用户名: 密码: 验证码:
复杂低品位锰矿及含锰烟尘加压酸浸—净化—萃取工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国锰矿资源的贫乏正制约着锰系产品的生产以及可持续发展。在我国一些锰系产品生产集中的地区,所使用碳酸锰矿的品位已经由含锰18%~20%降低到只有12%~15%,而另一方面,大量含锰在20%~25%的软锰矿,却因为还原过程成本过高,或者污染环境严重等问题而得不到利用。由此可见,研究如何经济、合理地利用我国的锰矿资源,对缓解我国当前锰矿资源紧缺的矛盾、确保锰系产品行业的可持续发展,以及促进西部地区经济的发展都具有十分重要的战略意义。本论文以难处理的复杂低品位锰矿和含锰烟尘为原料,开发出加压酸浸-净化-萃取的新工艺。
     首先采用化学多元素分析、物相分析、XRD分析、微观形貌和能谱分析等分析手段对复杂低品位锰矿、含锰烟尘及还原剂硫铁矿进行了矿物学分析。分析结果表明,复杂低品位锰矿中的锰主要以高价氧化锰(Mn3O4和MnO1.88)的物相形态存在,锰的品位为17.64%,该矿中主要的脉石矿物是CaO,其次是SiO2、Al2O3及MgO。含锰烟尘中的锰主要分布在高价氧化物MnO2和MnO1.88中,锰的品位为33.5%,烟尘中的主要脉石矿物是SiO2,其次是Al2O3。还原剂硫铁矿的主要物相成分为FeS2,BaSO4,SiO2,ZnS和Al2Si4O10(OH)2。
     对复杂低品位锰矿和含锰烟尘加压浸出过程进行了热力学及机理分析,锰浸出的化学反应在373K下的ΔG373Kθ值均为负值。通过对酸性溶液中锰的电位-氧化态-ΔG图以及298K和373K时的Mn-H2O系、Fe-S-H2O系与Mn-H2O系、S-H2O系φ-pH图的分析可知,无论是在常温条件还是在高温条件下,理论上用硫铁矿还原浸出高价氧化锰矿都是可行的。在高温条件下进行加压浸出主要是出于动力学的考虑,同时有利于硫铁矿中的硫和铁分别转变为SO42-或H2SO4和Fe2O3,从而达到浸出速度快,酸耗低,铁溶出率低的效果。
     通过对低品位锰矿加压酸浸工艺进行正交实验和单因素实验研究得到优化浸出工艺条件为:低品位氧化锰矿粉100g,初始硫酸浓度120g/L,反应温度120℃,硫铁矿量50g,液固比5:1,浸出时间100min,压力0.7MPa,搅拌转速350r/min。本工艺具有良好的稳定性,在优化浸出条件下,锰的浸出率为96%,而铝和铁的浸出率分别为38.7%和7.12%,浸出液中锰、铁和铝的浓度分别为19.87g/L、2.34g/L和0.74g/L。其中温度、压力和时间对铝的行为影响较大。
     含锰烟尘加压浸出较优的工艺条件为:含锰烟尘100g,初始硫酸浓度120g/L,液固比5:1,浸出温度120℃,压力0.8MPa,浸出时间2h,搅拌转速350r/min。锰浸出率可达96.1%以上,铁浸出率仅7%左右,终酸残余率35%左右。浸出液中锰和铁的浓度分别为44.74g/L和2.52g/L。
     对加压浸出复杂低品位锰矿动力学进行了研究。考察了搅拌速度、矿粉粒度、温度、压力、硫酸浓度和固体矿物中的硫铁矿量等因素对锰浸出速率的影响。实验结果表明,搅拌速度对反应过程基本没有影响。锰的浸出率随着矿粉粒度的减小而增大,随着温度、压力、硫酸浓度和硫铁矿量的增大而增大。结果表明,浸出反应遵循界面化学反应控制的核收缩模型,反应的表观活化能为43.4kJ/mol。硫酸浓度、压力以及硫铁矿量的表观反应级数分别为1.428、0.864和2.58。得到加压酸浸复杂低品位锰矿的宏观动力学方程为:
     1-(1-x)1/3=(3824.8/HAir0.864·r0).exp(-43.4×103/RT)·C1.428·P0.864·[FeS2]2.58·t并最终验证了计算值与实验值基本吻合。
     从生产角度出发,对硫酸锰的加压浸出液进行了净化除杂试验研究。采用氧化中和法脱除Fe3+和Al3+等离子,得到的中和液中的Fe3+和A13+离子的浓度分别小于lmg/L和0.18mg/L,Cu2+和Zn2+离子的浓度分别为0.27mg/L和0.082mg/L;然后采用硫化铵为沉淀剂进行重金属离子的脱除,控制溶液pH<6.0即可以使重金属离子沉淀析出而不会生成MnS沉淀,所得滤液中的Co2+、Ni2+和Cu2+的浓度分别为0.253mg/L、0.637mg/L和0.071mg/L;最后采用浓缩静置法对Ca2+和Mg2+脱除后,溶液中Ca2+和Mg2+离子的浓度和脱除率分别为0.08g/L和85.63%、0.36g/L和83.22%。
     考虑到低品位锰矿及含锰烟尘浸出液中的锰离子浓度很低,因此采用了萃取-反萃技术。由于浸出液不能直接萃取锰,直接萃取时铁更容易被萃取,且钙和镁易造成乳化现象,因此选择净化除杂后进行萃取。所得优化萃取工艺条件为:萃取剂P2O4的皂化率为80%,萃取相比(O/A)为1:1,萃取剂(P2O4)浓度为40%,萃取平衡pH值为5.0左右,萃取温度为30~40℃,萃取平衡时间为5min,萃取级数为一级。对于含锰21.20g/L的净化液而言,锰的萃取率可达95%以上。反萃优化工艺条件为:反萃酸度为120g/L,反萃温度为室温,反萃混合时间为3min,反萃相比为2:1-3:1,反萃级数为一级,锰的反萃率为96.9%,反萃液中锰离子浓度为42.16g/L,其他杂质离子的浓度均达到电解锰要求。
The production and sustainable development of manganese series products were restricted by poor resources of manganese ore in China. At the area of some manganese series products production concentrated in our country, the grade of manganese carbonate has been reduced from18%~20%to only12%~15%, and on the other hand, a large number of pyrolusite of manganese content in20%~25%can't be used, because of the cost of reduction process is too high or the environmental pollution problems serious. Therefore, it has important strategic significance to research how to use the resources of manganese ore economically and legitimately in China for easing the contradiction of manganese ore resources short supply in our country, ensuring the sustainable development of manganese series products industry, and promoting the economic development of western region. In this thesis, the unmanageable complex low-grade manganese ore and manganese-containing dust as raw material, a new technology of pressure acid leaching-purification-extraction was developed.
