用户名: 密码: 验证码:
硫化铜镍矿浮选中镁硅酸盐矿物强化分散—同步抑制的理论及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化铜镍矿中存在的蛇纹石、滑石等镁硅酸盐矿物,干扰硫化矿的浮选并使精矿中MgO含量升高,影响后续冶炼过程,严重制约着我国铜镍资源的高效利用。本文以层状镁硅酸盐矿物为主要研究对象,采用多种试验方法与分析测试手段,重点针对镁硅酸盐矿物的强化分散与选择性抑制进行了系统深入的研究,形成了硫化铜镍矿浮选体系“固液界面离子选择性迁移-浮选剂分子间组装”调控原理,并以此为基础开发了硫化铜镍矿强化浮选技术原型。论文的主要研究内容和创新成果如下:
     (1)层状镁硅酸盐矿物晶体结构、表面性质与可浮性的关系
     硫化铜镍矿中层状镁硅酸盐矿物主要包括蛇纹石、滑石和绿泥石,其晶体结构单元层由硅氧四面体与镁氧八面体组成。蛇纹石解离时镁氧八面体层断裂,表面暴露的镁氧键离子性强,水化作用强,天然亲水性好;滑石解离主要沿层间断裂,表面为残余的分子键,水化作用弱,天然疏水性好;绿泥石解离时表面同时暴露出分子键和镁氧键,天然疏水性介于蛇纹石与滑石之间。
     在水溶液中蛇纹石表面羟基优先溶解,Mg2+残留在蛇纹石表面使其荷正电,零电点为10.0;滑石与绿泥石解离表面优先吸附溶液中的OH-,矿物表面荷负电,零电点分别为3.0和4.4。当pH<10时蛇纹石易与表面荷负电的镍黄铁矿等硫化矿物通过静电作用发生异相凝聚,影响硫化铜镍矿的浮选。(2)颗粒间异相凝聚对矿物浮选行为的影响
     蛇纹石与硫化矿颗粒间的异相凝聚,导致硫化矿对捕收剂的吸附能力降低,从而降低硫化矿的可浮性;蛇纹石与滑石矿物间的异相凝聚,一方面使滑石的可浮性降低,另一方面导致滑石对抑制剂的吸附能力降低,从而使滑石不能被完全抑制。聚合磷酸盐和水玻璃能较好的分散蛇纹石与硫化矿、蛇纹石与滑石,减弱甚至消除矿物颗粒间的异相凝聚。(3)蛇纹石表面电性的强化调控机制
     降低蛇纹石表面电位是消除矿物间异相凝聚的有效途径,而蛇纹石表面电性调控的关键在于蛇纹石表面镁向液相的迁移行为,即控制蛇纹石表面镁向液相迁移,减少双电层中定位离子的正电荷密度,从而降低蛇纹石表面电位。
     链状聚合磷酸盐能有效降低蛇纹石表面电位,其作用机制主要包括三个方面:1)促进蛇纹石表面的镁迁移到液相,降低蛇纹石的表面电位;2)与液相中的Mg2+作用生成为稳定的可溶性络合物,阻止Mg2+向蛇纹石表面反吸附,保持蛇纹石表面的负电性;3)通过吸附在蛇纹石表面,进一步降低其表面电位。
     通过对蛇纹石表面电性的强化调控,消除了异相凝聚对硫化矿可浮性的影响,并实现了滑石的完全抑制。
     (4)固液界面浮选剂的分子间组装
     有机高分子聚合物古尔胶和CMC是滑石的有效抑制剂,但同时也抑制硫化矿的浮选;而巯基捕收剂黄药只与硫化矿作用,并不在滑石表面吸附。优先添加捕收剂可以减弱抑制剂在硫化矿表面的吸附,增强浮选剂作用的选择性。因此改变药剂添加顺序,调整捕收剂与抑制剂在矿物表面的组装过程,能够增大硫化矿与滑石表面润湿性差异,有利于二者浮选分离。
     (5)硫化铜镍矿强化浮选技术
     基于多矿相镁硅酸盐矿物“强化分散-同步抑制”调控原理,形成了硫化铜镍矿强化浮选技术,并在新疆哈密天隆镍矿进行了工业试验。针对原矿品位Ni0.53%、Cu0.27%的低品位硫化铜镍矿,获得Ni5.68%、Cu3.14%的铜镍混合浮选精矿,Ni、Cu回收率分别达到80.23%和88.05%。采用硫化铜镍矿强化浮选技术,在精矿镍、铜品位相近的情况下,镍回收率提高3.04个百分点,铜回收率提高9.92个百分点。
High content of magnesium-silicate minerals like serpentine and talc not only obstructs the flotation separation of copper-nickel sulfide ores but also makes a undesirable high content of MgO in concentrate to impede the subsequent smelting process, which restricts the efficient utilization of copper and nickel resources in China. Basing on the layered magnesium-silicate minerals, this thesis firstly investigated the enhanced dispersion and selective depression of magnesium-silicate minerals by various experimental methods and analysis technologies. Then, the regulation principle of "selective migration of ion in solid/liquid interface-molecular assembly of flotation agent" in the floatation system of copper-nickel sulphide ores was established. Last but not least, the technical prototype of strengthening flotation of copper-nickel sulphide ores was proposed. Main conclusions and innovations of this thesis are listed as follows:
     1. Relevance among crystal structure, surface property and floatability of layered magnesium-silicate minerals
     Layered magnesium-silicate minerals associated with copper-nickel sulfide ores include serpentine, talc and chlorite. All of them are characterized with uniform crystal structures consisting of silicon-oxygen tetrahedron and magnesium-oxygen octahedron. The magnesium-oxygen octahedron layers are broken during the liberation of serpentine to expose the magnesium-oxygen bonds with strong ionicity and hydration, which results in natural hydrophilicity of serpentine. For talc, characterized as good natural hydrophobicity, the liberation comes from the interlaminar fracture to remain molecular bonds on surface with weak hydration. Meanwhile, both molecular bonds and magnesium-oxygen bonds are exposed on chlorite surface when liberation occurs, resulting in moderate natural hydrophobicity between serpentine and talc.
