用户名: 密码: 验证码:
太平洋富钴结壳生长速率的综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富钴结壳生长缓慢,每百万年仅生长几毫米,是古海洋学和全球变化研究的理想“化石”。本研究用多种测量手段和年代学方法进行了太平洋富钴结壳元素、同位素地球化学行为及生长年代学的综合研究,获得以下成果:
     (1)用质子激发X荧光分析(PIXE)测得结壳CAD15和MHD59中21种常微量元素的含量,并详细研究了结壳中各元素的深度分布特征及各元素间的相关关系。
     (2)用α能谱分析了14块结壳中U、Th同位素及~(231)Pa比活度,根据其深度分布特征,得到太平洋富钴结壳的平均生长速率分别为3.14 mm/Ma(~(230)Th_(ex)法)、3.32mm/Ma(~(230)Th_(ex)/~(232)Th法)、6.30 mm/Ma(~(231)pa_(ex)法)和1.71 mm/Ma(~(234)U_(ex)法)。
     (3)用加速器质谱(AMS)测得结壳CAD15和MHD59中的~(10)Be/~9Be比值和~(10)Be含量,证实二者均随深度的增加而指数衰减,由此获得两结壳的生长速率分别为2.19和2.55 mm/Ma,未磷酸盐化层段的生成年代分别为26.94 Ma B.P.和19.22 Ma B.P.。
     (4)应用Co年代学模式与Fe、Mn含量的结核生长速率经验公式估算了结壳CAD15和MHD59的生长速率与生成年代,根据两结壳的Co含量及~(10)Be法所得生长速率,提出修正后的新的Co年代学模式。
     (5) U系4种测年法所得结果均证实了西太平洋结壳的生长速率高于中太平洋。太平洋富钴结壳生长速率的水平分布呈现南部高于北部、西部高于东部。结壳生长速率与水深之间呈线性负相关关系。
     (6)本研究用U系4种测年法、~(10)Be法、Co年代学及Fe-Mn经验公式共7种方法进行了太平洋富钴结壳生长速率的比较研究。结果表明,由于U同位素在结壳中的严重扩散,~(234)U_(ex)法最不可靠;~(231)Pa_(ex)法则由于~(231)Pa在结壳中的比活度低及其独特的化学性质,造成分离与测定的困难,使该法应用受到限制;鉴于~(230)Th在海洋水柱中有恒定的产生速率,加之强颗粒活性特征,使~(230)Th_(ex)法和~(230)Th_(ex)/~(232)Th法成为4种U系测年法中相对可靠、同时也获得广泛应用的方法。~(10)Be法同样是一种可靠的结壳测年法,它适合于10 Ma以内的结壳定年,而基于~(230)Th_(ex)的两种测年法适合于53万年以内的结壳定年研究。
     多种测年法综合比较研究表明,这些方法各有其适用性和局限性,应根据具体情况加以选择;同时,尽可能将各种测年法综合使用,以获得更准确的测年结果。
Ferromanganese crusts grow very slowly on the substrate rock at rates of several mmper Ma and can therefore provide a long-term history of marine environments and globalchanges. In this dissertation, fourteen ferromanganese crusts from Pacific Seamounts havecomprehensively studied to expound the geochemistry of elements and isotopes and theinformation of their genesis using various analytical tools and geochronological methods.The principal results are as follows:
     (1) The multielemental analyses of CAD15 and MHD59 crusts have been carried outby the Proton Induced X-ray Emission(PIXE) method. The profiles and possibleinterelemental correlation of some elements e.g., Fe, Mn, Co, Ni, Cu, have been discussed.
     (2) Specific activities of U, Th isotopes and ~(231)Pa were measured in 14 crusts fromthe Pacific Seamounts. The depth profiles of these radioactive isotopes have been used toestimate growth rates which are 3.14 mm/Ma(~(230)Th_(ex) method), 3.32 mm/Ma(~(230)Th_(ex)/~(232)Thmethod), 6.30 mm/Ma(~(231)Pa_(ex) method) and 1.71 mm/Ma(~(234)U_(ex) method) respectively.
     (3) AMS using HI-13 accelerator of ~(10)Be/~9Be ratio and ~(10)Be depth profiles in theCAD15 and MHD59 crusts from the Pacific seamounts, have showed an exponentialdecrease and yielded growth rates of 2.19 and 2.55 mm/Ma for CAD15 and MHD59respectively.