     First of all, The analysis approaches such as chemical multielement analysis, physical phase analysis, XRD analysis, SEM images and energy spectrum analysis were used for the mineralogy analysis of complex low-grade manganese ore, manganese-containing dust and pyrite. The analysis results showed that manganese of complex low-grade manganese mainly existed in high valence manganese oxide (Mn3O4and MnO1.88), the content of manganese was17.64%. The major gangue mineral of complex low-grade manganese ore is CaO, followed by SiO2, Al2O3and MgO. The manganese of manganese-containing dust mainly distributed in the high valence manganese oxide MnO2and MnO1.88, the content of manganese was33.5%. The major gangue mineral of manganese-containing dust is SiO2, followed by Al2O3. The main phase composition of pyrite were FeS2, BaSO4, SiO2, ZnS and Al2Si4O10(OH)2.
     Thermodynamics and mechanism analysis were studied for the pressure leaching process of complex low-grade manganese and manganese-containing dust, the values of chemical reaction were negative. The potential-oxidation state-AG diagram of manganese in acid solution, the φ-pH diagram of Mn-H2O system, Fe-S-H2O system and Mn-H2O system, S-H2O system at298K and373K were analyzed. The analysis results showed that high valence manganese oxide was reducted and leaching by pyrite theoretically whether in room temperature or high temperature conditions. Pressure leaching in high temperature is based on the needs of the dynamics primarily, and it is helpful for the sulfur and iron of pyrite were translated into SO42-or H2SO4and Fe2O3respectively, thus the effect of increasing the leaching speed, decreasing the acid consumption and iron dissolving rate were achieved.
     The pressure leaching process of complex low-grade manganese ore in a sulfuric acid medium was studied by orthogonal experiments and single-factor experiments. And the optimum leaching conditions were determined to be:low grade manganese powdered ore of100g, initial acidity of120g/L, leaching temperature of120℃, pyrite amount of50g, liquid-to-solid ratio of5:1, leaching time of100min, pressure of0.7Mpa, the agitation speed of350r/min. The results of experiments indicated that this craft had good stability. Under the optimized leaching condition, the leaching rate of manganese was96%, and the leaching rates of Al and Fe were38.7%and7.12%. The concentration of Mn、Fe and Al in leaching liquid were19.87g/L、2.34g/L and0.74g/L respectively. The temperature, pressure and time had a great important on the behavior of aluminum.
     The optimum operating parameters of pressure leaching of manganese-containing dust were established as follows:the manganese-containing dust of100g; pyrite amount of50g; the liquid to solid ratio of5:1; the initial sulfuric acid concentration of120g/L, leaching temperature of120℃, pressure of0.8MPa, leaching time of2h, the agitation speed of350r/min. Under these conditions, the leaching rates of Mn and Fe arrive at96.1%and7%, the residual rate of final acid is about35%. The concentration of manganese and iron in leaching liquid were44.74g/L and2.52g/L.
