用户名: 密码: 验证码:
自然和人为影响下海滨湿地景观演变特征与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐城淤泥质海滨湿地是我国乃至世界上为数不多的典型原始海岸湿地,在全球生物多样性保护中具有重要战略地位。多年来,在自然和人类社会经济发展影响下,区域湿地景观结构与功能发生巨大变化。尤其是沿海开发战略的实施,致使湿地保护与开发之间的矛盾日益加大。在此背景下,如何辨识自然和人为影响下海滨湿地景观演变空间模式,揭示内在生态过程驱动下的湿地景观结构与格局时空演变机制,是实现海滨湿地合理利用与保护需要解决的重要科学问题。
     本文综合运用景观生态学、地理学、环境科学等学科理论,以及RS、GIS、数学建模等方法,以盐城海滨湿地典型区域为案例区域,并根据区域湿地景观特征,人为将其划分为人工管理区和自然条件区两部分,从景观生态过程角度,对两个区域湿地土壤属性特征及其变化进行深入研究,揭示不同景观类型生态演变的阈值效应。在此基础上,利用湿地景观结构空间数据和景观生态过程数据,构建基于过程的景观演变模拟模型,对两种发展模式下湿地景观时空演变过程与机制进行系统模拟研究,并对未来区域景观演变进行情景分析与预测研究。该研究不仅体现了基于景观过程模型研究方法上的创新,而且对指导区域湿地生态保护与合理利用具有重要意义。得出基本结论如下:
     (1)海滨湿地景观结构与格局时空变化明显。区域自2000~2011年期间,景观结构变化主要表现为芦苇沼泽和米草沼泽面积不断扩张,碱蓬沼泽面积不断减小的趋势。其中,人工管理区芦苇沼泽和米草沼泽面积分别增加了30.92%和352.61%,而碱蓬沼泽面积减少了78.81%;自然条件区芦苇沼泽和米草沼泽面积分别增加了368.25%和96.63%,而碱蓬沼泽面积减少了60.96%。
     景观格局变化上,主要表现为芦苇沼泽向海扩张,米草沼泽向海和陆两个方向同时扩张,碱蓬沼泽则以向中心收缩为主。其中,人工管理区芦苇沼泽向海扩张速度为240m/年;米草沼泽向海陆方向扩张速度分别为40m/年和61m/年,以向陆地方向扩张为主;碱蓬沼泽从海陆两个方向向中心收缩的速度分别为61m/年和240m/年,以向海洋方向收缩为主。自然条件区芦苇沼泽向海扩张速度为162m/年;米草沼泽向海陆方向扩张速度分别为117m/年和40m/年,以向海扩张为主;碱蓬沼泽从海陆两个方向向中心收缩的速度分别为30m/年和162m/年,以向海洋方向收缩为主。
     (2)土壤性状是控制海滨湿地景观类型空间分异的主要要素,其中土壤水分和盐度空间分异是影响不同景观类型演变的主导因子。总体上,从陆向海方向,芦苇沼泽、碱蓬沼泽和米草沼泽的土壤水分和盐度均呈现递增趋势。其中,人工管理区,在干旱年份,芦苇沼泽、碱蓬沼泽和米草沼泽土壤水分平均含量分别为38.83%、41.79%和46.97%,盐度平均含量分别为0.39%、0.71%和1.76%。在湿润年份,各个景观类型水分含量均略有增加,分别增加了0.44%、4.09%和1.51%,而盐度上各种景观类型则呈现减少特征,分别减少了28.21%、36.62%和32.39%。
     自然条件区,在干旱年份,芦苇沼泽、碱蓬沼泽和米草沼泽土壤水分平均含量分别为36.79%、40.70%和44.16%,盐度平均含量分别为0.43%、0.93%和1.34%;在湿润年份,芦苇沼泽和米草沼泽土壤水分略有增加,分别增加了5.60%和4.23%,碱蓬沼泽的土壤水分略有减少,减少了0.69%,而盐度在各种景观类型上呈现减少的特征,芦苇沼泽、碱蓬沼泽和米草沼泽土壤盐度分别减少了11.63%、32.26%和35.07%。
     (3)控制海滨湿地景观演变的土壤水分和盐度具有明显的阈值效应。研究表明,不同景观类型水、盐阈值具有明显的差异性。其中,芦苇沼泽水分阈值范围为33.11%-42.28%,盐度阈值范围为0.15%-0.53%;碱蓬沼泽水分阈值范围为33.11%-48.63%,盐度阈值范围为0.53%-0.89%;米草沼泽水分阈值范围为26.42%-55.33%,盐度阈值范围为0.89%~1.44%;光滩水分阈值范围为48.63%-66.59%,盐度阈值范围为0.31%~0.89%。
     (4)综合利用区域景观结构空间分布数据和土壤性状数据,构建了基于过程的景观演变模拟模型。该模型不仅具有动态显示区域景观时空演变能力,而且能够从景观生态过程变化角度,揭示区域景观演变机制问题。经检验,模型在模拟区域景观演变过程中表现出较高的准确性,总体精度可达85%以上。
     (5)根据区域发展和景观变化特征,设置三种不同情景,利用景观过程模型对区域湿地景观演变进行模拟和预测研究。其中,现状模式(情景Ⅰ)情景模拟表明,碱蓬沼泽是受影响最为显著的湿地类型。在芦苇沼泽和米草沼泽持续迅速扩张影响下,人工管理区碱蓬沼泽将于2025年基本消失;自然条件区碱蓬沼泽将于2030年也基本消失。生态恢复模式(情景Ⅱ)情景模拟表明,人工管理区在去除堤坝影响下,碱蓬沼泽面积减少变缓,至2020年碱蓬沼泽的面积较情景Ⅰ增加了10.67倍;自然条件区在人工恢复芦苇沼泽情景下,至2020年,芦苇沼泽面积由情景Ⅰ增加了3.53%,碱蓬沼泽面积较情景Ⅰ增加了150.07%;米草沼泽面积较情景Ⅰ减少了7.90%。保护本地物种碱蓬模式(情景Ⅲ)情景模拟表明,至2020年,在控制米草向陆扩张情景下,人工管理区和自然条件区碱蓬沼泽面积分别是情景Ⅰ的3.26倍和5.46倍;在去除互花米草情景下,人工管理区和自然条件区碱蓬沼泽面积分别是情景Ⅰ的7.24倍和20.65倍。
The muddy coastal wetland in Yancheng is one of the most typically primitive coastal wetland for the significant strategic position in global biodiversity protection.. Over the years, under the influence of the nature and human socio-economic development, the wetland landscape structure and function changed dramatically. Especially, the contradictions between wetland protection and development gradually increase for the implement of the strategy about the Coastal Development Drive. In this context, how to identify the spatial patterns of the landscape evolution under the influences of natural and human factors and revealing the mechanisms for the wetland landscape structure and the pattern of spatial-temporal evolution under the intrinsic ecological process drive. They are important scientific problems to achieve the aim that using and protecting the coastal wetlands reasonable.