     (4) The growth rates and ages of CAD15 and MHD59 crusts have also beencalculated according to the Co chronology method proposed by Puteanus and Halbach andLyle' empirical formula based on Fe and Mn contents. Furthermore, based on the analysisof cobalt contents of CAD15 and MHD59 and their growth rates determination by the ~(10)Bemethod, a new empirical formula has been derived.
     (5) The growth rates of the western Pacific have been observed higher than thecentral Pacific for 4 U-series datings. The geographic variation of the growth rates of theferromanganese crusts from the Pacific Seamounts were showed that the growth rates in the south and the west are higher than in the north and in the east respectively. A negative linearcorrelation of the growth rates of the crusts with the water depths has been observed.
     (6) This study has adopted seven dating methods, including 4 U-series methods, ~(10)Bemethod, Co chronology, empirical formula based on Fe and Mn contents, to investigatethe growth rates of cobalt-rich crusts from the Pacific Seamounts. ~(234)U_(ex) method has beenconsidered as an unbelievable dating method due to a relatively large diffusion coefficienturanium isotope in crusts. Low activity and special chemistry of ~(231)Pa in crusts can bringdifficult analyses and therefore limit the ~(231)Pa_(ex) method. Due to a constant supply of ~(230)Thin water column and its strong particle-reactive, ~(230)Th_(ex) and ~(230)Th_(ex)/~(232)Th dating methodscan obtain relatively precise growth rates which are, however, restricted to the last about530 kyr. The application of cosmogenic ~(10)Be, which appears to give reliable results whennormalized to stable ~9Be, extends chronologies back to~10 Ma.
     These dating methods have each advantage and limit so that the selective andcombined application is very essential to obtain a better dating.
引文
[1] Arnold J R. Beryllium-10 produced by cosmic rays. Science, 1956, 124: 584-585
    [2] Anderson R F, Lao Y, Broecker W S, Trumbore S E, Hofmann H J, Wolfli W.Boundary Scavenging in the Pacific Ocean: a comparison of ~(10)Be and ~(231)Pa. Earth and Planetary Science Letters, 1990, 96: 28-304
    [3] Banakar V K, Borole D V. Depth profiles of ~(230)The_(ecess), transition metals and mineralogy of ferromanganese crusts of the Central Indian basin and implications for palaeoceanogrophic influence on crust genesis. Chemical Geology (Isotope Geoscience Section), 1991, 94: 34-44
    [4] Banakar V K, Galy A, Sukumaran N P, Parthiban G, Volvaiker A Y. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean. Earth and Planetary Science Letters, 2003, 205: 337-348
    [5] Banakar V K, Hein J R. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean. Marine Geology, 2000,162: 529-540
    [6] Blanckenburg F, O'Nions R K, Hein J R. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fe-Mn crusts. Geochim.Cosmochim. Acta., 1996, 60(24): 4957-4963
    [7] Bonatti E, Kraemer T, Rydell H S. Classification and genesis of iron-manganese deposits. In: Horn D R (ed). Ferromanganese Deposits on the Ocean Floor. LDEO,Columbia University, 1972, 149-166
    [8] Bourles D, Raisbeck G M, Yiou F. ~(10)Be and ~9Be in marine sediments and their potential for dating. Geochimica et cosmochimica Acta, 1989, 53: 443-452
    [9] Broecker W S. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO_2 upset the current balance? Science, 1997, 278: 1582-1588
