用户名: 密码: 验证码:
高速列车运行状态暂态过电压机理与抑制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路是当代高新技术的集成,以其快速、高效、环保等优点在世界各国得到了迅猛的发展。高速列车是高速铁路运输系统的核心,其电气安全性直接关系到车内人员、设备的安全。由于高铁线路桥隧比例高,车、网、桥电气耦合复杂;高速列车运行速度快,受电弓—接触网(以下简称“弓网”)电接触状态变化频繁;动车组车体接地点多,电压波折反射剧烈,使得高速列车的过电压防护面临前所未有挑战。因此从“列车——接触网变电所”(以下简称“车——网——所”)系统的角度出发,结合高速列车的运行工况,研究过电压的形成机理及其在列车系统的传播规律、抑制策略,具有重要的学术价值和工程意义。
     以“车——网——所”系统为对象,综合考虑线路桥隧结构的耦合、弓网系统的电接触状态,分别建立了高速铁路牵引供电系统接触网——高架桥电磁耦合模型、弓网系统的动态离线电接触模型,研究了高速列车运行过程中的分相、离线、升降弓浪涌等暂态过电压的形成机理、影响因素和抑制策略,分析了过电压幅度的影响因素,提出了相应的抑制方法。
     根据动车组实际结构,构建了高速列车系统分布参数模型,研究了过电压在车体的传播途径、及其在各节车体间通过高压电缆的折反射特性;车体接地方式、接地参数对接触电势和车体回流的影响规律;开展了现场试验。研究发现了过电压在各节车体的耦合方式、耦合途径和传播规律,给出了相应的抑制策略。在此基础上提出了适用的新型接地方法。
     以接地阻抗和分流系数为核心参数,构建了综合接地系统模型,研究了高速列车牵引电流、暂态过电压在钢轨——综合接地系统中的传播特性,提出了综合地线接地阻抗、分流系数计算公式,分析了地线参数变化对综合接地系统降压、分流效果的影响,并在遂渝线上进行了现场试验。
     构建了基于气流场的车顶高压设备电气模型,研究了高速列车运行时车顶绝缘子的气流场与电场分布特性,分析了车顶绝缘子表面气压分布与积污、闪络电压的关系,提出了适用于高速气流场环境的车顶高压设备绝缘配合参数。
High-speed railway, as the integration of multiple high-technology in contemporary era, has been developing at an alarming rate from all over the world for its characteristics of speediness, high efficiency and environment protection. High-speed Electric motor train unit (EMU) plays a core role in the rail transportation system which has great influence on the safety of passengers as well as the electrical equipment. It's precisely because of the large percentage of bridges and tunnels in the railway route, complex electrical coupling among vehicles, overhead contact lines and traction substations, frequent change of electrical contact state between bow and contact line at the high-speed, harsh refraction and reflection of voltage wave caused by numerous grounding point in vehicle body, there are unprecedented challenges in the overvoltage protection of high-speed trains. Therefore, there is important academic value and project significance to study the formation mechanism, propogation and restrainned method of over-voltage from the viewpoint of vehicle-catenary-substation system combined with operating conditions of high-speed train. In this paper, a simulation model of overhead contact line of high-speed railway traction power system, viaduct electromagnetic coupling and dynamic electrical contact of the bow-net system in EMU have been established taking into consideration of the coupling of the bridges and tunnel structures, contact state of the pantograph-catenary system. The formation mechanism of overvoltage of phase separation, plus with lift bow surges and other transient overvoltage influencing factors were studied as well as its suppression strategies. Influencing factors of over-voltage's amplitude were analyzed, suppressing strategies were proposed at last.
     A distributed parameter mode of high-speed vehicle body was built based on actual structural parameters. The route of transmission voltage on the vehicle body and the refraction and reflection characteristics of the voltage wave in high voltage cable between every carriage were studied. The influence of body grounding type and parameters on the contact potential and body returning was analyzed, and corresponding tests were carried out to propose a new body grounding method. The coupling method, coupling approach and propogating characteristcs were analyzed. New grounding strategies were proposed based on the above analyzing results.