     In water, the hydroxyl on serpentine surface ruptures and dissolves into the aqueous phase while the Mg2+remains, resulting in surface positive charge with pHPZC of10.0. On the other hand, the preferential adsorption of OH-on liberated talc and chlorite make surface negatively charges the minerals' surfaces with pHPZC of3.0and4.4, respectively. Hetercoagulation is easy to occur between serpentine and negatively charged sulfide ores due to the electrostatic interaction when pH<10, which hinders the flotation of copper-nickel sulfide ores.
     2. Influence of hetercoagulation among mineral particles on mineral flotation separation
     Firstly hetercoagulation between serpentine and sulfide ore particles reduces the adsorption capacity of collector on sulfides surface and leads to lower floatability of sulfide ores. Secondly hetercoagluation between serpentine and talc not only decreases the floatability of talc, but also weakens the adsorption capacity of talc to depressant, which hinders talc to be totally depressed. Polyphosphate and sodium silicate can effectively disperse serpentine and sulfide, as well as talc, and can weaken, even eliminate the hetercoagulation among mineral particles.
     3. Strengthening regulation mechanism of serpentine surface electrical property
     Key to eliminate hetercoagulation among minerals is to reduce the surface electrical potential of serpentine, and key to regulate surface electrical potential of serpentine is to control the migration behaviour of Mg2+on serpentine surface from solid particles to aqueous solution. Namely, increase of migration of Mg2+from particles to solution will decrease the positive charge density of positioning ion Mg2+in electric double layer and then reduce the surface potential of serpentine.
     The reduction of surface potential of serpentine by chained polyphosphate is determined by three factors. First, chained polyphosphate can promote the migration of Mg2+from particles to solution to lower the surface potential of serpentine. Second, stable soluble complex can be formed by combining Mg2+with chained polyphosphate, which hinders the readsorption of Mg2+onto serpentine surface and maintains the negative potential of serpentine surface. Third, the surface potential of serpentine can be further reduced by the specific adsorption of chained polyphosphate onto the serpentine surface.
     Through the strengthening regulation of serpentine surface electrical property, the influence of hetercoagulation on floatability of sulfide ores has been edulcorated, and the talc has been totally depressed.
     4. Molecular assembly of flotation agents on solid-liquid interface
     Organic polymer guar gum and CMC are efficient depressant for talc and also have certain depression for sulfide floatability. Meanwhile the thiol collector xanthate only reacts with sulfide ores and has nothing to do with talc. Preferential addition of collector can prevent the adsorption of depressant onto sulfide surface. Therefore the selective interaction between flotation agents and different minerals is achieved. Thus, through changing the addition sequence of flotation agents and adjusting the assembly process of collectors and depressants onto mineral surface, the surface wettability difference between sulfide and talc can be enlarged enough to benefit the flotation separation.