    [10] Brown E T, Meadures C I, Edmond J M, Bourles D L, Raisbeck G M, Yiou F.Continental inputs of beryllium to the oceans. Earth and Planetary Science Letters,1992,114: 101-111
    [11] Bryant E. Climate process and change. Cambridge University Press. 1997. 编译. 气候过程和气候变化. 北京: 科学出版社. 2004, 84-85
    [12] Burton K W, Ling H-F, O'Nions R K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature, 1997, 386: 382-385
    [13] Chabaux F, Cohen A S, O'Nion R K, Hein J R. ~(238)U-~(234)U-~(230)Th chronometry of Fe-Mn crusts: Growth processes and recovery of thorium isotopic ratios of seawater.Geochimica et Cosmochimica Acta, 1995, 59(3): 633-638
    [14] Chabaux F, O'Nions R K, Cohen A S, Hein J R. ~(238)U-~(234)U-~(230)Th disequilibrium in hydrogenous oceanic Fe-Mn crusts: Palaeoceanographic record or diagenetic alteration? Geochimica et Cosmochimica Acta, 1997, 61(17): 3619-3632
    [15] Congress U S. Office of Technology Assessment. Marine Minerals Exploring Our New Ocean Frontier, U. S. Government Printing Office, Washington, 1987, 89-96
    [16] Cookson J A, Pilling F D. A 3 MeV proton beam of less than four microns diameter.AERE R6300, 1970
    [17] Cowen J P, DeCarlo E H, McGee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount. Marine geology, 1993, 115:289-306
    [18] Dutta R K, Sideras-Haddad E, Connell S H. Distribution of various components in a hydrogeneous ferromanganese nodule and an Afanasiy Nikitin Seamount crust from Indian Ocean—A geochemical study using micro-PIXE. Nuclear Instruments and Methods in Physics Research, 2001, B181: 545-550
    [19] Dutta R K, Sudarshan M, Bhattacharyya S N, Chakravortty V, Chintalapudi S N.Quantitative PIXE analyses of ferromanganese oxide deposits from different locations of the Indian Ocean and a deposit from the Pacific Ocean. Nuclear Instruments and Methods in Physics Research, 1998, B143: 403-413
    [20] Eisenhauer A, G(?)gen K, Pernicka E, Mangini A. Climatic influences on the growth rates of Mn crusts during the Late Quaternary. Earth and Planetary Science Letters,1992,109:25-36
    [21] Eisenhauer A, Mangini A, Segl M, Beer J, Bonani G, Suter M, Wolfli W.High-resolution ~(10)Be and ~(230)Th profiles in DSDP site 580. Nucl. Instrum. Methods,1987,B29:326-331
    [22] Fietzke J, Bollh(?)fer A, Frank N, Mangini A. Protactinium determination in manganese crust VA13/2 by thermal ionization mass spectrometry (TIMS). Nuclear Instruments and Methods in Physics Research B, 1999, 149: 353-360
    [23] Frank D. Ferromanganese deposits of the Hawaiian archipelago. Hawaii Instit.Geophys., 1976,14: 1-69
    [24] Frank M, O'Nions R K, Hein J R, Banakar V K. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochimica et Cosmochimica Acta, 1999, 63(11/12):1689-1708
    [25] Frank M, O'Nions R K. Source of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion? Earth and Planetary Science Letters, 1998, 158:121-130
    [26] Frank N, Mangini A. A simplified procedure for the measurement of ~(231)Pa in Mn encrustation. Nuclear Instruments and Methods in Physics Research B, 1995, 101:258-262
    [27] Glasby G P, Andrews J E. Manganese crust and nodules from the Hawaii ridge. Pacific Science, 1977,31:363-379
    [28] Glasby G P. Deep Seabed Mining, Past Failures and Future Prospects. Marine Georesources & Geotechnology, 2002,20: 165-169