     The kinetics of pressure leaching low grade manganese ore was studied. The effects of agitation rate, particle size,temperature, pressure, initial acid concentration and pyrite content in solid mineral on the leaching rate of manganese were examined. The experiment results indicate that the agitation rate had no effect basically on the reaction process, manganese leaching rate increases with a decrease of particle size and an increase of temperature, total pressure, sulfuric acid concentration and pyrite content in solid mineral. It was found that the reaction kinetic model follows the shrinking core model of chemical reaction control and the apparent activation energy was determined as43.4kJ/mol. The reaction orders with respect to sulphuric acid concentration total pressure and pyrite content were1.428、0.864and2.58, respectively. The kinetic equations for the effect of particle size, leaching temperature, total pressure, sulfuric acid concentration and pyrite content were obtained and a mathematical model of manganese leaching from low grade manganese ore was developed as:
     1-(1-x)1/3=(3824.8/HAir0.864·r0)·exp(-43.4×103/RT)·C1.428·P0.864·[FeS2]2.58·t This equation estimates the leaching of manganese with very good agreement between the experimental and calculated values.
     Considering the production, the purification process of manganese sulfate pressure leaching liquid has been studied. The method of oxidation and neutralization was used for removing Fe3+and Al3+ions, the concentration of Fe3+and Al3+ions in neutralization liquid were less than1mg/L and0.18mg/L respectively, the concentration of Cu2+and Zn2+ion were0.27mg/L and0.082mg/L respectively; Removal heavy metal ion by ammonium sulphide as the precipitating agent, the pH of the neutralization fluid was controlled less than6.0, the heavy metal ions were precipitate out and MnS precipitation was not generated, the concentration of Co2+Ni2+and Cu2+in filtrate were0.253mg/L、0.637mg/L and0.071mg/L; After concentration and standing for a long time, the concentration and removal rate of Ca2+and Mg2+ion were0.08g/L and85.63%、0.36g/L and83.22%.
     In view of the low concentration of manganese ions in leaching solution of low-grade manganese ore and manganese-containing dust, the technique of extraction-back extraction was used. Manganese can not be directly extracted from the leaching solution because of iron is extracted easily, and calcium and magnesium would lead to the emulsification of extracting agent. Therefore, the purification process was carried out before the process of extraction-back extraction.The optimum extraction conditions were determined to be:the saponification rate of extraction agent P204was80%, the extraction phase ratio (O/A) was1:1, the concentration of extraction agent (P204) was40%, the extraction pH value was5.0, the temperature was30~40℃, the extraction time was5min, the extraction stages was level1. In terms of the purification liquid that the concentration of manganese ion is21.20g/L, Mn extraction rate was above95%. The optimum back-extraction conditions were determined to be:the acidity of back-extraction was120g/L, the temperature of back-extraction was room temperature, the mixing time of back-extraction was3min, the phase ratio of back-extraction was2:1-3:1, the stages of back-extraction was level1. The back-extraction rate and the concentration of manganese were96.9%and42.16g/L respectively, and the concentration of other impurities has reached the requirement of electrolytic manganese.
引文
[1]黄可龙.无机化学[M].北京:科学出版社,2007.
    [2]刘新锦,朱亚先,高飞.无机元素化学[M].北京:科学出版社,2005.
    [3]谭柱中.20年艰辛20年发展—回顾全国锰业技术委员会成立20周年[J].中国锰业,2002,20(4):1-8.
    [4]Kirk-Othmer. Encyclopedia of Chemical Technology[M].2ndedn. New York: Ineter science,1967.
    [5]张兆麟.锰与社会[J].化学教育,1995,(10):1-9.
    [6]徐静.低品位软锰矿与冶炼锰烟尘中锰的浸出工艺研究[硕士学位论文],昆明理工大学,2010.
    [7]唐敏.电解锰复合添加剂的实验研究[硕士学位论文],重庆大学,2010.
    [8]Greenwood, N. N著,王曾隽等译.元素化学[M].北京:高等教育出版社,1996.
    [9]谭东.锰的应用[J].广西化工.1995,2(24):9-16.
    [10]向峰.锰粉精矿冷压球团强度影响因素的研究[硕士学位论文],昆明理工大学,2008.
    [11]罗东岳.无硒电解锰添加剂的研制及电解生产工艺研究[硕士学位论文],中国地质大学,2006.
    [12]陈飞宇,从银锰矿的浸出液中制取硫酸锰和碳酸锰的工艺研究[硕士学位论文],中南大学,2004.
    [13]王贺.化学电池的发展趋势及其特点[J].华章,2011,(6):274.
    [14]邱静.粗品硫酸锰的分离提纯[硕士学位论文],重庆大学,2007.
    [15]王自新.废旧锌锰电池真空热解回收研究[J].城市管理与科技,2010,(5):50-52.
    [16]刘兵.电解锰复合添加剂的实验研究[硕士学位论文],重庆大学,2009.
    [17]徐栋梁.高结晶水锰矿粉球团还原冶炼高碳锰铁合金工艺及机理研究[硕士学位论文],中南大学,2009.
    [18]张岩.微量元素在农业生产的重要作用[J].中国西部科技,2010,9(2):59.
    [19]毛磊.FFC剑桥工艺直接制备金属锰及锰铁合金[硕士学位论文],河北理工大学,2009.