     5. Strengthening flotation technique for copper-nickel sulfide ore
     Basing on the control principle of strengthening dispersion synchronous depression for kinds of magnesium-silicate minerals, the strengthening flotation technique has been proposed and experimented industrially by using Kami low grade copper-nickel sulfide ore (Ni of0.53%and Cu of0.27%) as raw material. The high grade mixed concentrate of copper-nickel (Ni of5.68%and Cu of3.14%) have been obtained with the nickel and copper recovery of80.23%and88.05%, respectively. In the case of similar concentrate grade, the recovery of nickel and copper has been increased by3.04%and9.92%, respectively, though applying the strengthening flotation technique.
引文
[1]胡秀梅.金平镍矿Ⅰ号岩体贫镍矿石工艺矿物学研究:[硕士学位论文].昆明:昆明理工大学,2006
    [2]罗伟.腐泥土型红土镍矿高效提取及阻燃型氢氧化镁的制备研究:[博士学位论文].长沙:中南大学,2009
    [3]梁冬梅.云南金平硫化铜镍矿石选矿试验研究:[硕士学位论文].昆明:昆明理工大学,2009
    [4]程少逸.金川三矿区低品位铜镍矿石工艺矿物学研究.金属矿山,2011,(2):85-89
    [5]景沫.金川二矿区贫矿选矿工艺流程研究:[硕士学位论文].昆明:昆明理工大学,2006
    [6]廖乾.金川低品位镍矿矿物学特性及选矿工艺技术研究:[硕士学位论文].长沙:中南大学,2010
    [7]彭先淦.金川镍矿选矿的技术进步.国外金属矿选矿,1998(4):30-32
    [8]师伟红.金平镍矿选别的影响因素探讨:[硕士学位论文].昆明:昆明理工大学,2007
    [9]李艳峰,费涌初.金川二矿区富矿石选矿的工艺矿物学研究.矿冶,2006,15(03):99-101
    [10]陈国山,包丽娜,刘树新.矿石学基础.北京:冶金工业出版社,2010.49-84
    [11]张秀品.金川二矿区富矿与龙首矿矿石混合浮选新工艺研究:[硕士学位论文].昆明:昆明理工大学,2006
    [12]呼振峰,孙传尧.金川铜镍矿床中典型单矿物的提取.有色金属,2001,53(4):73-79
    [13]张秀品,戴惠新.某镍矿选矿降镁研究探讨.云南冶金,2006,35(3):12-17
    [14]彭容秋.镍冶金.长沙:中南大学出版社,2005.6-88
    [15]小博尔德.镍提取冶金(,金川有色金属公司).北京:冶金工业出版社,1977.36-121
    [16]Witney J Y, Yan D S. Reduction of magnesia in nickel concentrates by modification of the froth zone in column flotation. Minerals Engineering,1997, 10(2):139-154
    [17]Jowett L K. The influence of pH and dispersants on pentlandite-lizardite interactions and flotation selectivity:[Master's Thesis]. Adelaide:University of South Australia,1999
    [18]Chen G. The mechanisms of high intensity conditioning on Mt.Keith nickel ore: [Ph.D. Thesis]. Adelaide:University of South Australia,1998
    [19]Senior G D, Thomas S A. Development and implementation of a new flowsheet for the flotation of a low grade nickel ore. International Journal of Mineral Processing,2005,78(1):49-61
    [20]Ruonal M, Heimala S, Jounela S. Different aspects of using electrochemical potential measurements in mineral processing. International Journal of Mineral Processing,1997,51(1-4):97-110
    [21]Lottera N O, Bradshawb, D J, Beckerb M, et al. A discussion of the occurrence and undesirable flotation behaviour of orthopyroxene and talc in the processing of mafic deposits. Minerals Engineering,2008,21(12-14):905-912