    [29] Godfrey L V, Lee D-C, Sangrey W F, Halliday A N, Salters V J M, Hein J R, White W M. The Hf isotopic composition of ferromanganese nodules and crusts and hydrothermal manganese deposits: Implications for seawater Hf. Earth Planet. Sci.Lett., 1997,151:91-105
    [30] Halbach P, Hebisch U, Scherhag C. Geochemical variation of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control.Chem.Geol., 1981,34:3-17
    [31] Halbach P, Manheim F T, Otten P. Co-rich ferromanganese deposits in the marginal seamount regions of the Central Pacific Basin - results of the MidPac '81. Erzmetall,1982, 35: 447-453
    [32] Halbach P, Manheim F T. Potential cobalt and other metals in ferromanganese crust in seamounts of the central Pacific basin. Marine Mining, 1984,4: 319-336
    [33] Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas. Earth and Planetary Science Letters, 1984, 68: 73-87
    [34] Halbach P, Segl M, Puteanus D, Mangini A. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount area. Nature, 1983, 304:716-719
    [35] Halbach P. Process controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts. Geol. Rundschau., 1986, 75: 235-247
    [36] Hein J R, Bohrson W A, Schulz M S, Noble M, Clague D A. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications. Paleoceanography, 1992, 7: 63-77
    [37] Hein J R, Morgan C L. Influence of substrate rocks on Fe-Mn crust composition, Deep-Sea Res. I, 1999,46: 855-875
    [38] Hein J R, Schwab W C, Davis A L. Cobalt- and Platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Mar. Geol., 1988, 78:255-283
    [39] Henderson G M, Burton K W. Using (~(234)U/~(238)U) to assess diffusion rates of isotope tracers in ferromanganese crusts. Earth and Planetary Science Letters, 1999, 170:169-179
    [40] Henken-Mellies W H, Beer J, Heller F, Hsu K J, Shen C, Bonani G, Hofmann H J,Suter M, Wolfli W. ~(10)Be and ~9Be in South Atlantic DSDP Site519. Earth Planetary Science Letters, 1990, 98: 267-276
    [41] Heye D, Marchig V. Relationship between the growth rate of manganese nodules from the Central Pacific and their chemical constitutions. Marine Geology, 1977, 23:M19-M25
    [42] Heye D. Changes in the growth rate of manganese nodules from the Central Pacific in the area of a seamount as shown by the Io method. Marine Geology, 1978,28(3/4):M59-M65
    [43] Hong Seoung-Yong. Marine policy in the Republic of Korea. Marine Policy. 1995, 19(2): 104-105
    [44] Huang Yipu, Luo Shangde, Shi Wenyuan, Chen Zhen. Radiochemical studies of deep-sea manganese nodules. Acta Oceanologica Sinica, 1989, 8(2): 253-261
    [45] Huh C A, Ku T L. Radiochemical observations on manganese nodules from three sedimentary environments in the North Pacific. Geochimica et Cosmochimica Acta,1984,48:951-963
    [46] Ivanovich M, Harmon R S. Uranium-series disequilibrium: Applications to earth,marine, and environmental sciences (second edition), Clarendon Press, Oxford, 1992,21-31
    [47] Jeong K S, Jung H S, Kang T K, Morgan C L, Hein J R. Formation of ferromanganese on northwest intertropical Pacific seamount: electron photomicrography and microprobe chemistry. Marine Geology, 2000,162: 541-559
    [48] Joshima M, Usui A. Magnetostratigraphy of hydrogenetic manganese crusts from Northwestern Pacific seamounts. Marine Geology, 1998,146: 53-62
    [49] Kobayashi T, Nagai H, Kobayashi K. Concentration profiles of ~(10)Be in large manganese crusts. Nuclear Instruments and Methods in Physics Research B, 2000, 172:579-582