     A comprehensive grounding system model was built based on key parameters of grounding impedance and shunt coefficient. The traction current and transient over-voltage propagation characteristics of the high-speed train in the railway rail and integrated grounding system was analyzed. The formula of comprehensive grounding impedance and the shunt coefficient were proposed. The influence on shunting current and suppressing over-voltage with the change of grounding line paramenters had been analyzed. Related experiment had been carried on SUI-YU railway.
     A model to analyze the high voltage equipment on the roof of high-speed train was built. The electric field near the high voltage equipment and the flow field distribution were studied. The relationship between insulator surface pressure distribution and the contamination flashover voltage was analyzed. Finally, the insulation coordination parameters of high voltage equipment on the roof of the high-speed airflow were proposed.
引文
[1]钱立新,世界高速铁路技术,中国铁道出版社[M],2003.
    [2]F.Abrishamkar and J.Irvine. Comparison of current solutions for the provision of voice services to passengers on high speed trains," in IEEE Vehi. Technol. Conf.,2000.5:2068-2075,
    [3]H.Glickenstein. High Speed Trains, in IEEE Vehi. Technol. Magazine,2009,9-14.
    [4]H.Glickenstein. High speed rail approaches 200mi/h in the western hemisphere, in IEEE Vehi. Technol. Magazine,2008,13-18.
    [5]Y.Z.Liu, L.Huang, Research on the IDSS of High-Speed Railway based on multi-agent, in Int. Conf. on Management science and engineering,2007,79-84.
    [6]L.Battistelli, M.Pagano, D.Proto,2×25kV 50Hz High-speed traction power system:short- circuit modeling[J], IEEE Transactions on Power Delivery,2011,26(3):1459-1466.
    [7]P.Cesario,G.Sciutto, C.Rossi, Digital simulation for solution of oscillatory overvoltage problems in AC railroad electrification[C], IEE Conference Publication,1989,312:356-362.
    [8]郭晨曦,张继元,牵引供电系统过电压与电力机车、电动车组绝缘水平的选择[J],铁道机车车辆,25(4):65-68.
    [9]方鸣,电气化铁道牵引系统的绝缘、过电压保护和绝缘配合[J],中国铁道科学,2001,22(6):27-32.
    [10]诺维柯夫,电气化铁道设备的绝缘和过电压[J],机车电传动,1992,2:55-61.
    [11]曲昌军,邓云川,牵引变电所过电压问题研究[J],铁道工程学院,2007,8(107):81-84.
    [12]胡礼源,电力机车电气设备的过电压与绝缘配合[J],电力机车与城轨车辆,1991,35-38.
    [13]丰战凯.电气化铁路过电压产生的原因及对策[J].西铁科技,2007,(2):16-18.
    [14]郭艳玲,王洪涤,孙树朴,牵引电网过电压产生机理及测试研究[J],电力技术,2002,9:25-27.
    [15]宫衍圣,电力机车过关节式电分相过电压研究[J],铁道学报,2008,30(4):103-107.
    [16]S.C.Lee, K.H.Nam, Overvoltage suppression filter design methods based on voltage reflection theory[J]. IEEE Transactons on power electronics,2004,19(2):264-271.
    [17]M.B.Djuric, V.V.Terzija, A new approach to the arcing faults detection for fast autoreclosure in transmission systems[J], IEEE Transactions on Power Delivery,1995,10(4):1793-1798.
    [18]F.X.Chen, Y.Sun, W.P.Ma, Research on the over-voltage of 220kv power system caused by traction transformer's commissioning[C], The ninth international conference on electronic measurement and instruments,2009,2607-2611.
    [19]方鸿波,于萧寒,李芳芳,对受电弓离线产生的过电压的分析[J],铁道技术监督,2009,37(1):38-39.
    [20]胡砚光,机车受电弓离线问题的思考[J],西铁科技,2003,13:12-14.
    [21]方鸿波,牵引离线过电压分析[D],西南交通大学硕士论文,2010.
    [22]K.H.Kuypers, H.Tschiedel, F.Konig,25kV AC railways overhead contact system protection-a comparison between the traditional approach and alternative low cost solution[C], IET 9th Int. Conf. on Developments in Power System Protection,2008,62-67.