    [20]Kaneko. T, Matsuzaki. T, Kugimiya. T, etal. Improvement of Mn yield in less slag blowing at BOF by use of sintered manganese ore[J]. Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan,1993,79(8):941-947.
    [21]严旺生,高海亮.世界锰矿资源及矿业发展[J].中国锰业,2009,27(3):6-11.
    [22]吴荣庆.国外锰矿资源及主要资源国投资环境[J].中国金属通报,2010,(2):36-39.
    [23]王运敏.中国的锰矿资源和电解金属锰的发展[J].中国锰业,2008,22(3):26-30.
    [24]谭柱中,茅(益)明.中国锰矿资源开发利用状况及展望[J].2006年北京国际铁合金交流洽谈会暨展览会会刊.北京.中国金属学会,2006.
    [25]黄仲权.云南锰矿资源现状及发展对策[J].矿产保护与利用[J].1993,(4):19-23.
    [26]苏文征.由富锰渣制备氯化锰的工艺研究[硕士学位论文],重庆大学,2006.
    [27]刘伟.微波辅助高价锰还原浸出研究[硕士学位论文],重庆大学,2009.
    [28]周永诚.低品位难选锰矿石浸出-净化研究[硕士学位论文],昆明理工大学,2010.
    [29]宋静静,张萍.低品位氧化锰矿中锰的还原回收[J].河北化工,2010,33(5):44-46.
    [30]李进中,钟宏.氧化锰矿还原浸出工艺技术研究进展[J].中国锰业,2011,29(4):1-6.
    [31]李同庆.低品位软锰矿还原工艺技术与研究进展[J].中国锰业,2008,26(2):4-26.
    [32]贺周初,彭爱国,郑贤福,余长艳,刘昱霖.两矿法浸出低品位软锰矿的工艺研究[J].中国锰业,2004,22(2):35-37.
    [33]丁楷如,余逊贤,等.锰矿开发与加工技术[M].湖南:湖南科学技术出版社,1991.
    [34]田宗平,朱介忠,王雄英,李力.两矿加酸法生产硫酸锰的工艺研究与应用[J].中国锰业,2005,23(4):4-26.
    [35]袁明亮,梅贤功,陈荩,等.两矿法浸出软锰矿的工艺与理论[J].中南工业大学报,1997,28(4):329-332.
    [36]袁明亮,梅贤功,邱冠周,等.两矿法浸出软锰矿时元素硫的生成及其对浸 出过程的影响[J].化工冶金,1998,19(19):161-164.
    [37]王长兴.软锰矿直接酸浸法生产硫酸锰的工艺探讨[J].湖南有色金属,1997,13(1):45-48.
    [38]卢宗柳,都安治.两矿法浸出氧化锰矿的几个工艺问题[J].中国锰业,2006,24(1):39-42.
    [39]华毅超,陈国松,张红漫,等.工业硫酸锰湿法还原生产工艺[J].南京工业大学学报,2004,26(5):50-53.
    [40]陈蓉,陈启明,陈金芳,李飞阔.低品位锰矿制备硫酸锰的研究[J].武汉工程大学学报,2008,30(1):20-22.
    [41]张昭,刘立泉,彭少方.二氧化硫浸出软锰矿[J].化工冶金,2000,21(1):103-107.
    [42]欧阳昌伦,谢兰香.锰矿湿法脱硫过程中影响连二硫酸锰生成的主要因素[J].化工技术与开发,1983,3:60-66.
    [43]刘启达.高效实用的软锰矿浆脱硫新技术和流程[J].广东化工,1998,(2):19-20.
    [44]王强,詹海青,何建新,等.软锰矿浆烟气脱硫技术的研究与应用[J].中国锰业,2007,25(4):19-23.
    [45]余逊贤.锰[Z].长沙:冶金工业部长沙黑色冶金矿山设计院,1980.
    [46]朱道荣.软锰矿-硫酸亚铁的酸性浸出[J].中国锰业,1992,10(1):30-31.
    [47]袁明亮,庄剑鸣,陈荩.用硫酸亚铁渣直接浸出低品位软锰矿[J].矿产综合利用,1994,(6):6-9.
    [48]王德全,宋庆双.用硫酸亚铁浸出低品位锰矿[J].东北大学学报(自然科学版),1996,17(6):606-609.
    [49]彭荣华,李晓湘.用钛白副产的硫酸亚铁浸锰制备高纯二氧化锰[J].无机盐工业,2006,38(12):48-50.
    [50]王德全,宋庆双,彭瑞东.用硫酸亚铁浸出同时沉淀铁矾法处理低品位锰矿[J].东北大学学报(自然科学版),1998,19(2):168-170.
    [51]张东方,田学达,欧阳国强,等.银锰矿中锰矿物的铁屑还原浸出工艺研究[J].中国锰业,2007,25(1):24-26.
    [52]唐尚文.用闪锌矿(方铅矿)精矿催化还原软锰矿(大洋锰结核矿)制取硫酸锰[J].无机盐工业,2005,37(6):46-49.
    [53]唐尚文.氧化锰矿和硫化锌/硫化铅精矿在稀酸中直接,同时浸出的方法[P].CN,1465723A.2004-01-07.