    [50] Koschinsky A, Halbach P, Hein J R, Manfini A. Ferromanganese crusts as indicators for paleoceanographic events in the NE Atlantic. Geol Rundsch, 1996, 85: 567-576
    [51] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates:Genetic implications. Geochim. Cosmochim. Acta, 1995, 59(24): 5113-5132
    [52] Koschinsky A, Van Gerven M, Halbach P. First investigations of massive ferromanganese crusts in the NE Atlantic in comparison with hydrogenetic Pacific occurrences. Marine Georesources and Geotechnology, 1995,13: 375-391
    [53] Krishnaswami S, Corhran J K. Uranium and thorium series nuclides in oriented ferromanganese nodules: growth rates, turnover times, and nuclide behaviour. Earth and Planetary Science Letters, 1978,40:45-62
    [54] Krishnaswami S, Mangini A, Thomas J H, Sharma P, Cochran J K, Turekian K K,Parker P D. ~(10)Be and Th isotopes in manganese modules and adjacent sediments:nodule growth histories and nuclide behavior. Earth and Planetary Science Letters, 1982,59:217-234
    [55] Ku T L, Broecker W S. Radiochemical studies on manganese nodules of deep-sea origin. Deep-Sea Research, 1969, 16: 625-637
    [56] Ku T L, Kusakabe M, Measures C I, et al. Beryllium isotope distribution in the western North Atlantic: A comparison to the Pacific. Deep-Sea Res, 1990, 37:795-808
    [57] Ku T L, Kusakabe M, Nelson D E, Southn J R, Korteling R G, Vogel J, Nowikow I. Constancy of oceanic deposition of ~(10)Be as record in manganese crusts. Nature, 1982,299: 240-242
    [58] Ku T L, Omura A, Chen RS. Be-10 and U-series isotopes in Mn nodules from the central North Pacific. In: Bishop J L, Piper Z (eds). Marine Geology and Oceanography of the Pacific Manganese Nodule Province., Plenum, New York. 1979,791-814
    [59] Kuhn T, Bau M, Blum N, Halbach P. Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe-Mn crusts from the Central Indian Ridge. Earth and Planetary Science Letters, 1998,163: 207-220
    [60] Kusakabe M, Ku T L, Southon J R, et al. Be isotopes in rivers/estuaries and their oceanic budgets. Earth and Planetary Science Letters, 1991, 102: 265-276
    [61] Kusakabe M, Ku T L, Southon J R, et al. Beryllium isotopes in the Ocean. Geochem.J., 1990, 24: 263-272
    [62] Kusakabe M, Ku T L, Southon J R, et al. Distribution of ~(10)Be and ~9Be in the Pacific ocean. Earth Planet. Sci. Lett., 1987, 82: 231-240
    [63] Lao Y, Anderson R F, Broecker W S, et al. Particulate fluxes of ~(230)Th, ~(231)Pa and ~(10)Be in the northeastern Pacific Ocean. Geochimica et Cosmochimica Acta, 1993, 57:205-217
    [64] Lee D-C, Halliday A N, Hein J R, Burton K W, Christensen J N, Giinther D. Hafnium isotope stratigraphy of ferromanganese crusts. Science, 1999, 285:1052-1054
    [65] Liebetrau V, Eisenhauer A, Gussone N, W(?)rner G, Hansen B T, Leipe T. ~(226)Ra_(excess)/Ba growth rates and U-Th-Ra-Ba systematic of Baltic Mn/Fe crusts. Geochimica et Cosmochimica Acta, 2002, 66(1): 73-83
    [66] Ling H F, Burton K W, O'Nions R K, Kamber B S, von Blanckenburg F, Gibb A J,Hein J R. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth and Planetary Science Letters, 1997,146: 1-12
    [67] Luo Shangde, Shi Wenyuan, Chen Zhen, Huang Yipu. A new method for separateion and determination of U and Th in deep-sea manganese nodules. Acta Oceanologica Sinica, 1987, 6(1): 87-93
    [68] Lyle M. Estimating growth rates of ferromanganese nodules from chemical compositions: implications for nodule formation processes. Geochimica et Cosmochimica Acta, 1982, 46: 2301-2306