     The theories about the landscape ecology, geography, and environmental sciences and the methods of RS, GIS, and mathematical modeling are used in this study. Taking the coastal wetland in Yancheng as the typical area, and the region was separated into the labor control and natural condition parts to investigate the soil properties and changes, and to reveal the threshold effects of different ecological evolution from the perspective of the landscape ecological process. Based on these researches, a landscape model based on the ecological process was constructed by using the spatial data of the landscape structure in wetland and the ecological process data of landscape. The spatial-temporal evolution process and mechanisms were studied under the two modes. And the scenario analysis and prediction for the evolution of regional landscape were implemented. The study not only embodies the innovation of the research methods about the landscape process model, but which is of great significance for guiding regional wetland ecological protection and rational utilization. The main conclusions are as follows:
     (1)The temporal-spatial changes of landscape structure and pattern in the coastal wetlands are obvious. Landscape structural changes appeared the trends that the reed swamp expanded continuously and the area of spartina marsh decreased. The areas of reed marshes and Spartina alterniflora marsh by the manual management increased by30.92% and352.61%, respectively, while that of Suaeda marsh decreased by78.81%; the areas of reed marshes and Spartina marsh area under natural conditions, increased of368.25%and96.63%, respectively. While that of Suaeda marsh decreased by60.96%.
     On the aspect of landscape pattern, it appears that reed marsh expanded to the sea and Spartina alterniflora marsh expanded to the sea and land in both directions at the same time, and the Suaeda marsh contracted to the center. Among these, in human activities area, the expansion speed of reed marshes is240m/year, that of Spartina alterniflora marsh are40m/year and61m/year to the sea and land, respectively, and the expand to land is the main trend. The contraction speed of the Suaeda marsh from land and sea are61m/year and240m/year, respectively, and expand to sea is the main trend. In natural conditions, the expansion speed of reed marshes is162m/year, and that of Spartina alterniflora marsh to land and sea are117m/year and40m/year, respectively, and the main treed is to sea. The contraction speed of Suaeda marsh from land and sea are30m/year and162m/year, respectively, and the main trend is contracting to the sea.
     (2) Soil properties are the main elements that controlling the landscape type spatial differentiation and the soil moisture and salinity spatial differentiation are the dominant factor affecting the evolution of landscape types. Overall, the direction from land to sea, the soil moisture and salinityof the reed swamp, Suaeda marsh, and Spartina alterniflora marsh, showed an increasing trend. In the dry years, the average soil moisture content of the reed marshes, Suaeda marsh and Spartina alterniflora marsh are38.83%,41.79%and46.97%in human management areas, respectively. And the salinity average contents in these three landscapes are0.39%,0.71%and1.76%, respectively. In wet years, the moisture content of the corresponding landscape types are slightly increased of0.44%,4.09%and1.51%, respectively, and salinity are decreased by28.21%,36.62%and32.39%.
     In the natural conditions area, in dry years, the average soil moisture contents of the reed marshes, Suaeda marsh and Spartina alterniflora marsh are36.79%,40.70%and44.16%, respectively, and the average salinity contents are0.43%,0.93%and1.34%, respectively. In the wet year, the soil moistures of the reed marshes and Spartina alterniflora marsh increased by5.60%and4.23%, respectively, and the soil moisture of Suaeda marsh reduced by0.69%, the salinity in all kinds of landscape types decreased, and the decreased number are11.63%,32.26%and35.07%, respectively.
     (3) The threshold effect is obvious by controlling the soil moisture and salinity of the coastal wetland landscape. The study results show that the range of threshold of soil moisture and salinity are different in different landscape types. The scope of the soil salinity for the reed swamp is0.15%~0.53%, and that of the soil moisture is33.11%~42.28%; the scope of the soil salinity of the salsa swamp is0.53%~0.89%, and that of the soil moisture is33.11%~48.63%; the scope of the soil salinity of the spartina marsh is0.89%-1.44%, and that of the soil moisture is26.42%-55.33%; the scope of the soil salinity of the optical flat is0.31%~0.89%, and that of the soil moisture is48.63%-66.59%.