    [54]杨幼平,黄可龙.植物粉料—硫酸法直接浸出软锰矿的实践[J].中国矿业,2001,10(5):54-56.
    [55]邓益强,乐志文.软锰矿无煤还原制备硫酸锰新工艺研究[J].广西轻工业,2007,(10):38-40.
    [56]曹柏林,黄斌.用贫软锰矿制备硫酸锰[J].湖南有色金属,2000,16(3):18-19.
    [57]张小云,田学达.纤维素还原低含量软锰矿制备硫酸锰[J].精细化工,2006,23(2):195-197,
    [58]刘西德,姜立夫,高灿柱,等.从废锰渣制取硫酸锰的研究[J].山东化工1994,(2):13-15.
    [59]杨明平,宋和付.酒糟—硫酸浸取锰矿尾矿中锰制备硫酸锰工艺[J].无机盐工业,2006,38(11):50-52.
    [60]杨明平,宋和付,李国斌.米糠—硫酸直接浸锰工艺条件研究[J].无机盐工业,2005,37(2):30-32.
    [61]D.Hariprasad, B. Dash, M. K. Ghosh, etal. Leaching of Manganese Ores using Sawdust as a Reductant[J]. Minerals Engineering,2007,20(1):293-295.
    [62]崇涛.氧化锰矿直接制备硫酸锰的研究Ⅱ.蔗渣法[J].福建师范大学学报(自然科学版),1993,9(2):54-58.
    [63]S. J. McCarroll. Treatment of Manganese Ores[P]. US:3,085,875,1963.
    [64]粟海锋,孙英云,文衍宣,等.废糖蜜还原浸出低品位软锰矿[J].过程工程学报,2007,7(6):89-93.
    [65]李浩然,冯雅丽.微生物催化还原浸出氧化锰矿中锰的研究[J].有色金属,2001,53(3):5-8.
    [66]杜竹玮,李浩然.微生物还原浸出法回收废旧电池粉末中的金属锰[J].环境污染治理技术与设备,2005,(9):62-64.
    [67]滕英才,马集成.两矿加浓硫酸熟化法生产硫酸锰[J].化工技术与开发,2006,35(2):1-2.
    [68]B. B. Nayak, K. G. Mishra, R. K. Paramguru. Kinetics and Mechanism of MnO2 Dissolution in H2SO4[J]. Journal of Applied Electrochemistry,1999,29: 191-200.
    [69]Miller J D, Wan R Y. Reaction Kinetics for the leaching of MnO2 by Sulfur Dioxide[J]. Hydrometallurgy,1983,10:219-242.
    [70]Asai S, Negi H, Konishi Y. Reductive Dissolution of Manganese Dioxide in Aqueous Sulfur Dioxide Solutions[J]. The Canadian Journal of Chem. Eng,1986, 64:237-241.
    [71]A. E. Back, S. F. Ravitz, K. E. Tame. Formation of Dithionate and Sulfate in the Oxidation of Sulfur Dioxide by Manganese Dioxide and Air, U. S. Bureau of Mines,1952, Report Investigation 4931.
    [72]S.Asai. H. Negi, Y. Konish, Reductive Dissolution of Manganese Dioxide in Aqueous Sulfer Dioxide Solutions, The Canadian J. of Chem. Eng,64(4): 237-242.
    [73]C. Ward. Hydrometallurgical Processing of Manganese Containing Materials [P]. WO:033738,2004.
    [74]C. Ward. Improved Hydrometallurgical Processing of Manganese Containing Materials[P]. WO:012582,2005.
    [75]C. Ward, C. Y. Cheng, M. D. Urbani. Manganese-From Waste to High-tech Material[C]. Green Processing Conference, Fremantle, WA,10-12May,2004.
    [76]S. C. Das, P. K. Sahoo, P. K. Rao. Extraction of Manganese Ores by FeSO4 Leaching [J]. Hydrometallurgy,1992,15:35-47.
    [77]Bafghi, A, Zakeri, Z1Ghasemi, etal. Reductive Dissolution of Manganese Ore in Sulfuric Acid in the Presence of Iron Metal[J]. Hydrometallurgy,2008,90: 207-212.
    [78]Hancock, H A, Fray, D J. Use of Coal and Lignite to Dissolve Manganese Dioxide in Acidic Solutions[J]. Transaction of Institution of mining and Metallurgy, nSection C,1986,95:27-34.
    [79]Fray, D J, Hancock, H A. Obtaining Aqueous Solutions from Insoluble Metal Oxide [P]. GB:2,161,465,1986.
    [80]R. N. Sahoo, P. K. Naik, S. C. Das. Leaching of Manganese from Low-Grade Manganese Ore using Oxalic Acid as Reductant in Sulphuric Acid Solution[J]. Hydrometallurgy,2001,62:157-163.
    [81]F. Momade, Z. Momade. Reductive Leaching of Manganese Oxide Ore in Aqueous Methanol-Sulphuric Acid Medium[J]. Hydrometallurgy,1999,51: 103-113.