    [22]Valery Jnr W, Morrell S. The development of a dynamic model for autogenous and semi-autogenous grinding. Minerals Engineering,1995,8(11):1285-1297
    [23]Beckera M, Villiersb J, Bradshawa D. The flotation of magnetic and non-magnetic pyrrhotite from selected nickel ore deposits. Minerals Engineering,2010,23(11-13):1045-1052
    [24]Xiao Z, Laplante A R, Finch J A. Quantifying the content of gravity recoverable platinum group minerals in ore samples. Minerals Engineering,2009,22(3): 304-310
    [25]Nanthakumar B, Kelebek S. Stagewise analysis of flotation by factorial design approach with an application to the flotation of oxidized pentlandite and pyrrhotite. International Journal of Mineral Processing,2007,84(1-4):192-206
    [26]唐敏,张文彬.流程结构的选择对微细粒铜镍硫化矿的浮选影响.矿冶,2008,17(3):4-9
    [27]李江涛,库建刚,程琼.某硫化铜镍矿浮选试验研究.矿产保护与利用,2006,(1):37-39
    [28]赵晖,李永辉,张汉平,等.某复杂铜镍矿的选矿试验研究.矿冶工程,2009,29(5):50-53
    [29]胡显智,张文彬.金川镍铜矿精矿降镁研究与实践进展.矿产保护与利用,2003,(1):34-37
    [30]胡熙庚.有色金属硫化矿选矿.北京:冶金工业出版社,1987.42-135
    [31]许荣华.硫化镍及硫化铜镍矿石选矿概述.昆明理工大学学报,2000,25(2):2-5
    [32]方启学,胡永平,卢寿慈.硫化镍铜贫矿石分选工艺研究.化工矿山技术,1996,25(1):21-25
    [33]法克清,等.应用闪速浮选技术处理某铜镍矿石的研究.有色金属(选矿部分),1998,(2):11-14
    [34]金大安.金川铜镍矿闪速浮选工业试验后的思考.矿冶,1999,8(1):35-38
    [35]张新红,周世伯.金川二矿区矿石两产品方案选矿新工艺研究.甘肃有色金属,1990,(4):9-13
    [36]常永强.金川二矿区贫矿石弱酸性介质选矿工艺试验研究.中国矿山工程,2004,33(2):7-9
    [37]彭先淦,黄开国,曾晓晰.金川镍矿选矿的技术进步.国外金属矿选矿,1998,(4):30-32
    [38]周高云,曾新民,刘元科,李绍民.新起泡剂BK-206在金川镍矿的应用研究.有色金属(选矿部分),2000,(6):32-35
    [39]邢方丽,肖宝清,王中明.铜镍矿铜镍分离技术研究进展.矿冶,2010,19(1):25-32
    [40]张凤君,马玖彤,李滦宁,等.硫化矿中铜镍的浸取研究.长春科技大学学报,1998,28(2):231-234
    [41]董春艳,李碧乐,孙丰月,等.难选多金属矿石中提取钻、镍、铜和金的试验研究.矿产综合利用,2003,(2):12-15
    [42]李滦宁,马玖彤,张凤君,等.铜精矿中铜镍的浸出研究.湿法冶金,2001,20(1):14-17
    [43]刘存华.新药剂在金川镍矿的应用研究.中国矿山工程,2006,35(6):11-14
    [44]向平,李永战.高效硫化矿捕收起泡剂PN405.国外金属矿选矿,2002,(5):24-26
    [45]冯其明,张国范,卢毅屏.新型捕收剂BS-4对镍黄铁矿捕收性能及作用机理.中南工业大学学报(自然科学版),1999,30(3):244-247
    [46]张文翰.BF系列捕收剂在金川公司选矿厂的应用.甘肃冶金,2003,(S1):57-59
    [47]刘存华.提高金川铜镍矿铜回收率的探讨.中国矿山工程,2004,33(1):16-19
    [48]曾新民.金川镍铜矿选矿降镁工艺研究与生产实践.有色金属(选矿部分),1996,(1):1-5
    [49]张国范,卢毅屏,冯其明.金川二矿区富矿石选矿新药剂应用研究.湖南有色金属,2001,17(5):6-48
    [50]张国范.抑制剂EP降低镍精矿中氧化镁含量研究.矿产保护与利用,1999,(3):28-31
    [51]熊文良,潘志兵,田喜林.改性淀粉在硫化镍矿浮选中的应用.矿产综合利用,2008,(3):13-15
    [52]宁致强,宋国顺,王伟,等.选镍新药剂的研制.有色矿冶,2003,19(5):21-23
    [53]陈志友.硫化矿浮选体系中滑石的分散研究:[硕士学位论文].长沙:中南大学,2005
    [54]韩峰,王国庆.超声波在碳化法制备纳米碳酸钙中的应用.精细化工,2002,19(1):39-41
    [55]陈飞跃,许勇.超细改性碳酸钙稀悬浮体的流变性质.华东理工大学学报,1994,20(6):750-752
    [56]丁鹏.磷酸盐对蛇纹石的分散作用研究:[硕士学位论文].长沙:中南大学,2011
    [57]Rashchi F, Finch J A. Polyphosphates:a review their chemistry and application with particular reference to mineral processing. Minerals Engineering,2000, 13(10-11):1019-1035
    [58]徐刚.最新磷化工工艺技术手册.北京:中国知识出版社,2005.255-259
    [59]张国范,冯其明,卢毅屏,等.六偏磷酸钠在铝土矿浮选中的作用.中南工业大学学报(自然科学版),2001,32(2):128-130