    [23]M.R.Iravani, A.K.Chaudhary, W.J.Giesbrecht, et al. Modeling and analysis guidelines for slow transients—part Ⅲ:the study of ferroresonance[J]. IEEE Transactions on Power Delivery,2000, 15(1), pp:255~265.
    [24]J.M.Feldman, A.L.Cappabianca. On the accuracy and utility of piecewise-linear models of ferroresonance[J]. IEEE Transactions on Power Apparatus and System,1978,97(2):469~477.
    [25]F.Wornle, D.K.Harrison, ChengKe Zhou. Analysis of a ferroresonant circuit using bifurcation theory and continuation techniques[J]. IEEE Transactions on Power Delivery,2005,20(1), pp:191~196.
    [26]T.V.Craenenbroech, W.Michiels, D.V.Dommelen. Bifurcation analysis of three-phase ferroresonant oscillations in ungrounded power systems[J]. IEEE Transactions on Power Delivery,1999,14(2), pp: 531~536.
    [27]Ralph H. Hopkinson. Ferroresonant overvoltage control based on TNA tests on three-phase Wye-Delta transformer banks[J]. IEEE Transactions on Power Apparatus and Systems,1968,87(2), pp:352~361.
    [28]刘凡,孙才新,司马文霞等.铁磁谐振过电压混沌振荡的理论研究[J].电工技术学报,2006,21(2):103-107.
    [29]刘肖杰,张剑.铁路中性点不接地电力系统铁磁谐振的产生原因及特点[J].电气开关,2004,(6):36-37.
    [30]S.Hatsukade,降低AC车辆车体浪涌电压的方法[J],国外铁道车辆,2010,47(6):11-16.
    [31]刘汝让,车辆接地保护的技术要求[J],铁道车辆,1998,36(7):23.
    [32]张雪原,高速重载铁路车网耦合下过电压产生机理与防护方法[D],西南交通大学博士学位论文,2008.
    [33]顾翼男,王毅,王宏,电力机车自动过分相过电压分析[J],电气化铁道,2009,3:1-3.
    [34]赵峰,张泰伟,张忠,接触网关节式电分相过电压的研究[J],兰州交通大学学报,2009,28(1):52-55.
    [35]刘明光,路延东,关节式电分相过电压试验研究[J],电气化铁道,2007,15-17.
    [36]S.ostlund, A.Gustafsson, L.Buhrkall, et al, Condition monitoring of pantograph contact strip[C], IET Inter. Conf. on Railway Condition Monitoring,2008,1-6.
    [37]J.S.Gershman, N.A.Bushe, Thin films and self-organization during friction under the current collection conditions [J], Surface and Coating Technology,2004,186:405-411.
    [38]于正平,受电弓滑板与接触导线摩擦磨损机理与特性分析[J],中国铁道科学,1995,17(4):63-68.
    [39]J.S.Guo, L.Ping, F.Z.Ren, et al, Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways[J], Wear,2007,262:772-777.
    [40]于正平,张弘,吴鸿表等,高速电气化铁路接触网-受电弓系统的研究[J],中国铁道科学,1999,20(1):69-71.
    [41]H.Zaidi, K.J.Chin, J.Frene, Analysis of surface and subsurface of sliding electrical contact steelysteel in magnetic field[J]. Surface and Coatings Technology,2001,148:241-250.
    [42]郭凤仪,苗盛章,杨维等,电弧力对触头表面形貌特征的影响[J],辽宁工程技术大学学报,1999,18(2):140-143.
    [43]L.Morin, N.B.Jemaa, D.Jeannot, et al, Contact materials performance under break arc in automotive applications[C], IEEE transactions on Components and Packaging Technologies,2000, 23(2):367-375.
    [44]V.Thiagaraja, Analysis of the effects of induced fields from sliding electrical contacts[J], IEEE Transactions on Magnetic,2005,41(1):241-245.
    [45]松山晋作,李春阳,受电弓的受流摩擦学[J],电力牵引快报,1997,1:81-83.
    [46]G.W.Chang, H.W.Lin, S.K.Chen, Modeling characteristics of harmonic currents generated by high-speed railway traction driver converters[J], IEEE transactions on power delivery, 2004,19(2):766-773.