     (4) A simulation model of landscape evolution was constructed based on the process through using the spatial distribution data of regional landscape structure and soil properties data. The model not only possesses an ability of visualizing thedynamic changes of the spatial and temporal evolution, but also can reveal the evolution mechanism for the regional landscape from the perspective of the changeed landscape ecological processes. Based on the validation, the model showed a high accuracy in simulating the regional landscape evolution, and the overall accuracy can reach up to85%, and even more.
     (5) According to the characteristics of regional development and landscape changes, three different scenarios were designed, and the regional landscape evolution was simulated and predicted by using landscape process models in the coastal wetlands. The scenario simulation of the status quo mode (scenario I) shows that the Suaeda swamp is most affected types in the wetlands. Under the trend of the continued rapid expansion of reed marsh and Spartina alterniflora marsh, the Suaeda swamp will almost disappear in2025in the artificial management area. The Suaeda marsh will disappear in2030in the natural conditions area. The scenario simulation of the ecological recovery mode (scenario II) shows that the decrease trend of the Suaeda marsh area will be slow, and the area of the Suaeda marsh will increased by10.67times compared to scenario I in the artificial management area under the removal of the dam's influence to2020. Under the scenario of the artificial restore area, the area of reed swamp will increase3.53%, and the area of the Suaeda marsh will increase150.07%compared to scenario I, the area of the Spartina marsh will decrease by7.90%compared to scenarios I in the natural condition to2020. The scenario simulation of protecting the local species Suaeda mode (scenario III) shows that controlling the expansion of the Spartina landward to2020, the area of the Suaeda marsh in human management areas and natural conditions will be3.26times and5.46times compared with scenario I. If removal the scenario of the Spartina mash, the area of the Suaeda marsh are7.24times and20.65times compared with scenario I in human management areas and natural conditions, respectively.
引文
[1]陆健健,何文珊,童春富,等.湿地生态学[M].北京:高等教育出版社,2006
    [2]刘红玉,李玉凤,曹晓,等.我国湿地景观研究现状,存在的问题与发展方向[J].地理学报,2009,64(11):1394-1401.
    [3]杜国云,王庆,王秋贤,等.莱州湾东岸海岸带陆海相互作用研究进展[J].海洋科学,2007,31(3):66-71.
    [4]牛文元.生态环境脆弱带(ECOTONE)的基础判断[J].生态学报,1989,(9):2-8.
    [5]钦佩,左平,何祯祥.海滨系统生态学[M].北京:化学工业出版社,2004
    [6]杨红生,刑军武.试论我国滩涂资源的持续利用[J].世界科技研究与发展,2002,24(1):47-51
    [7]钦佩.滨海湿地生态系统的热点研究[J].湿地科学,2006,2(1):7-11
    [8]杨桂山.中国海岸环境变化及其区域响应[M].北京:高等教育出版社,2002
    [9]江苏省GEF湿地项目办公室.盐城海滨湿地生态价值评估及政策法律、土地利用分析[M].南京:南京师范大学出版社,2008
    [10]刘青松,李杨帆,朱晓东.江苏盐城自然保护区滨海湿地生态系统的特征与健康设计[J].海洋学报,2003,25(3):143-148
    [11]何文珊.中国滨海湿地[M].北京:中国林业出版社,2008
    [12]李加林,张忍顺,王艳红,等.江苏淤泥质海岸湿地景观格局与景观生态建设[J].地理与地理信息科学,2003,19(5):86-90.
    [13]张树清.3S支持下的中国典型沼泽湿地景观时空动态变化研究[M].长春:吉林大学出版社,2008
    [14]洪荣标.海滨湿地入侵植物的生态经济和生态安全管理—以福建海滨湿地的互花米草为例[D].福建农业大学博士学位论文,2005
    [15]欧维新,杨桂山,李恒鹏,等.苏北盐城海岸带景观格局时空变化及驱动力分析[J].地理科学,2004,24(4):610-615
    [16]王夫强,柯长青.盐城海岸带湿地景观格局变化研究[J].海洋湖沼通报,2008,(4):7-12
    [17]邬建国.景观生态学(第二版)[M].北京:高等教育出版社,2007
    [18]肖笃宁,李秀珍,高峻,等.景观生态学[M].北京:科学出版社,2003
    [19]张曼胤.江苏盐城滨海湿地景观变化及其对丹顶鹤生境的影响[D].东北师范大学博士学位论文,2008
    [20]白军红,欧阳华,杨志峰,等.湿地景观格局变化研究进展[J].地理科学进 展,2005,24(4):36-44
    [21]Gagliano S, Meyer Arendt K, Wicher. Land loss in the Missippi River Deltaic plain. Tramsactions Gulf Coast[J]. Association of Geological Societies,1981, (31):295-300
    [22]Baumann R H, Turner R E. Direct impacts of outer continental shelf activities on wetland loss in the central Gulf of Mexico[J].Environmental Geology and Water Resources, 1990, (15):189-198.
    [23]Maining J K, Marsh S E.Assessment of environment impacts of river basin development on The riverine forests of eastemKenya using multi-temporal satellite data.int. [J]. Remote Sensing,2001,22(14):2701-2729.
    [24]Fromard F, Vega C, Proisy C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana.A case study based on remote sensing data analyses and field surveys[J]. Marine Geology,2004(208):265-280.