    [60]张英,王毓华,汤玉和,等.某低品位铜镍硫化矿浮选试验研究.矿冶工程,2009,29(3):40-47
    [61]王毓华,陈兴华,胡业民,等.磷酸盐对细粒铝硅酸盐矿物分散行为的影响.中南大学学报(自然科学版),2007,38(2):238-244
    [62]夏启斌,李忠,邱显扬,等.六偏磷酸钠对蛇纹石的分散机理研究.矿冶工程,2002,22(2):51-54
    [63]罗家珂,杨久流.(NaPO3)6对方解石的分散作用机理.有色金属,1999,51(2):15-18
    [64]朱友益,毛钜凡.六偏磷酸钠等分散剂对微细粒菱锰矿的分散作用研究.金属矿山,1990,(12):51-54
    [65]马军二.钛铁矿与钛辉石浮选分离中无机抑制剂的作用机理研究:[硕士学位论文].长沙:中南大学,2010
    [66]Takenaka T, Yamasaki K. Polarized resonance Raman spectra of adsorbed thin layers at the glass-water interface. Journal of Colloid and Interface Science, 1980,78(1):37-43
    [67]方启学,黄国智,罗家珂,等.分散剂的分散效果与作用方式研究.有色金属,2000,52(3):37-41
    [68]方启学.微细颗粒水基悬浮体分散的研究.矿冶,1999,8(4):24-32
    [69]唐敏,张文彬.在微细粒铜镍硫化矿浮选中蛇纹石类脉石矿物浮选行为研究.中国矿业,2008,17(2):47-58
    [70]周杰强.低品位胶磷矿浮选试验研究:[硕士学位论文].南宁:广西大学,2007
    [71]罗琳,邱冠周,何伯泉,等.界面相互作用与石英、赤铁矿颗粒的凝聚行为.中南工业大学学报(自然科学版),1996,27(2):153-158
    [72]王飞,张芹,邓冰,等.3种调整剂对微细粒胶磷矿分散行为的影响.金属矿山,2011,(2):57-59
    [73]左倩,张芹,邓冰,等.3种调整剂对微细粒赤铁矿分散行为的影响.金属矿山,2011,(2):54-56
    [74]杨稳权,罗廉明,张路莉,等.碳酸钠在云南胶磷矿正浮选中的作用效果探索.化工矿物与加工,2008,(8):1-3
    [75]王毓华,陈兴华,胡业民.碳酸钠对细粒铝硅酸盐矿物分散行为的影响.中国矿业大学学报,2007,36(3):292-297
    [76]朱玉霜,朱建光.浮选药剂的化学原理.长沙:中南工业大学出版社,1987.45-78
    [77]李党国.羧甲基纤维素钠的性质及其在造纸工业中的应用.黑龙江造纸,2008,(3):50-52
    [78]李治华.含镁脉石矿物对镍黄铁矿浮选的影响.中南矿冶学院学报,1993,24(1):37-41
    [79]Bacchin P, Bonino J P, Martin F, et al. Surface pre-coating of talc particles by carboxyl methyl cellulose adsorption:Study of adsorption and consequences on surface properties and settling rate. Colloids and Surfaces A,2006,272(3): 211-219
    [80]Song S, Lopez-Valdivieso A, Martinez-Martinez C, et al. Improving fluorite flotation from ores by dispersion processing. Minerals Engineering,2006,19(9): 912-917
    [81]胡永平,梁绪树,崔林.C28捕收剂浮选钛铁矿的研究.有色金属,1992,44(4):26-30
    [82]胡永平,张毅谨.混合捕收剂浮选细粒钛铁矿的研究.有色金属,1994,46(3): 32-36
    [83]张强,李正龙,王化军.采用混合捕收剂选别东鞍山难选铁矿石的研究.金属矿山,1992,(6):43-48
    [84]乌瓦诺夫.氧化和复合铁矿石联合选矿法(,万起).北京:冶金工业出版社,1990.46-94
    [85]刘芳,孙传尧.无机阴离子与十二胺捕收剂添加顺序对硅酸盐矿物浮选的影响.中国矿业,2011,20(5):71-74
    [86]朱友益,张强,卢寿慈.酸化水玻璃在萤石浮选提纯中的作用.矿冶工程,1991,16(1):29-32
    [87]胡熙庚.浮选理论与工艺.长沙:中南工业大学出版社,1991.32-47
    [88]孙传尧,印万忠.硅酸盐矿物浮选原理.北京:科学出版社,2001.69-86
    [89]陈泉源,余永富.氟化物在硅铁分离中的应用及作用机理.矿冶工程,1988,8(3):18-22
    [90]张国范,马军二,朱阳戈,等.含硅抑制剂对钛辉石的抑制作用.中国有色金属学报,2010,20(12):2419-2424
    [91]周文波,张一敏.调整剂对隐晶质菱镁矿与白云石分离的影响.矿产综合利用,2002,(5):21-23
    [92]邓海波,朱海玲,何小民,等.抑制剂对红柱石和石英浮选分离的影响研究.化工矿物与加工,2011,(6):14-16
    [93]崔林,刘均彪.金红石和石榴石浮选分离的研究.化工矿山技术,1986,(5):32-35
    [94]梁友伟.贵州某地白钨矿选矿试验研究.矿产综合利用,2010,(2):3-6
    [95]刘玺.消除易浮脉石对硫化矿石浮选的影响.有色金属(选矿部分),1979,(5):64-65
    [96]吕晋芳,童雄,崔毅琦.云南低品位铜镍矿选矿试验研究.矿产综合利用,2011,(3):25-28