    [82]Elsherief A. E. A Study of the Electroleaching of Manganese Ore [J]. Hydrometallurgy,2000,55:311-326.
    [83]刘建本,陈上,鲁广.硫酸锰的生产技术及发展方向[J].无机盐工业,2005,37(9):5-7.
    [84]Yahui ZHANG, Qi LIU and Chuanyao SUN. Sulfuric acid leaching of ocean manganese nodules using phenols as reducing agents [J]. Minerals Engineering, 2001,14(5):525-537.
    [85]F. Pagnanelli, G. Furlani, P. Valentini, F. Veglio, L. Toro. Leaching of low-grade manganese ores by using nitric acid and glucose:optimization of the operating conditions[J]. Hydrometallurgy,2004,75:157-167.
    [86]Rajko. Z. Vracar, Katarina P. Cerovic. Manganese leaching in the FeS2-MnO2-O2-H2O system at high temperature in an autoclave[J]. Hydrometallurgy,2000,55:79-92.
    [87]胡实等.金属热处理[M],北京:冶金工业出版社,1990(3):12-15.
    [88]吴志远.基于径向基人工神经网络的造球盘控制[硕士学位论文],辽宁科技大学,2008
    [89]Madronic J. Use of Chromium Ore Brequetes in the Manufacture of FeSiCr[J]. Electric Furnace Conference Proceedings,1971, (29):156.
    [90]宫下常尾.复合球团的制造及其在硅锰合金中的应用[J].第三届国际铁合金大会文集,1984:67-72.
    [91]邱伟坚,黄道栋.提高锰矿冷压团强度的影响因素[J].铁合金,1987,(5):15-21.
    [92]唐华应,杨君臣,郑华锋.从锰除尘灰中湿法回收锰[J].湿法冶金,2003:39-40.
    [93]钟琼.电解锰生产废水处理技术的研究[硕士学位论文],湖南大学,2006.
    [94]粟海锋,崔勃焱,文衍宣,童张法.低品位软锰矿降解糖蜜酒精废液中焦糖色素的脱色动力学[J].过程工程学报,2009,9(3):480-485.
    [95]Cheng C Y, Zhang W. Manganese Metallurgy Review:Part I. Leaching of Ores/Secondary Materials and Recovery of Electrolytic/Chemical Manganese Dioxide[J]. Hydrometallurgy,2007,89(3/4):137-159.
    [96]覃保贵.木屑-硫酸浸出软锰矿工艺实践[J].柳州师专学报,2009,24(4):122-125.
    [97]汪锦瑞,方刚,杨浙云.富锰渣制备工业硫酸锰的工艺研究[J].中国锰业,2008,26(4):24-26.
    [98]徐志峰,聂华平,李强等.高铜高砷烟灰加压浸出工艺[J].2008年全国湿法冶金学术会议论文集,2008,18:59-63.
    [99]DERRY. R. Pressure hydrometallurgy:A review[J]. Minerals Sci Eng,1972(1): 3-24.
    [100]邱定蕃.加压湿法冶金过程化学与工业实践[J].矿冶,1994,3(4):55-67.
    [101]乔繁盛.浸矿技术[M].北京:原子能出版社,1994.
    [102]谭立群.硫酸锰厂新工艺的设计[J].中国锰业,2000,18(4):33-35.
    [103]杨新科.制备硫酸锰最佳工艺条件的研究[J].中国锰业,2001,19(3):15-16.
    [104]周凌风.冷法浸出硫酸锰溶液[J].中国锰业,2002,20(4):20-22.
    [105]衷水平,梁杰,朱茂兰.碳酸锰矿浸出工艺条件的研究[J].贵州工业大学学报,2005,34(5):14-17.
    [106]朱茂兰,衷水平,梁杰.菱锰矿浸出工艺研究[J].有色金属(冶炼部分),2006,(5):13-14.
    [107]K. K. Dwivedy and A. K. Mathur.硫酸浸出加纳恩苏塔碳酸锰矿[J].杨红,编译.中国锰业,1996,14(3):54-57.
    [108]Vracar R Z, Cerovic K P. Manganese Leaching in the FeS2-MnO2-O2-H2O System at High Temperature in an Autoclave [J]. Hydrometallurgy,2000,55: 79-92.
    [109]陈孟平.Mn02矿直接浸取生产EMD用硫酸锰液的工艺实践[J].无机盐工业,1995,(3):28-31.
    [110]黄自力,李密,胡华,等.低品位软锰矿制备硫酸锰的工业实验研究[J].矿产保护与利用,2008,(3):36-38.
    [111]赖国栋.云南宣威高磷低锰难选软锰矿降磷提锰研究[硕士学位论文],昆明理工大学,2011.
    [112]贺山明.高硅氧化铅锌矿加压酸浸工艺及理论研究[硕士学位论文],昆明理工大学,2012.
    [113]叶大伦.冶金热力学[M].长沙:中南工业大学出版社.1987.
    [114]马荣骏.湿法冶金原理[M].北京:冶金工业出版社,2007.
    [115]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,2001.