    [69] Lyle M. The formation and growth of ferromanganese oxides on the Nazca plate. In Nazca plate: Crustal Formation and Andean Convergence (eds. Kulm L D, Dymond J,Dasch E J and Hussong D M). Geological Sociaty of America Memoir, 1981, 54:269-295
    [70] Mangini A, Segl M, Bonani G, Hofmann H J, Morenzoni E, Nessi M, Suter M, W(?)lfli W, Turekian K K. Mass-spectrometric ~(10)Be dating of deep-sea sediments applying the Z(?)rich tandem accelerator. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1984, 5(2): 353-358
    [71] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature, 1988, 335: 59-62
    [72] Manheim F T. Marine cobalt resources. Science, 1986, 232: 600-608
    [73] McMurtry G M, VonderHaar D L, Eisenhauer A, Mahoney J J, Yeh H-W. Cenozoic accumulation history of a Pacific ferromanganese crust. Earth and Planetary Science Letters, 1994,125:105-118
    [74] Monaghan M C, Krishnaswami S, Turikian K K, et al. The global-average production rate of ~(10)Be. Earth and Planetary Science Letters, 1985/1986, 76: 279-287
    [75] Morris J D. Applications of cosmogenic ~(10)Be to problems in the earth sciences. Annu.Rev. Earth Planet. Sci., 1991,19: 313-350
    [76] Muller R A. Radioisotope dating with a Cyclotron. Science, 1977, 196: 489-494
    [77] Murao S, Sie S H, Suter G F. Distribution of rare metals in kuroko-type ore: a PIXEPROBE study. Nuclear Instruments and Methods in Physics Research, 1996, B 109/110:627-632
    [78] Neff U, Bollh(?)fer A, Frank N, Mangini A. Explaining discrepant depth profiles of ~(234)U/~(238)U and ~(230)Th_(exc) in Mn-crusts. Geochimica et Cosmochimica Acta, 1999, 63(15):2211-2218
    [79] Nozaki Y. Determination of thorium isotopes in seawater by moored MnO_2-fiber method. J. Oceanogr. Soc. Jap., 1983, 39: 129-135
    [80] O'Nions R K, Frank M, von Blanckenburg F, Ling H F. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlanlic, Indian and Pacific Oceans. Earth and Planetary Science Letters, 1998,155:15-28
    [81] Odada E O. Growth rates of ferromanganese encrustations on rocks from the Romanche Fracture Zone, Equatorial Atlantic. Deep-Sea Research, 1992,39: 235-244
    [82] Orberger B, Metrich N, Mosbah M, Mevel C, Fouquet Y. Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge. Nuclear Instruments and Methods in Physics Research, 1999, B158: 575-581
    [83] Palmer M R, Turekian K K. ~(187)Os/~(186)Os in marine manganese nodules and the constraints on the crustal geochemistries of rhenium and osmium Nature, 1986, 319:216-220
    [84] Peters B. Radioactive beryllium in the atmosphere and on the earth. Proceed. Indian Acad.Sci., 1955, XII(3):67-71
    [85] Puteanus D, Halbach P. Correlation of Co concentration and growth rate—A method for age determination of ferromanganese crusts. Chemical Geology, 1988, 69: 73-85
    [86] Raisbeck G M, Yiou F. Dating by cosmogenic isotopes ~(100Be, ~(26)Al and ~(41)Ca. In: Roth E,Poty B (eds). Nuclear Methods of Dating. CEA, Paris. 1989, 353-378
    [87] Raisbeck G M, Yiou F. Production of long-lived cosmogenic nuclei and their applications. Nuclear Instruments and Methods in Physics Research, 1984, B223:91-99
    [88] Rehkamper M, Frank M, Hein J R, Halliday A. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments. Earth and Planetary Science Letters, 2004,219: 77-91