    [97]Parolis L A S, van der Merwe R, Groenmyer G V, et al. The influence of metal cations on the behaviour of carboxymethyl celluloses as talc depressants. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2008, 317(1-3):109-115
    [98]Pugh R J. Macromolecular organic depressants in sulphide flotation-A review,2. Theoretical analysis of the forces involved in the depressant action. International Journal of Mineral Processing,1989,25(1-2):131-146
    [99]Cawood S R, Harris P J, Bradshaw D J. A simple method for establishing whether the adsorption of polysaccharides on talc is a reversible process. Minerals Engineering,2005,18(10):1060-1063
    [90]Morris G E, Fornasiero D, Ralston J. Polymer depressants at the talc-water interface:adsorption isotherm, microflotation and electrokinetic studies. International Journal of Mineral Processing,2002,67(1-4):211-227
    [101]Shortridge P G, Harris P J, Bradshaw D J, et al. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc. International Journal of Mineral Processing,2000,59(3): 215-224
    [102]Bakinov K G, Vaneev I J, Gorlovsky S I, et al. New methods of sulphide concentrate upgrading.7th International Mineral Processing Congress,1964: 227-238
    [103]Rath R K, Subramanian S, Laskowski J S. Adsorption of dextrin and guar gum onto talc. A comparative study. Langmuir,1997,13(23):6260-6266
    [104]皮尔斯.化学药剂在矿物加工中的应用概况.国外金属矿选矿,2005,(5):5-9
    [105]Laskowski J S, Liu Q, O'Connor C T. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface. International Journal of Mineral Processing,2007,84(1-4):215-224
    [106]刘一山.瓜尔胶及其衍生物的在造纸行业的应用.西南造纸,2006,35(2):48-51
    [107]罗彤彤.半乳甘露聚糖植物胶在选矿上的应用.铜业工程,2011,(1):12-15
    [108]Makarinsky F M.加拿大卡尼奇矿山解决滑石问题实现镍-铜浮选.国外金属矿选矿,1976,(Z4):22-27
    [109]Wang J, Somasundaran P, Nagaraj D R. Adsorption mechanism of guar gum at solid-liquid interfaces. Minerals Engineering,2005,18(1):77-81
    [110]Ma X D, Pawlik M. Role of background ions in guar gum adsorption on oxide minerals and kaolinite. Journal of Colloid and Interface Science,2007,313(2): 440-448
    [111]Rath R K, Subramanian S. Studies on adsorption of guar gum onto biotite mica. Minerals engineering,1997,10(12):1405-1420
    [112]程平平.复合阳离子捕收剂的合成及其对铝硅酸盐矿物的浮选性能研究:[硕士学位论文].长沙:中南大学,2009
    [113]吴永云.淀粉在选矿工艺中的应用.国外金属矿选矿,1999,(11):26-30
    [114]帕夫洛维奇.淀粉、直链淀粉、支链淀粉和葡萄糖单体的吸附作用及其对赤铁矿和石英浮选的影响.国外金属矿选矿,2004,(6):27-30
    [115]周灵初,张一敏.淀粉对红柱石矿浮选分离过程的影响研究.矿冶工程,2011,31(2):35-41
    [116]Zhou L C, Zhang Y M. Flotation separation of Xixia andalusite ore. Transactions of Nonferrous Metals Society of China,2011,21(6):1388-1392
    [117]李海普.变性淀粉在铝硅矿物浮选分离中的作用机理.中国有色金属学报,2001,11(4):697-701
    [118]涂照妹,刘文礼,黄锐,等.抑制剂在煤泥浮选中的作用机理及应用.煤炭加工与综合利用,2010,(3):6-9
    [119]顾帼华,朴正杰,邹毅仁,等.阴离子淀粉对铝硅酸盐矿物浮选的影响及机理研究.矿冶工程,2010,30(2):28-34