    [25]Kelly N M. Changes to the Landscape Pattern of Coastal North Carolina Wetlands Under the Clean Water Act,1984-1992[J]. Landscape Ecology,2001, (16):3-16.
    [26]Fernando A P, Arturo R L, John T. Land cover changes and impact of shrimp aquacul-ture on the landscape in the Ceuta coastal lagoon system, Sinaloa, Mexico[J]. Ocean & Coastal Management,2003, (46):583-600
    [27]杨帆.基于RS和GIS的辽东湾滨海湿地景观动态变化研究[D].大连海事大学,2007
    [28]王宪礼,肖笃宁,布仁仓.辽河三角洲湿地景观变化分析[J].地理科学,1996,16(3):260-264
    [29]王宪礼,布仁仓,胡远满,等.辽河三角洲湿地的景观破碎化分析[J]应用生态学报,1996,7(3):299-304
    [30]李加林,赵寒冰,曹云刚,等.辽河三角洲湿地景观空间格局变化分析[J],城市环境与城市生态,2006,19(2):5-7
    [31]丁亮,张华,孙才志.辽宁省滨海湿地景观格局变化研究[J],湿地科学,2008,6(1):7-12
    [32]肖笃宁,李晓文,王连平.辽东湾滨海湿地资源景观演变与可持续利用[J].资源科学,2001,20(2):31-16.
    [33]李胜男,王根绪,邓伟,等.水沙变化对黄河三角洲湿地景观格局演变的影响[J].水科学进展,2009,20(3):325-331
    [34]王瑞玲,黄锦辉,韩艳丽,等.黄河三角洲湿地景观格局演变研究[J].人民黄河,2008,30(10):14-17
    [35]王薇,陈为峰,王燃藜,等.黄河三角洲新生湿地景观格局特征及其动态变化[J].水土保持研究,2010,17(1):82-87
    [36]刘艳芬,张杰,马毅,等。1995-1999年黄河三角洲东部自然保护区湿地景观格局变化[J].应用生态学报,2010,21(11):2904-2911
    [37]Carreno M F, Esteve M A. Habitat changes in coastal wetlands associated to hydrologicalchanges in the watershed[J]. Estuarine, Coastal and Shelf Science,2008,(77): 475-483.
    [38]Shengnan L, Genxu W, Wei D, et al. Influence of hydrology process on wetland landscape pattern:A case study in the Yellow River Delta[J].Ecological Engineering, 2009,(35):1719-1726
    [39]Gregory L B, Gwen D.Phosphorus sorption dynamics of Hawaii s coastal wetlands [J]. Estuaries and Coasts,2009, (32):844-854.
    [40]左平,李云,赵书河,等.1976年以来江苏盐城滨海湿地景观变化及驱动力分析[J],海洋学报,2012,34(1):101-108
    [41]沈永明.江苏沿海淤泥质滩涂景观生态特征及其演替[J].南京晓庄学院学报,2005,21(5):98-102
    [42]李杨帆,朱晓东,邹欣庆,等.江苏盐城海岸湿地景观生态系统研究[J].海洋通报,2005,24(4):46-51
    [43]刘春悦,张树清,江红星,等.江苏盐城滨海湿地景观格局时空动态研究[J].国土资源遥感,2009(3):78-83
    [44]刘春悦,张树清,江红星,等.江苏盐城滨海湿地外来种互花米草的时空动态及景观格局[J].应用生态学报,2009,204(4):901-908
    [45]丁晶晶,王磊,季永华,等.江苏省盐城海岸带湿地景观格局变化研究[J].湿地科学,2009,7(3):202-207
    [46]丁晶晶,王磊,邢伟,等.基于RS和GIS的盐城海岸带湿地景观格局变化及其驱动力研究[J].江苏林业科技,2009,36(6):18-21
    [47]赵玉灵,郁万鑫,聂洪峰.江苏盐城湿地遥感动态监测及景观变化分析[J].国土资源遥感,2010,(86):185-190
    [48]闫文文,谷东起,吴桑云,等.盐城滨海湿地景观变化分段研究[J].海岸工程,2011.30(1):68-78
    [49]孙贤斌,刘红玉,傅先兰.土地利用变化对盐城自然保护区湿地景观的影响[J].资源科学,2010,32(9):1741-1745
    [50]闫淑君,洪伟,吴承祯,等.闽江口琅岐岛湿地景观格局变化研究[J].湿地科 学,2010,8(3):287-292
    [51]高义,苏奋振,孙晓宇,等.珠江口滨海湿地景观格局变化分析[J].热带地理,2010,30(3):215-226
    [52]索安宁,于永海,韩富伟.辽河三角洲盘锦湿地景观格局变化的生态系统服务价值响应[J].生态经济,2011,(6):147-151
    [53]张绪良,张朝晖,徐宗军,等.莱州湾南岸滨海湿地的景观格局变化及累积环境效应[J].生态学杂志,2009,28(12):2437-2443
    [54]吴曙亮,蔡则健.江苏沿海滩涂资源及发展趋势遥感分析[J].海洋通报,2003,22(2):60-68
    [55]刘永学,陈君,张忍顺,等.江苏海岸盐沼植被演替的遥感图像分析[J].农村生态环境,2001,17(3):39-41
    [56]张学勤,王国祥,王艳红,等.江苏盐城沿海滩涂淤蚀及湿地植被消长变化[J].海洋科学,2006,30(6):35-39.