    [47]A.Mariscotti, P.Pozzonbon, Synthesis of line impedance expressions for railway traction systems[J], IEEE Transactions on Vehicular Technology,2003,52(2):420-430.
    [48]D.Klapas, R.Hackam, F.A.Benson, Electric arc power collection for high-speed trains[C], The IEEE Proceedings,1976,64(12):1699-1715.
    [49]P.Tao, L.Hong, Analysis of electromagnetic interference from pantograph arcing with different trolley locomotive speed in coal mine tunnel[C], ISAPE,2008,1096-1098.
    [50]L.M.Deng, Q.Ye, G.N.Wu, The status of arch arc in the High-speed electrified railway[C]> Asia-Pacific Power and Enery Engineering Conference,2010,1-3.
    [51]S.Midya, D.Bormann, T,Schutte, et al, Pantograph arcing in electrified railways-mechanism and influence of various parameters-Part Ⅰ:With DC traction power supply[J],IEEE Transactions on power delivery,2009,24(4):1931-1939.
    [52]S.Midya, D.Bormann, T.Schutte,et al, Pantograph arcing in electrified railways-mechanism and influence of various parameters-part Ⅱ:with AC traction power supply[J], IEEE Transactions on power delivery,2009,24(4):1940-1950.
    [53]S.Midya, D.Bormann, A.larsson,et al, Understanding pantograph arcing in electrified railways-influence of various parameters[C],IEEE international symposium on electromagnetic compatibility,2008,1-6.
    [54]S.Midya, D.Bormann, Z.Mazloom,et al, Conducted and radiated emission from pantograph arcing in AC traction system[C],Power and energy society general meeting,2009,1-8.
    [55]D.Bormann, S.Midya, R.Thottappillil, DC Components in pantograph arcing mechanisms and influence of various parameters[C],18th International Zurich Symposium on Electromagnetic Compatibility,2007,369-372.
    [56]B.Tellini, M.Macucci, R.Giannetti,et al,Line-pantograph EMI in railway systems[J], IEEE Instrumentation and Measurement magazine,2001,10-13.
    [57]R.Giannetti, M.Macucci, B.Tellini, EMI measurements in line-pantograph contact discontinuity in railway transportation systems[C], Trends in electrical measurement and instrumentation,2001, 25-27.
    [58]龚兆丰,刘文正,童达等,弓网离线电弧放电研究[C],高速铁路接触网系统新技术研讨会,2010,67-72.
    [59]贺德强,张锐锋,苗剑,铁路高速列车网络控制系统及其电磁兼容性研究[J],广西大学学报,2008,33(3):251-255.
    [60]渡边朝记,牵引电动机轴承电蚀及其对策[J],机车电传动,1991,5:47-51.
    [61]千岛伸雄,电力机车接地系统的改进[J],电气机关车,1985,6:34-39.
    [62]郭晖,孟祥雨,车辆的接地电流[J],国外铁道车辆,2001,38(6):39-45.
    [63]崔光玮,王辰永,王新国,SS8型机车主电路瞬间接地故障的判断与预防[J],电力机车与城轨车辆,2007,30(2):71-73.
    [64]张华志,客运专线接地、回流与系统间兼容性浅析[J],铁道标准设计,2007(11):100-102。
    [65]李华祥,电磁兼容在电力机车布线中的设计[J],铁道机车车辆,2008,28(1):9-11。
    [66]杨君,苑丰彪,高速动车组电磁兼容性设计研究[J],机车电传动,2009,2:13-17。
    [67]S.Hatsukade, T.Maeda, Experiment and basic analysis of the surge on a rolling stock's body[J], IEEJ Transactions on PE,2005,125(8)754-758.
    [68]C.Mulertt,防止电流通过轴承[J],国外铁道车辆,1994,3:46-49.
    [69]TB/T2947-1999,列车干线供电技术条件,1999,1444-1159[S]。
    [70]吴利锋,郭建良,关于发电车转向架接地系统的改进建议[J],铁道车辆,2009,47(7),42-43.
