardo. Exponentially Convergent Rotor Resistance Estimation for Induction Motors. IEEE Trans. on Industrial Electronics ,1995,4(5):508-515
    [102] 汪镭.神经网络辨识方案在异步电机传动系统参数辨识中的应用讨论.电工电能新技术,2001,(2):58-63
    [103] 孙泽昌.一种采用参数调整学习的感应电机转子参数辨识方法.电气自动化, 1998,(1):19-22
    [104] Faa-Jeng Lin.Control of Indirect Field-Oriented Induction Motor Drives Considering the Effects of Dead-Time and Parameter Variations. IEEE Trans. on Industrial Electronics ,1993,40(5):486-495
    [105] 李华德. 交流调速控制系统.北京:电子工业出版社,2003.
    [106] 胡崇岳. 现代交流调速技术. 北京:机械工业出版社,2001.
    [107] 吴守咸,臧英杰. 电气传动的脉冲调制控制技术. 北京:机械工业出版社,2003.
    [108] 刘和平,严利平,张学峰等. TMS320LF240X DSP 结构、原理及应用. 北京:北京航空航天大学出版社,2002.
    [109] 张卫宁. TMS320LF2000 系列DSP 原理及应用. 北京:国防工业出版社,2002.
    [110] 李友善. 自动控制原理. 北京:国防工业出版社,1997.
    [111] 程善美.交流传动系统关键技术及神经网络控制应用研究. 华中科技大学博士学位论文,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700