    [120]顾帼华,邹毅仁,胡岳华,等.阴离子淀粉对一水硬铝石和伊利石浮选行为的影响.中国矿业大学学报,2008,37(6):864-867
    [121]Pinto C L L, de Araujo A C, Peres A E C. The effect of starch, amylose and amylopectin on the depression of oxi-minerals. Minerals Engineering,1992, 5(3-5):469-478
    [122]张剑锋.新型有机抑制剂的合成及结构与性能关系研究:[博士学位论文].长沙:中南大学,2002
    [123]Somasundaran P. Adsorption of starch and oleate and interaction between them on calcite in aqueous solutions. Journal of Colloid and Interface Science,1969, 31(4):557-565.
    [124]Subramanian S, Santhiya D, Natarajan K A. Surface modification studies on sulphide minerals using bioreagents. International Journal of Mineral Processing,2003,72(1-4):175-188
    [125]Subramanian S, Natarjan K S, Sathyanarayana D N. FTIR spectroscopic studies on the adsorption of an oxidized starch on some oxide minerals. Minerals and Metallurgical Processing,1989,6(3):152-158
    [126]Liu Q, Laskowski J S. The interaction between dextrin and metal hydroxides in aqueous solutions. Journal of Colloid and Interface Science,1989,130(1): 101-111
    [127]kennedy J F, Barker S A, Humphreys J D. Insoluble complexes of amino-acids, peptides, and enzymes with metal hydroxides. Journal of the Chemical Society, Perkin Transactions 1,1976, (9):962-967
    [128]Kennedy J F, Barker S A, White C A. The adsorption of D-glucans by magnetic cellulose and other magnetic forms of hydrous titanium(Ⅳ) oxide. Carbohydrate Research,1977,54(1):1-12
    [129]Bulatovic S M. Use of organic polymers in the flotation of polymetallic ores:A review. Minerals Engineering,1999,12(4):341-354
    [130]Miller J D, Laskowski J S, Chang S S. Dextrin adsorption by oxidized coal. Colloids and surfaces,1983,8(2):137-151
    [131]Khosla N K, Bhagat R P,Gandhi K S. Calorimetric and other interaction studies on mineral-starch adsorption systems. Colloids and surfaces,1984,8(4): 321-326
    [132]O'Connor C T, Dunne R C, Martalas A. The adsorption of oleate and the guar-based gum, acrol LG-21, onto apatite and calcite. Colloids and Surfaces, 1987,27(4):357-365
    [133]郭昌槐,胡熙庚.蛇纹石矿泥对金川含镍磁黄铁矿浮选特性的影响.矿冶工程,1984,4(2):28-32
    [134]关杰,东乃良.镁(Ⅱ)存在的浮选体系中镍黄铁矿的浮选行为.有色金属,1985,37(4):29-36
    [135]贾木欣,孙传尧,费涌初,等.金川矿石中脉石矿物易浮原因的探讨.矿冶,2007,16(3):99-100
    [136]邱显扬,俞继华,戴子林.镍黄铁矿浮选中抑制剂的作用.广东有色金属学报,1999,9(2):86-89
    [137]冯其明,张国范,卢毅屏.蛇纹石对镍黄铁矿浮选的影响及其抑制剂研究现状.矿产保护与利用,1997,(5):19-22
    [138]高玉德,胡春晖,邓丽红,等.降低金川镍精矿氧化镁含量的研究.广东有色金属学报,2000,10(2):2-3
    [139]吴熙群,李成必,罗琳,等.开发冬瓜山铜矿资源选矿原则方案探讨.有色金属(选矿部分),2003,(5):1-6
    [140]周乐光.矿石学基础(第2版).北京:冶金工业出版社,2002.67-93
    [141]张心平,罗琳,王淑秋,等.冬瓜山铜矿石浮选新工艺新程研究.有色金属(选矿部分),1999,(2):1-6
    [142]潘兆橹.结晶学及矿物学(下册)(第三版).北京:地质出版社,1994.164-184