    [89] Reynolds B C, Frank M, O'Nions R K. Nd-and Pb-isotope time series from Atlantic ferromanganese crusts: implications for changes in provenance and paleocirculation over the last 8 Myr. Earth and Planetary Science Letters, 1999, 173: 381-396
    [90] Robinson C, Raisbeck G M, Yiou F, Lehman B, Laj C. The relationship between ~(10)Be and geomagnetic field strength records in central North Atlantic sediments during the last 80 ka. Earth and Planetary Science Letters, 1995,136: 551-557
    [91] Scott M R, Scott R B, Rona P A, Butler L W, Nalwalk A J. Rapidly accumulating manganese deposit from the Median Valley of the mid-Atlantic ridge. Geophysical Research Letters, 1974, 1: 335-358
    [92] Segl M, Mangini A, Bonani G, Hofmann H J, Morenzoni E, Nessi M, Suter M,W(?)lfli W. ~(10)Be dating of the inner structure of Mn-encrustations applying the Z(?)rich tandem accelerator. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1984, 5(2): 359-364
    [93] Segl M, Mangini A, Bonani G, Hofmann H J, Nessi M, Suter M, W(?)lfli W, Friedrich G,P(?)lger W L, Wiechowski A, Beer J. ~(10)Be - dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation. Nature, 1984, 309(7):540-543
    [94] Sharma P, Church T M, Bernat M. Use of cosmogenic ~(10)Be and ~(26)Al in phillipsite for the dating of marine sediments in the South Pacific Ocean. Chemical Geology, 1989,73: 279-288
    [95] Sharma P, Rama, Moore W S. Spatial variation of U-Th series radionuclides and trace metals in deep-sea manganese encrustations. Earth and Planetary Science Letters,1984,67:319-326
    [96] Sharma P, Somayajulu B L K. ~(10)Be dating of large manganese nodules from world oceans. Earth and Planetary Science Letters, 1982, 59: 235-244
    [97] Sie S H. Nuclear microprobe in geological application: Where do we go from here?Nuclear Instruments and Methods in Physics Research, 1997, B130: 592-607
    [98] Somayajulu B L K. ~(10)Be in a manganese nodule. Science, 1967,156: 1219-1220
    [99] Southon J R, Ku T L, Nelson D E, Reyss J L, Duplessy J C. ~(10)Be in a deep-sea core:implications regarding ~(10)Be production changes over the past 420 ka. Earth and Planetary Science Letters, 1987, 85: 356-364
    [100] Takayuki Kobayashi, Hisao Nagai, Koich Kobayashi. Concentration profiles of ~(10)Be in large manganese crusts. Nuclear Instruments and Methods in Physics Research, 2000, B172:597-582
    [101] Vanko D A, Bonnin-Mosbah M, Philippot P, Roedder E, Sutton S R. Fluid inclusions in quartz from oceanic hydrothermal specimens and the Bingham, Utah porphyry-Cu deposit: a study with PIXE and SXRF. Chemical Geology, 2001, 173:227-238
    [102] von Blanckenburg F, O'Nions R K, Belshaw N S, Gibb A, Hein J R. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts. Earth and Planetary Science Letters, 1996, 141: 213-226
    [103] von Stackelberg U, BishoffJ L, Piper D Z. Marine Geology and Oceanography of the Pacific Manganese Nodule Provice. Plenum, New York. 1979, 559-586
    [104] Walker F W, Miller D G, Feiner D F. Chart of the Nuclides (Thirteenth Edition). General Electric Company. 1984, 22
    [105] Wang L, Ku T L, Luo S, Southon J R, Kusakabe M. ~(26)Al-~(10)Be systematics in deep-sea sediments. Geochimica Cosmochimica Acta, 1996, 60:109-119
    [106] Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific Ocean: their implications for crust genesis. Marine Geology, 1997, 136:277-297