    [71]钟碧羿,地铁车辆接地技术分析[J],电力机车与城轨车辆,2008,31(4):55-57.
    [72]王贵仓,许玉清,陈志清,SS8型机车轴箱轴承电腐蚀原因分析及防止措施[J],电力机车技术,2002,25(2):47-48.
    [73]张维国,客车转向架接地技术[J],铁道车辆,2004,42(3):9-14.
    [74]张维国,客车车体转向架电气接地问题探讨[J],铁道车辆,2000,38(11):21-23.
    [75]杨剑,CRH2列控车载测速测距设备EMC实验及防护方法[J],铁路通信信号工程技术,2010,7(5):21-24.
    [76]张战平,直供方式交流电气化铁道钢轨漏泄电流分布特性及其地电位[J]。铁道学报,1991,13(1):25-33.
    [77]Ku.B.Y, T.Hsu, Computation and validation of rail to earth potential for diode grounded DC traction system at Taipei Rapid Transit System, in Rail Conf. pp.41-46,2004.
    [78]Jacimovic and Stanimir D, "Maximum Permissible Values of Step and Touch Voltages with Special Consideration to Electrified Railroads ", IEEE Trans.on Industry Applications, vol.20, no.4, pp.935-941,1984.
    [79]王猛,直流牵引供电系统钢轨电位与杂散电流分析[J],城市轨道交通研究,2005,3:24-26.
    [80]A.M.L.Tortia, "Turin-Milan high speed railway line,2×25kv 50Hz Ac electrified. EMC problems in earthing of exposed conductive parts", in Int SPEEDAM,2006, pp.1127-1132,
    [81]A.P.Dong, X.Y.Zhang, D.M.Li, et al, Impact of itegrated grounding wire on traction return current in direct power supply system, Journal of Southwest Jiaotong University,2010,45(1):88-98,
    [82]S. Bourg, B. Sacepe, T. Debu, "Deep earth electrodes in highly resistive ground:Frequency behavior" in Proc. IEEE Int. Symp. Electro-magnetic Compatibility,1995, pp.584-589.
    [83]邓云川,综合接地系统钢轨电位及电流分布的分析[J],铁道标准设计,2009,153-156.
    [84]W.F.Wan Ahmad, D. W.P.Thomas, C.Christopoulos, et al, "Effects of homogenous soil characteristics to the transient responses of a single long horizontal ground conductor model", in 2nd Int conf on Power and Energy,2008,367-371.
    [85]何江海,钢轨电位及负回流异常引起的故障分析及对策[J],电气化铁道,2004,3:31-33.
    [86]D.L.Garrett and K.A. Wallace, A critical analysis of grounding practices for railroad tracks in electric utility stations, IEEE Trans. on power delivery,1993,8(1):90-96,.
    [87]E.Pilo, L.Rouco, A.Fernandez, and A. Hernandez-Velilla, A simulation tool for the design of the electrical supply system of high-speed railway lines, in Power engineering society summer meeting, 2000,2:1053-1058.
    [88]R.Natarajan, A.F.Imece, J.Popoff, K. Agarwalet and P.S. Meliopoulos, Analysis of grounding systems for electric traction, IEEE Transactions on Power Delivery,2001,16(33):389-393.
    [89]T.Kneschke, "Caltrain electrification", in IEEE Vehi. Technol. Magazine,2009,4(2):9-14,
    [90]张婧晶,张家新,客运专线综合接地系统的仿真与研究[J],电气化铁道,2007,6:24-27.
    [91]L.Grcev, On HF circuit models of horizontal grounding electrodes, IEEE Trans. On Electromagnetic compatibility,2009,5(3):234-243.
    [92]R.W.P.King, Antennas in material media near boundaries with application to communication and geophysical exploration, Part Ⅰ:The bare meta dipole IEEE Trans. Antennas Propagation,1986, 39(4):483-389.
    [93]M.Niasati, A.Gholami, Evaluation of rail potential control devices performance for control of rail potential of DC electrified railway systems[C], ICRE,2008,1-7.
    [94]Y.C.Liu, J.F.Chen, Control scheme for reducing rail potential and stray current in MRT systems[C], IEE Proc. Elect. Power. Appl.,2005,152(3):322-327.