    [143]Senior G D, Trahar W J, Guy P J. The selective flotation of pentlandite from a nickel ore. International Journal of Mineral Processing,1995,43(3-4):209-234
    [144]Wiese J, Harris P, Bradshaw D. The response of sulphide and gangue minerals in selected Merensky ores to increased depressant dosages. Minerals Engineering,2007,20(10):986-995
    [145]李安全.冬瓜山难选铜矿石分选的原则方案初探.有色金属(选矿部分),1998,(1):6-9
    [146]董燧珍.含滑石钼矿的选别工艺试验研究.矿产综合利用,2006,(1):7-12
    [147]蒋玉珍.从含铜多金属矿中综合回收滑石的试验研究.矿产保护与利用,1999,(6):41-43
    [148]Beattie D A, Huynh L, Kaggwa G B N. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals. Minerals Engineering,2006,19(6-8):598-608
    [149]阴宪卿,李福寿.降低镍精矿中氧化镁含量的试验研究.矿冶,2001,10(2):1-4
    [150]张小云,黎铉海.辉钼矿与滑石的分选试验.湖南有色金属,1997,13(1):15-16
    [151]李亮.河北省安妥岭辉钼矿黑云母、绿泥石特征研究:[硕士学位论文].北京:中国地质大学,2011
    [152]Fornasiero D, Ralston J. Cu(Ⅱ) and Ni(Ⅱ) activation in the flotation of quartz, serpentine and chlorite. International Journal of Mineral Processing,2005, 76(1-2):75-81
    [153]叶雪均,余瑞三.铜镍硫化矿石直接浮选小型试验研究.矿产综合利用,2004,(2):6-11
    [154]杨勇杰,姜瑞芝,陈英红,等.苯酚硫酸法测定杂多糖含量的研究.中成药,2005,27(6):706-708
    [155]国土资源科学数据共享矿物数据库:http://www.geoscience.cn/mineral/
    [156]冯其明,杨艳霞,刘琨,等.采用纤蛇纹石制备纳米纤维状多孔氧化硅.中南大学学报(自然科学版),2007,38(6):1088-1093
    [157]江绍英.蛇纹石矿物学及性能测试.北京:地质出版社,1987.86-103
    [158]闻辂.矿物红外光谱学.重庆:重庆大学出版社,1988.89-103
    [159]丁浩,崔林.六偏磷酸钠在金红石与硅钙质矿物浮选分离中的作用机理.有色金属,1991,43(4):33-40
    [160]谢晶曦.红外光谱在有机化学和药物化学中的应用.北京:科学出版社,1987.32-96
    [161]Jager H D, Heyns A M. Study of the hydrolysis of sodium polyphosphate in water using Raman spectroscopy. Applied Sectroscopy,1998,52(6):808-814
    [162]何铁林.水处理化学品手册.北京:化学工业出版社,2000.132-133
    [163]刘预知.无机物质理化性质及重要反应方程式手册.成都:成都科技大学出版社,1994.385-427
    [164]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选.长沙:中南工业大学出版社,1993.26-72
    [165]Hiemenz P C. Principles of Colloid and Surface Chemistry. New York:Marcel Dekker,1997.45-92
    [166]Bremmell K E, Fornasiero D, Ralston J. Pentlandite-lizardite interactions and implications for their separation by flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,252(2-3):207-212
    [167]Sharma P K, Rao K H. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite:surface thermodynamics and extended DLVO theory. Colloids and Surfaces B:Biointerfaces,2003,29(1):21-38
    [168]Bellamy L J. Infrared spectroscopy of complex molecules. New York:Halsted Press,1975.67-93
    [169]沈德言.红外光谱法在高分子研究中的应用.北京:科学出版社,1982.66-78
    [170]Rath R K, Subramanian S, Pradeep T. Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants. Journal of Colloid and Interface Science,2000,229(1):82-91
    [171]张芹,胡岳华,顾帼华,等.磁黄铁矿与乙黄药相互作用电化学浮选红外光谱的研究.矿冶工程,2004,24(5):42-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700