    [107] Yamazaki T, Sharma R. Distribution characteristics of Co-rich manganese deposits on a seamount in the central Pacific. Marine Georesources & Geotechnology, 1998, 16:283-305
    [108] Zhu J, Wang Y, Legge G J F. Micron scale analysis of deep-sea ferromanganese nodules with nuclear microprobes. Nuclear Instruments and Methods in Physics Research, 1993, B77(1-4): 478-483
    [109] Zhu J, Yang C, Lu R, Sheng K, Wang Y, Homman N P -O, Malmqvist K G. Micron scale investigation of marine ores by nuclear microprobe technology. Nuclear Instruments and Methods in Physics Research, 1995, B 104:402-408
    [110]#12
    [111]鲍根德,李全兴.南海铁锰结核(壳)的元素地球化学研究.热带海洋,1991, 10(3):44-50
    [112]鲍根德.太平洋北部铁锰结核中重金属元素的分布特征及其与沉积环境的关系.海洋与湖沼,1990,21(4):337-346
    [113]蔡毅华.太平洋富钴结壳的生长与元素富集机理.厦门大学博士学位论文,2002,1-193
    [114]陈建林,高水土,马维林.东太平洋中国开辟区环境调查区的沉积物及其与环境关系.东海海洋,1999,17(3):9-14
    [115]陈穗田,St(u|¨)ben D.菲律宾海的锰结壳和锰结核.海洋学报,1997,19(4):109-116
    [116]戴中宁,任炽刚.厚靶的PIXE定量分析.核物理动态,1995,12(1):47-54
    [117]何高文,赵祖斌,朱克超,朱本铎,梁东红,陈圣源,曾瑞坚,陶军.西太平洋富钻结壳资源.北京:地质出版社,2001
    [118]胡广林,蔡毅华,杨朝勇,庄峙厦,王小如,黄奕普.两个大洋多金属结核标准物质中27种元素的等离子体质谱法测定.海洋学报,2002,24(1):47-52
    [119]黄奕普,罗尚德,施文远,陈真.深海锰结核的放射化学研究.海洋学报,1987,9(1):36-44
    [120]简曲.中太平洋富钴结壳的研究.矿业研究与开发,1999,19(1):25-27
    [121]蒋菘生,姜山,马铁军,杨丙凡,杜学仁,唐洪庆,祁步嘉,陈钟麟,许谨诚,周文勤,易惟熙,沈承德.~(10)Be断代法测定锰结核生长速率和深海沉积物沉积速率的研究.科学通报,1992,7:592-594
    [122]梁宏锋,许东禹,林振宏等.太平洋几个不同海区水成铁锰结壳元素地球化学研究.见:许东禹,姚德,梁宏锋等著.多金属结核形成的古海洋学环境.北京:地质出版社,1994.22-41
    [123]梁宏锋,姚德,梁德华,刘新波.南海尖峰海山多金属结壳地球化学.海洋地质与第四纪地质,1991,11(4):49-58
    [124]林振宏.深海底金属矿产,见:朱而勤编.近代海洋地质学.青岛:青岛海洋大学出版社,1991,310-341
    [125]罗尚德,陈真,施文远,黄奕普.海洋样品中铀、钍的阴离子交换分离与测定.厦门大学学报(自然科学版),1986,25(4):492-495
    [126]罗尚德,施文远,陈真,黄奕普.深海锰结核中铀、钍分离与测定新方法的研究.海洋学报,1986,8(3):324-330
    [127]罗尚德.深海锰结核的生长动力学与古海洋学-化学和同位素证据.厦门大学理学博士论文,1988,1-284
    [128]马配学,穆治国,郭之虞.大洋沉积物中~(10)Be和~(26)Al的浓度变化与定年.海洋地质与第四纪地质,1998,18(2):17-24
    [129]潘家华,刘淑琴.大洋固体矿产富钴锰结壳研究进展.见:程恩华主编.当代地质科学技术进展.武汉:中国地质大学出版社,1995,16-23
    [130]潘家华,刘淑琴.西太平洋富钴结壳的分布、组分及元素地球化学.地球学报,1999,20(1):47-54
    [131]施文远,罗尚德,黄奕普.碳酸盐地质样品中铀、钍的分离及年龄的测定-国内铀系标准样的测试.厦门大学学报(自然科学版),1985,24(4):474-481
    [132]孙志国,文丽,韩昌甫,郭卫东,许东禹,李献华,韦刚健,陈毓蔚.太平洋铁锰结壳的锶同位素地球化学研究.海洋地质与第四纪地质,1997,17(1):67-75
    [133]王焕夫.海山区铁锰结壳基座的起源及其成因分类方案.海洋地质与第四纪地质,1997,17(2):83-91
    [134]王毅民,高玉淑,王晓红.从“地质分析’2000国际会议看我国地质分析的未来发展.地球学报,2001,22(2):103-106
    [135]王毅民,王晓红,张学华.富钴锰结壳分析技术评介.岩矿测试,1998,17(4):306-311
    [136]吴世炎,尹明端,施纯坦,曾文义,邹汉阳,曾宪章.~(10)Be-加速器质谱法测定深海多金属结核的生长速率.热带海洋,1999,18(1):73-77
    [137]吴世炎,曾文义,施纯坦,邹汉阳,尹明端,曾宪章.加速器质谱法测定深海锰结核样品的~(10)Be.台湾海峡,1998,17(2):185-189
    [138]武光海,周怀阳,陈汉林.大洋富钴结壳研究现状与进展.高校地质学报,2001,7(4):379-389
    [139]夏明,张承蕙.我国南海海盆一块锰壳层的生长速度及某些地球化学特征.沉积学报,1983,1(2):131-142
    [140]许东禹.中太平洋海山区富钴锰结壳的研究.海洋地质与第四纪地质,1986,6(1):65-74
    [141]许东禹.中太平洋锰结壳地球化学特征.海洋地质与第四纪地质,1990,10(4): 1-10
    [142] 杨永亮,Kusakabe M,Southon J R.东海与黑潮海水中宇宙射线核素~(10)Be的研究.地球化学,2001,30(4):305-314
    [143] 张海生,赵鹏大,陈守余,胡光道.中太平洋海山多金属结壳的成矿特征.中国地质大学学报(地球科学),2001,26(2):205-209
    [144] 张丽洁,姚德.海山铁锰结壳基岩岩石学特征及其生长关系.海洋地质与第四纪地质,2002,22(2):49-56
    [145]张志远,凌洪飞,蒋少涌,周怀阳,陈小明,林承毅,葛晨东.太平洋铁锰结壳中Sr含量变化:一个可能反映古气候变化的指标.自然科学进展,2002,12(4):387-392
    [146]周怀阳,武光海,杨树锋.关于对我国大洋富钴结壳进行地质经济评价工作的讨论.地质与勘探,2001,37(2):1-5
    [147]周文勤.加速器质谱分析超痕量铍同位素研究深海沉积物沉积速率和多金属结核生长速率.岩矿测试,1997,16(2):109-117
    [148]朱而勤.大洋锰结核矿物学.济南:山东大学出版社,1987
    [149]朱节清,王毅民.锰结核微区元素分布及生长速率变化研究.中国科学(B),1993,23(4):417-422
    [150]朱节清.核探针技术的现状和发展.核技术,1997,20(10):636-640
    [151]朱克超,赵祖斌,李杨.麦哲伦海山区MD、ME、MF海山富钴结壳特征.海洋地质与第四纪地质,2001,21(1):33-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700