    [57]崔丽娟,李伟,张曼胤,等.福建洛阳江口红树林湿地景观演变及驱动力分析[J].北京林业大学学报,2010,32(2):106-112
    [58]陈爽,马安青,李正炎,等.基于RS/GIS的大辽河口湿地景观格局时空变化研究[J].中国环境监测,2011,27(3):4-8
    [59]田素娟,陈为峰,田素锋,等.基于RS和GIS的黄河口湿地景观变化研究[J].草业科学,2010,27(4):57-63
    [60]成遣,王铁良.辽河三角洲湿地景观动态变化及其驱动力研究[J].人民黄河,2010,32(2):8-9
    [61]张绪良,张朝晖,徐宗军,等.胶州湾滨海湿地的景观格局变化及环境效应[J].地质评论,2012,58(1):190-200
    [62]何桐,谢健,徐映雪,等.鸭绿江口滨海湿地景观格局动态演变分析[J].中山大学学报(自然科学版),2009,48(2):113-118
    [63]杨帆,赵冬至,索安宁.双台子河口湿地景观时空变化研究[J].遥感技术与应用,2008,23(1):51-56
    [64]付春雷,宋国利,鄂勇.马尔科夫模型下的乐清湾湿地景观变化分析[J].东北林业大学学报,2009,37(9):117-119
    [65]刘键,陈尚,夏涛,等.黄河三角洲湿地景观格局变化及其对生态系统服务的影响[J].海洋科学进展,2008,26(4):464-470
    [66]张明祥,董瑜.双台河口自然保护区濒海湿地景观变化及其管理对策研究[J].地理科学,2002,22(1):119-122
    [67]陈鹏.厦门滨海湿地景观格局变化研究[J].生态科学,2005,24(4):359-363
    [68]贾宁,筒建勋,尹占娥,等.长江口湿地景观镶嵌结构演变的数量特征与分形分析[J].资源调查与环境,2005,26(1):71-78
    [69]郑彩红,曾从盛,陈志强,等.闽江河口区湿地景观格局演变研究[J].湿地科学,2006,4(1):29-35
    [70]宗秀影,刘高焕,乔玉良,等.黄河三角洲湿地景观格局动态变化分析[J].地球信息科学,2009,11(1):91-97
    [71]杨敏,刘世梁,孙涛,等.黄河三角洲湿地景观边界变化及其对土壤性质的影响[J].湿地科学,2009,7(1):67-74
    [72]李婧,王爱军,李团结.近20年来珠江三角洲滨海湿地景观的变化特征[J].海洋科学进展,2011,29(2):170-178
    [72]谷东起,赵晓涛,夏东兴,等.基于3S技术的朝阳港湖湿地景观格局演变研究[J].海洋学报,2005,27(2):91-97
    [73]李峥.湿地景观类型时空演变分析系统研究[J].林业勘察设计,2010,(2):96-99
    [74]吕一河,陈利顶,傅伯杰.景观格局与生态过程的耦合途径分析[J].地理科学进展,2007,26(3):1-10
    [75]胡巍巍,王根绪,邓伟.景观格局与生态过程相互关系研究进展[J].地理科学进展,2008,27(1):18-24
    [76]ZhenGuo N, Peng G, Xiao C, et al. Geographical characteristics of China's wetlands derived from remotely sensed data[J]. Science in China Series D:Earth Sciences,2009, 52(6):723-738
    [77]Gustafson E J. Quantifying landscape spatial pattern:What is the state of the art [J] Ecosystems[J],1998,(1):143-156
    [78]Ledoux L N, Beaumont R, Cave R K. Scenarios for integrated river catchment and coastalzone management[J]. Region Environ Change,2005, (5):82-96
    [79]Ryan S K, William V D, Threshold Effects of Coastal Urbanization on Phragmites australis (Common Reed) Abundance and Foliar Nitrogen Chesapeake Bay. Estuaries and Coasts,2007,30(3):469-481
    [80]Herminia I V. Coastal dynamics and wetlands stability. The Ebro delta Case[J]. Hydrobiologia,2007, (577):17-29
    [81]Mirela G T, Carol A J. Environmental Conditionss Promoting Non-native Phragmites australis Expansion in Great Lakes Coastal Wetlands[J]. Wetlands,2010,(30):577-587
    [82]Mesldard P, Grillas, Lepart J. Plant community succession in a coastal wetland after abandonment of cultivation:the example of the Rhone delta. Vegetatio[J],1991,(94):35-45
    [83]Miguel A G, Robert G L. Yearal Dynamics in Dissolved Organic Carbon Concentrations in a Coastal Water-Table Aquifer at the Forest-Marsh Interface [J]. Aquatic Geochemistry,2005, (9):209-232.
    [84]Martin S B, Shaffer G P. Sagittaria Biomass Partitioning Relative to Salinity,Hydrologic Regime, and Substrate Type:Implications for Plant Distribution Patterns in Coastal Louisiana, United States[J].Journal of Coastal Research, 2005,21(1):167-174.
    [85]Watt, Garci-Berthou H N, Vilar L. The influence of water level and salinity on plant assemblages of a yearally ooded Mediterranean wetland [J].Plant Ecol,2007,(189):71^85
    [86]Williams K, Ewel K C, Stumpe R P, et al. Sea-level rise and coastal forest retreat on the west coast of Florida,USA[J].Ecology,1999,80(6):2045-2063
    [87]Mckellar H N, Tussord D L, Alford M C. Tidal Nitrogen Exchanges Across a Freshwater WetlandSuccession Gradient in the Upper Cooper River, South Carolina[J]. Estuaries and Coasts,2007,30(6):989-1006.