    [95]J.G.Yu, The effects of earthing strategies on rail potential and stray currents in DC transit railways. IEE Proc. On Developments in Mass Transit systems.1998,303-309.
    [96]D.Paul, DC Traction power system grounding[J], IEEE Transactions on industry Applications, 2002,38(3):818-824.
    [97]I.Cotton, C.Charalambous, P.Aylott, et al, Stray current control in DC Mass Transit systems, IEEE Transactions on Vehicular Technology,2005,54(2):722-730.
    [98]S.L.Chen, S.C.Hu, C.T.Tseng, et al, Analysis of rail potential and stray current for Taipei metro[J], Transactions on Vehicular Technology,2006,55(1):61-75.
    [99]R.J.Hill, D. C. Carpenter. Determination of rail internal impedance for electric railway traction system simulation [J]. IEEE Transactions on Vehicular Technology,1991,138 (6):311~321.
    [100]C.H. Lee and CJ. Lu, "Assessment of grounding schemes on rail potential and stray currents in a DC transit system," IEEE Trans. on Power Delivery,2006,21(4):1941-1947.
    [101]C.H.Lee, Evaluation of the maximum potential rise in Taipei rail transit systems[J], IEEE Transactions on Power Delivery,2005,20(2):1379-1384.
    [102]C.H.Lee, H.M.Wang, Effects of grounding schemes on rail potential and stray currents in Taipei rail transit systems[C].IEEE Proc. Electr. Power Appl,2001,148(2):148-154.
    [103]李红梅,客运专线接触网回流接地系统的优化设计[J],中国铁路,2005,11:41-43.
    [104]董安平,张雪原,邓明丽等,直供方式下综合地线对牵引回流的影响,西南交通大学学报,2010,45(1):88-98.
    [105]P.Rui, M.L.Wu, Performance of the integrated grounding system of hefei-naijing passenger dedicated railway, International Conference on Sustainable Power Generation and Supply,2009,1-5
    [106]马千里,高速铁路综合接地系统优化设计[J],西铁科技,2008,3:5-7.
    [107]S.F.Xie, Study on methods to reducing rail potential of high-speed railway[C], IEEE Industrial Electronics,2006,1042-1046.
    [108]陈屹,邓云川,遂渝线无砟轨道综合接地系统钢轨电位及电流分布的分析[J],铁道工程学报,2007,4:426429.
    [109]Railway applications-fixed installations Part1:Protective provisions relating to electrical safety and earthing, CEN/CENELEC, EN50122-1,1998.
    [110]Equipotential bonding of rail vehicles to running rail potential International Electro technical Commission, IEC479-1,1984.
    [111]Y.J.Liu, G.W.Chang, H.M.Huang, Mayr's equation-based model for pantograph arc of high-speed railway tracton system[J], IEEE Transactions on power delivery,2010,25(3):2025-2027.
    [112]佟来生,吴广宁,温凤香,变频牵引电机端子过电压产生原理及其影响因素[J],西南交通大学学报,2005,10(5):673-676.
    [113]司马文霞,吴亮,杨庆,沙尘对电力系统外绝缘电气特性影响分析[J],高电压技术,2008,34(1):16-20.
    [114]刘学忠,高超,邓显波等,高速气流对绝缘子表面放电特征的影响[J],电工技术学报,2010,25(12):16-21.
    [115]P.H.Schavemaker, L.V. Sluis, The arc model blockeset[C], Proceedings of the second IASTED, 2002,644-648.
    [116]江帆,黄鹏.Fluent高级应用与实例分析[M].清华大学出版社,2008。
    [117]丁梦阁.高速列车风致安全研究[D].西南交通大学,2010。
    [118]蒋兴良,李海波.计算流体力学在绝缘子积污特性分析中的应用[J].高电压技术,2010,36(2):329-333
    [119]朱红钧,林元华,谢龙汉.Fluent 12流体分析及工程仿真[M].清华大学出版社,2010
    [120]舒立春,袁前飞,蒋兴良等,低气压下绝缘子雷电冲击的污闪特性,高电压技术,2010,36(6):1347-1352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700