    [116]陈家镛.湿法冶金手册[M].北京:冶金工业出版社,2005.
    [117]田彦文,霍秀静,刘奎仁.冶金物理化学简明教程[M].北京:化学工业出版社,2007:46-82.
    [118]谢高阳,俞练民.无机化学丛书.第九卷:锰分族、铁族、铂系[M].北京:科学出版社,1996.
    [119]杨显万.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983
    [120]李洪桂.湿法冶金学[M].长沙:中南大学出版社,2005.
    [121]李洪桂.冶金原理[M].北京:科学出版社,2005.
    [122]梁英教.物理化学[M].北京:冶金工业出版社,1998.
    [123]张文山,梅光贵,刘荣义.利用钛白粉废酸、二氧化锰矿和硫铁矿制取电解金属锰的研究与开发[J].中国锰业,2005,23(3):14-17.
    [124]吴惠玲.常压下从含钒石煤中浸取钒的新技术研究[硕士学位论文],昆明理工大学,2008.
    [125]张延军.微细粒氧化锰的回收与利用[硕士学位论文],广西大学,2008.
    [126]石文堂.低品位镍红土矿硫酸浸出及浸出渣综合利用理论及工艺研究[博士学位论文],中南大学,2011.
    [127]王华.湿法处理银锌精矿工艺研究[硕士学位论文],昆明理工大学,2006.
    [128]李小英.高铁硫化锌精矿氧压酸浸-萃取提铟的工艺研究[硕士学位论文],昆明理工大学,2006.
    [129]钟竹前,梅光贵.电位-pH图在湿法冶金中的应用[J].有色金属(冶炼部分),1979,(3):28-36.
    [130]傅崇说.冶金溶液热力学原理与计算[M].北京:冶金工业出版社,1989.
    [131]梅光贵,钟竹前,周元敏等.硫铁矿(FeS2)与MnO2浸出的热力学与动力学分析[J].中国锰业,2004,22(1):15-17.
    [132]谭柱中,梅光贵,等.锰冶金学[M].长沙:中南大学出版社,2004.
    [133]张博亚.铜阳极泥加压酸浸预处理工艺及机理研究[博士学位论文],昆明理工大学,2008.
    [134]丁凯如,余逊贤.锰矿开发与加工技术[M].湖南:湖南科学技术出版 社,1991.
    [135]吴晓春.用软锰矿制取硫酸锰试验[J].中国锰业,2005,23(2):32-35.
    [136]滕浩.高砷钴矿提钴新工艺研究[硕士学位论文],中南大学,2010.
    [137]崔毅琦.无氨硫代硫酸盐法浸出硫化银矿的工艺和机理研究[博士学位论文],昆明理工大学,2009.
    [138]袁文辉,邱定蕃,王成彦.硫酸选择性浸出含钴铜物料的研究[J].有色金属(冶炼部分),2009,(5):2-5.
    [139]李学强.难处理金银矿有价金属高效利用的新工艺研究[硕士学位论文],中南大学,2009.
    [140]邓志敢,魏昶,李兴彬.钒钛磁铁矿提钒尾渣浸取钒[J].中国有色金属学报,2012,22(6):1770-1776.
    [141]杨彦松.响应面法优化硝酸浸铅锌矿尾渣回收银工艺研究[J].应用化工,2011,40(8):1401-1407.
    [142]马保中,王成彦,杨卜,等.硝酸加压浸出红土镍矿的中试研究[J].过程工程学报,2011,11(4):561-566.
    [143]张永禄,王成彦,徐志峰.低品位碱预处理红土镍矿加压浸出过程[J].过程工程学报,2010,10(2):263-269.
    [144]任世觉.工业矿产资源开发利用手册[M].武汉:武汉工业大学出版社,1993,18-37.
    [145]李小康,许秀莲.低品位铜锌混合矿加压浸出研究[J].南方冶金学院学报,2004,25(4):5-9.
    [146]遵义化工厂,《遵义地区高铁菱锰矿运用于电解二氧化锰生产试验报告》.1997,2.
    [147]周元敏,梅光贵.由Ag-Mn矿浸锰液制取碳酸锰或硫酸锰的研究[J].中国锰业,2003,21(1):10-13.
    [148]路辉,谢红艳,蒙钧等.低品位软锰矿加压浸出过程中铝的行为分析[J].中国锰业,2012,30(1):27-32.
    [149]侯晓川.镍钼矿冶炼烟尘中硒的提取新工艺及其机理研究[博士学位论文],中南大学,2011.
    [150]赵宙,李小康.铜锌混合矿加压浸出的试验研究[J].中国有色冶金,2006,(3):28-30.
    [151]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987.
    [152]Levenspiel著,林建梁编译.化学反应工程:化工动力学.全册[M].台南:复文书局,1984.
    [153][美]耶蒂什.特.夏著;肖明威,单渊复等译.气液固反应器设计[M].北京:烃加工出版社.
    [154]张家芸,邢献然.冶金物理化学[M].北京:冶金工业出版社,2004.
    [155]刘纯鹏.有色金属冶金动力学及新工艺[M].北京:冶金工业出版社,2002.