    [88]Gerardo M E P, Eric W, Donald R C, et al. Coastal Wetlands:An Integrated Ecosystem Approach[J]. Elsevier,2009
    [89]Christopher G B, John W D, Robert R L, et al. Primary production, nutrient dynamics, and accretion of a coastal freshwater forested wetland assimilation system in Louisiana[J]. Ecological Engineering,2008,(3\4):7-22
    [90]Wilcox D A, Thompson T A, Booth R K, et al. Lake-level variability and water availability in the Great Lakes[J].USGS Circular,2007:25-25
    [91]李华,杨世伦.潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J].地球科学进展,2007,22(6):583-592
    [92]张忍顺.苏北废黄河三角洲及滨海平原的成陆过程[J].地理学报,1984,39(2):173-184
    [93]朱大奎,高抒.潮滩地貌与沉积的数学模型[J].海洋通报,1985,4(5):15-21
    [94]江红星,楚国忠,侯韵秋.江苏盐城黑嘴鸥的繁殖栖息地选择[J].生态学报,2002,22(7):999-1004
    [95]马志军,李文军,王子健.丹顶鹤的自然保护、行为生态、生境选择、保护区规划、可持续发展[M].清华大学出版社,2000.
    [96]沈永明,刘咏梅,陈垒站.江苏沿海互花米草盐沼扩展过程的遥感分析[J].植物资源与环境学报,2002,11(2):33-38
    [97]崔保山,赵欣胜,杨志峰,等.黄河三角洲芦苇种群特征对水深环境梯度的响应[J].生态学报,2006,26(5):1533-1541
    [98]张绪良,叶思源,印萍.黄河三角洲自然湿地植被的特征及演化[J].生态环境学报,2009,18(1):292-298
    [99]崔保山,杨志峰.湿地生态系统模型研究进展[J].地球科学进展,2001,16(3):352-358.
    [100]毛志刚,王国祥,刘金娥,等.盐城海滨湿地盐沼植被对土壤碳氮分布特征的影响[J].应用生态学报,2009,20(2):293-297
    [101]姚成,万树文,孙东林,等.盐城自然保护区海滨湿地植被演替的生态机制[J].生态学报,2009,29(5):2203-2210
    [102]任丽娟,王国祥,仇乐,等,江苏潮滩湿地不同生境互花米草形态与生物量分配特征[J].生态与农村环境学报,2010,26(3):220-226
    [103]仲崇庆,王进欣,邢伟,等.不同植被和水文条件下苏北盐沼土壤TN、TP和OM剖面特征[J].北京林业大学学报,2010,32(3):186-190
    [104]沈永明,曾华,王辉,等.江苏典型淤长岸段潮滩盐生植被及其土壤肥力特征[J].生态学报,2005,25(1):1-6
    [105]徐伟伟,王国祥,刘金娥,等.苏北海滨湿地互花米草无性分株扩张能力[J].生态与农村环境学报2011,27(2):41-47
    [106]张忍顺,沈永明,陆丽云,等.江苏沿海互花米草盐沼的形成过程[J].海洋与湖沼,2005,36(4):358-366
    [107]戴祥,朱继业,窦贻俭.中外大河河口湿地保护与利用初探[J].环境科学与技术,2001,24(增刊):11-14.
    [108]Gesche K, Cidiane S. Analysis of beach morphodynamics on the Bragantinian mangrove peninsula (Para', North Brazil) as prerequisite for coastal zone management recommendations [J]. Geomorphology,2004, (60):225-239
    [109]徐中民,焦文献,谢永成,等.景观模拟模型-空间显示的动态方法[M].郑州:黄河水利出版社,2006
    [110]Costanza R, Sklar F H, White M L. Modeling coastal landscape dynamics[J]. BioScience,1990, (40):91-107
    [111]Voinov A, Costanza R, Wainger L, et al. Patuxent landscape models:intergrated ecological economic modeling of a watershed [J]. Ecological Modelling and Software, 1999, (14):473-491
    [112]Clarke K C. Loose-coupling a cellular automation model and GIS:Long-term urban growth prediction for San Francisco and Washington Baltimore[J].Geographical Information Science,1998,12(7):577-593.
    [113]徐延达,傅伯杰,吕一河.基于模型的景观格局与生态过程研究[J].生态学报,2010,30(1):212-220
    [114]Baker W L.A review of models of landscape change[J]. Landscape Ecology,1989, 2(2):111-133
    [115]Shugart H H. Terrestrial Ecosystems in Changing Encironments[J]. Cambridge: Cambridge University Press,1998
    [116]Levin S A, Paine R T. Disturbance, patch formation and community structure[J]. Proceedings of the National Academy of Science, USA,1974, (71):2744-2747
    [117]Burrough P, McDonnell R A. Principles of Geographical Information Systems[M]. Oxford:Oxford University Press,1998
    [118]Acevedo M F, Urban D L, Ablan M. Transition and gap models of forest dynamics[J]. Ecological Applications,1995,5(4):1040-1055
    [119]Hobbs R J. Dynamics of vegetation mosaics:Can we predict response to global change[J]. Ecoscience,1994,(1):346-356
    [120]Turner M G Spatial simulation of landscape changes in Georgia:A comparison of 3 transition models[J]. Landscape Ecology,1987,(l):29-36
    [121]Aaviksoo K.Simulating vegetation dynamics and land use in a mire landscape using a Markov model. Landscape and Urban Planning,1995(31):129-142.