    [156]Smith.J.M著;王建华等译.化工动力学[M].第三版.北京:化学工业出版社,1988.
    [157]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004.
    [158]解立群.铁酸锌的分解及铁资源的综合利用工艺研究[硕士学位论文],昆明理工大学,2011.
    [159]徐志峰,邱定蕃,王海北.铁闪锌矿加压浸出动力学[J].过程工程学报,2008,8(1):28-34.
    [160]于站良.超冶金级硅的制备研究[博士学位论文],昆明理工大学,2010.
    [161]邱爽.三氧化二钒氧压碱溶动力学研究[硕士学位论文],昆明理工大学,2010.
    [162]牟文宁.红土镍矿高附加值绿色化综合利用的理论与工艺研究[博士学位论文],东北大学,2009.
    [163]褚丽娟.从硫化锌加压酸浸渣中提取硫磺的工艺研究[硕士学位论文],昆明理工大学,2011.
    [164]孔繁振.磷矿浮选尾矿煅烧铵盐法综合回收镁、磷试验研究[硕士学位论文],贵州大学,2008.
    [165]金炳界.铅冰铜氧压酸浸-电积提铜工艺及理论研究[博士学位论文],昆明理工大学,2008.
    [166]戴艳萍.氧化铜矿的化学处理研究[硕士学位论文],江西理工大学,2009.
    [167]巨佳.锌焙砂的中浸渣氧压酸浸新工艺研究[硕士学位论文],昆明理工大学,2010.
    [168]李强.复杂硫化铜矿热活化预处理-加压浸出研究[硕士学位论文],江 西理工大学,2009.
    [169]廖为新.富锗硫化锌精矿氧压酸浸试验研究[硕士学位论文],昆明理工大学,2008.
    [170]徐志峰,严康,李强,等.复杂硫化铜精矿加压浸出动力学[J].有色金属,2010,62(4):76-81.
    [171]贺山明,王吉坤,阎江峰,等.高硅氧化铅锌矿加压酸浸中锌的浸出动力学[J].中国有色冶金,2011,(1):63-66.
    [172]Wilaon. D. E. Surface and complexation effects on the rate of Mn (Ⅱ) oxidation in nature waters[J]. Geochim Cosmochim Acta,1980,44:1311-1317.
    [173]梁铎强.富锗闪锌矿氧压酸浸过程中锗的行为研究[博士学位论文],昆明理工大学,2008.
    [174]Ozmetin, C., Copurm, M., Yartasi, A., Kocakerim, M. M.,2000. Kinetic investigation of reaction between metallic silver and nitric acid solutions. Chem. Eng. Tech.23(8),707-711.
    [175]孟民权,巩淑清,桑兆昌等.软锰矿生产硫酸锰除杂质方法的改进[J].河北师范大学学报,1996,20(3):61-62.
    [176]曹柏林,黄斌.用贫软锰矿制备硫酸锰[J].湖南有色金属,2000,16(3):18-20.
    [177]彭爱国,贺周初,郑贤福等.硫酸锰深度除杂研究[J].精细化工中间体,2002,32(2):52-54.
    [178]周登风,李军旗,扬志彬等.硫酸锰深度净化的研究[J].贵州工业大学学报,2006,35(1):4-6.
    [179]邹兴,李艳,邓彩勇等.硫酸锰溶液除亚铁的研究[J].中国锰业,2004,22(2):22-25.
    [180]钟少林,梅光贵,钟竹前.金属锰电解的电流效率分析[J].中国锰业,1991,9(1):56-60.
    [181]刘慧纳.化学选矿[M].北京:冶金工业出版社,1995.
    [182]钟竹前,梅光贵.湿法冶金过程[M].中南工业大学出版社,1988.
    [183]陈家镛,于淑秋,伍志春.湿法冶金中铁的分离与利用[M].北京:冶金工业出版社,1991.
    [184]日本专利特公昭62-45171.
    [185]李柏均,马晓鸥.P204萃取废电池中镍的工艺研究[J].五邑大学学报(自然科学版),2007,21(1):51-54.
    [186]俞小花,谢刚,杨大锦.高铜高锌硫酸溶液中铜的萃取分离[J].有色金属,2008,60(2):51-54.
    [187]王成彦,王含渊,江培海,等.P204萃取分离钴锰铁试验研究[J].有色金属(冶炼部分),2006,(5):2-5.
    [188]刘述平,李博,王昌良,等.铜锌铁溶液萃取分离铜的试验研究[J].矿产综合利用,2011,(6):16-19.
    [189]叶国华.从含钒钢渣中提取V2O5的新工艺与机理研究[博士学位论文],昆明理工大学,2010.
    [190]杨佼庸,刘大星.萃取[M].北京:冶金工业出版社,1995.
    [191]俞小花.复杂铜、铅、锌、银多金属硫化精矿综合回收利用研究[博士学位论文],昆明理工大学,2008.
    [192]沈慧庭,张延军,林乡伟,等.氧化锰矿泥湿法浸出试验研究[J].金属矿山,2008,(6):56-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700