    [122]王学雷,吴宜进.马尔科夫模型在四湖地区湿地景观变化研究中的应用[J].华中农业大学学报,2002,21(3):288-291
    [123]宁龙梅,王学雷,胡望斌.利用马尔科夫过程模拟和预测武汉市湿地景观的动态演变[J].华中师范大学学报(自然科学版),2004,38(2):255-258
    [124]韩文权,常禹.景观动态的Markov模型研究[J].生态学报,2004,24(9):1958-1969
    [125]郝敬锋,刘红玉,李玉凤,等.基于转移矩阵模型的江苏海滨湿地资源时空演变特征及驱动机制分析[J].自然资源学报,2010,25(11):1918-1929
    [126]傅伯杰,陈利顶,马克明,等.景观生态学原理及应用[M].北京:科学出版社,2001
    [127]Balzter H, Braun P W, Kohler W. Celluar automata models for vegetation dynamics[J]. Ecological Modelling,1998,(107):113-125
    [128]Clarke K C, Hoppen S, Gaydos L. A self-modifying cellular automaton model of historical urbanization in the San Francision Bay area[J]. Environment and Planning B: Planning and Design,1997,(24):247-261
    [129]Mundia, C. N, Aniya M. Dynamics of landuse/cover changes and degradation of Nairobi City, Kenya[J]. Land Degradation and Development,2006,(17):97-108.
    [130]黎夏,叶嘉安.基于神经网络的元胞自动机及模拟复杂土地利用系统[J].地理研究,2005,24(1):19-27
    [131]苏伟,陈云浩,武永峰等生态安全条件下的土地利用格局优化模拟研究[J].自然科学进展,2006,16(2):207-214
    [132]孙贤斌.江苏盐城海滨湿地景观变化过程及其对保护区的影响研究[D].南京师范大学,2009
    [133]柯长青,欧阳晓莹.基于元胞自动机模型的城市空间变化模拟研究进展[J].南京大学学报(自然科学),2006,42(1):103-110
    [134]秦向东,闵庆文.元胞自动机在景观格局优化中的应用[J].资源科学,2007,29(4):85-91
    [135]Bolliger J, Lischke H, Green D G. Simulating the spatial and temporal dynamics of landscapes using generic and complex models[J]. Ecological Complexity,2005,2 (2):107-211.
    [136]Schroder B, Seppelt R. Analysis of pattern process interactions based on landscape models overview, general concepts, and methodological issues[J]. Ecological Modelling, 2006,199 (4):505-251
    [137]Fitz H C,Sklar F H. Ecosystem analysis of phosphorus impacts and altered hydrology in the Everglades:a landscape modeling approach, in Phosphorus Biogeochemistry in Subtropical Ecosystems[J]. Lewis Publishers, Boca Raton, FL,1999:585-620.
    [138]Jocelyn L A, Steven J H, James D W. Simulating land use alternatives and their impacts on a desert tortoise population in the mojave desert,California [J].Ecological Modelling and Software,2006,(15):483-501
    [139]Robert M S, James B D, Brian R S, et al. Design, development, and application of LANDIS-Ⅱ, a spatial landscape simulation model with exible temporal and spatial resolution[J]. Ecological Modelling,2007,20 (1):409-419.
    [140]James D A, John W, George L W, et al. Modelling mediterranean landscape succession-disturbance dynamics:A landscape re-succession model[J]. Ecological Modelling,2009, (24):1196-1208.
    [141]Stefan K, Jorg J, Axel B. Modelling the impacts of land-use and drainage density on the water balance of a lowland-oodplain landscape in northeast Germany[J]. Ecological Modelling,2007, (200):475-492.
    [142]Francois G. Modelling vegetation dynamics in heterogeneous pasture-woodland landscapes[J]. Ecological Modelling,2008, (217):1-18.
    [143]Fitz H C, DeBellevue E B, Costanza R, et al. Development of a general ecosystem model for a range of scales and ecosystems[J].Ecological Modelling,1996,(88):263-295.
    [144]李秀珍,肖笃宁,胡远满,等.湿地养分截留功能的空间模拟Ⅱ-模型的完善和应用[J].生态学报,2002,22(4):486-495
    [145]胡远满,徐崇刚,常禹,等.空间直观景观模型LANDIS在大兴安岭呼中林区的应用[J].生态学报,2004,24(9):1846-1856
    [146]张怀清,唐晓旭,刘锐,等.盐城湿地类型演化预测分析[J].地理研究,2009,28(6):1713-1720
    [147]王树功,陈新庚.广东省滨海湿地的现状与保护[J].重庆环境科学,1998,20(1):4-7
    [148]王自磬.浙江省滨海湿地生态结构与经济功能分析[J].东海海洋,2001,19(4):51-57
    [149]张晓龙,李培英,李萍,等.中国滨海湿地研究现状与展望[J].海洋科学进展,2005,23(1):87-95
    [150]陆健健.中国滨海湿地的分类[J].环境导报:1996(1):1-2
    [151]张忍顺,陆丽云,王艳红.江苏海岸侵蚀过程及其趋势[J].地理研究,2002,21(4):469-478
    [152]王颖,朱大奎.中国的潮滩[J].第四纪研究,1990,(4):291-299
    [153]陈洪全.滩涂生态系统服务功能评估与垦区生态系统优化研究[D].南京师范大学博士论文,2006
    [154]戴科伟.江苏盐城湿地珍禽国家级自然保护区生态安全研究[D].南京师范大学博士论文,2006
    [155]季子修,蒋自翼,朱季文,等.海平面上升对长江三角洲和苏北滨海平原海岸侵蚀的可能影响[J].地理学报,1993.48(6):156-526
    [156]季子修,蒋自翼,朱季文,等.海平面上升对长江三角洲附近沿海潮滩和湿地的影响[J].海洋与湖沼,1994,25(6):582-590
    [157]陈才俊,灌河口至长江口海岸淤蚀趋势[J].海洋科学,1990,(3):11-16
    [158]徐汉炎,王效平,蒋炳兴.盐城海涂[M].北京:海洋出版社,1992
    [159]夏东兴,王文海,武桂秋,等.中国海岸侵蚀述要[J].地理学报,1993,48(5):468-476
    [160]Warrick R A,Oerlemans H. Sea level rise. Climate Change-the IPCC Scientific Assessment[M].Cambridge University Press,1990
    [161]王颖,王小银.海平面上升与海滩侵蚀[J].地理学报,1995,50(2):118-127
    [162]李杨帆,朱晓东.江苏海岸潮滩沉积环境及其可持续利用问题[J].江苏地质,2003,27(4):203-206
    [163]刘广明,杨劲松,姜艳.江苏典型滩涂区地下水及土壤的盐分特征研究[J].土壤,2005,37(2):163-168
    [164]盐城统计局,盐城统计年鉴2011[M].北京:中国统计出版社,2012
    [165]伍蓝.基于ALOS等数据的盐城湿地植被分类及土地覆盖时空变化研究[D].南京师范大学,2008
    [166]刘红玉.湿地景观变化与环境效应[M].北京:科学出版社,2005
    [167]宫兆宁,张翼然,宫辉力,等.北京湿地景观格局演变特征与驱动机制分析[J].地理学报,2011,66(1):77-88
    [168]袁红伟,李守中,郑怀舟,等.外种互花米草对中国海滨湿地生态系统的影响评价及对策[J].海洋通报,2009,28(6):122-128
    [169]杨艳丽,史学正,于东升,等.区域尺度土壤养分空间变异及其影响因素研究[J].地理科学,2008,28(6):788-792
    [170]徐建华,现代地理学中的数学方法[M].高等教育出版社,2002
    [171]曾辉,郭庆华,刘晓东.景观格局空间分辨率效应的实验研究-以珠江三角洲东部地区为例[J],北京大学学报(自然科学版),1998,34(6):820-826
    [172]申卫军,邬建国,任海,等.空间幅度变化对景观格局分析的影响[J].生态学报,2003,23(11):2219-2231
    [173]申卫军,邬建国,林永标,等.空间粒度变化对景观格局分析的影响[J].生态学报,2003,23(12):2506-2519
    [174]张东水,兰樟仁,邱荣祖.闽江口湿地遥感影像最佳景观观察尺度的选择,遥感信息[J].2006(4):29-32
    [175]Landis J R, Koch G G. The measurement of observer agreement for Gategorical[J]. Biometrics,1997,(33):159-174
    [176]Monserud R A, Leemans R. Comparing global vegetation maps with the Kappa statistic[J].Ecological Modelling.1992.(62):275-292
    [177]布仁仓,常禹,胡远满,等.基于Kappa系数的景观变化测度-以辽宁省中部城市群为例[J].生态学报,2005,25(4):778-784
    [178]邵秋玲.谢小丁.张方申,等.盐地碱蓬人工栽培与品系选育初报[J].中国生态农 业学报,2004,12(1):47-49
    [179]钱兵,顾克余,赫明涛,等.盐地碱蓬及其人工栽培[J].蔬菜,2000,(12):34-35
    [180]张跃林.碱蓬人工栽培技术[J].中国果菜,2006,(3):23-23
    [181]吕士成.盐城沿海丹顶鹤种群动态与湿地环境变迁的关系[J].南京师大学报(自然科学版),2009,32(4):89-93.
    [182]丁海荣,洪立洲,杨智青,等.盐生植物碱蓬及其研究进展[J].江西农业学报,2008,20(8):35-37
    [183]马德滋,刘惠兰.宁夏植物志[M].银川:宁夏人民出版社,1986:256-258
    [184]孟庆峰,杨劲松,姚荣江,等.碱蓬施肥对苏北滩涂盐渍土的改良效果[J].草叶科学,2012,29(1):1-8
    [185]张学杰,范守金,李法曾.中国碱蓬资源的开发利用状况[J].中国野生植物资源,2003,22(2):1-3
    [186]毛培利,成文连,刘玉虹,等.滨海不同生境下盐地碱蓬生物量分配特征研究[J].生态环境学报2011,20(8\9):1214-1220
    [187]张立宾,徐化凌,赵庚星.碱蓬的耐盐能力及其对滨海盐渍土的改良效果[J].土壤,2007,39(2):310-313.
    [188]钦佩,赵福庚,田家怡,等.互花米草的生态控制与综合利用研究[J],中国高校科技与产业化,2010(1\2):84-84
    [189]李贺鹏,张利权.外来植物互花米草的物理控制实验研究[J].华东师范大学学报(自然科学版),2007(6):44-55
    [190]管伟,廖宝文,邱凤英,等.利用无瓣海桑控制入侵种互花米草的初步研究[J].林业科学研究,2009,22(4):603-607

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700