用户名: 密码: 验证码:
南极无冰区和近海磷的生物地球化学循环
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物质流是生态系统的基本功能之一,物质的流动是循环的,属于生物地球化学循环。1991年开始正式实施的国际地圈-生物圈计划(IGBP)就侧重研究物质的生物地球化学循环,其目标就是为了阐述、了解控制地球系统及其演化的相互作用的物理、化学和生物过程,以及了解人类活动在其中所起的作用。
     磷是基本生源要素之一,磷循环一般起始于岩石风化,终止于水中沉积物,因而是属于沉积型循环;磷循环周期非常漫长,沉积在水中沉积物的磷难以及时返回陆地,因而,磷循环也是不完全的循环。目前,不少研究者对21世纪全球可能产生的磷匮乏表示担忧。海洋沉积物是非常巨大的磷库,海洋中的磷可以通过海平面上升、海水上涌、捕捞鱼虾和鸟类转移等方式返回陆地。但目前对磷返回陆地的机理及量的研究还比较有限。
     海-陆生态系统间的作用是相互的。南极企鹅、海豹等海洋生物以南大洋中磷虾、鱼类等为食物,在无冰区繁殖、栖息期间会以粪便、死亡残体、蛋卵等形式转移大量的海洋来源磷到陆地,因此,本文拟以南极为研究区域,研究封闭和开放尺度下南极无冰区和近海磷的生物地球化学循环。涉及的内容摘要如下:
     1)通过食物链,磷在南大洋不同营养环节中得到了富集,生物及其粪便对磷的富集系数可高达1.59×104-3.58×106。企鹅是南极数量最多的海鸟类群。我们选择南极洲三个重要的企鹅聚居地,对企鹅以粪便形式转移的磷的量进行了估算,结果表明,阿德雷岛、西福尔丘陵、罗斯岛成年企鹅以粪便形式转移海洋中的磷的量可分别达:12349kg/y,167036kg/y和24200kg/y。它相当于一年中有5.77×1012-2.37×1013kg海水中的磷输入到陆地,从而维持了南极无冰区生态系统的多样性。然后,讨论了生物转移量的不确定因素,如气候、环境、人类干扰、食物可利用性等。
     2)利用电感耦合等离子体发射光谱仪(ICP-OES)测定了南极中山站地区四个点位苔藓植物及其下覆砂土样品中Fe、Mg、P、Mn、Cu、Zn、Sr、Ni和Pb的元素含量,探讨了不同生境苔藓植物的元素含量特征及其与环境的关系。结果表明,四个点位苔藓、下覆砂土元素含量具有一定的差异性,均以Fe含量最高,四个点位均值分别为10014.73mg/kg、24405.48mg/kg,其次是Mg,而其他八个元素在苔藓和下覆砂土中含量大小顺序不一致。本文进一步分析了苔藓植物元素含量与下覆砂土、海拔高度、海鸟活动、海洋环境以及人类活动之间的关系。最后,对苔藓与下覆砂土元素之间的相关性进行了讨论。
     3)应用淡水沉积物磷形态标准测试程序(SMT法)调查了西南极阿德雷岛2个柱状沉积物磷的存在形态和分布特征,结合苔藓植物和企鹅粪无机磷和有机磷占总磷的百分比,分析了两个剖面物质来源、各形态磷之间以及与沉积物烧失量(LOI550℃)、含水率、TC、TN之间的相关性,并讨论磷的潜在生物可利用性。
     结果表明,苔藓植物无机磷(IP)占总磷(TP)的比例较低(28.71%)。两个剖面都受到苔藓和企鹅输入的影响,G1剖面企鹅输入比例(95.05%)大于Q2剖面(90.99%)。G1、Q2剖面总磷(TP)含量分别为1032-4898mg/kg和960-2127mg/kg,IP是两个柱状沉积物中的主要部分。但是,两个剖面各个形态P分布及变化趋势是不一致的,各个磷形态之间以及磷形态与烧失量、含水率、TC、TN相关性也存在差异。经估算,G1和Q2剖面生物可利用性磷(BAP)的含量均值分别为1322.17mg/kg和683.51mg/kg,因而,G1剖面磷的潜在生物可利用性较高,向水体释放磷的潜力大,这对维持南极无冰区贫瘠的生态系统生物多样性等具有非常重要的意义。
     4)以西南极法尔兹半岛为例,对企鹅、海豹传输的营养物质磷在陆地、淡水生态系统中的记录进行了分析研究,结果表明,海洋动物输入的营养物质磷一般会增加土壤、植物、水体及沉积物等环境介质磷含量。
     5)以南极近海阿德雷岛为例,研究了磷的生物地球化学循环过程及其机理,估算了磷循环通量。结果表明,南极无冰区和近海磷的生物地球化学循环主要包括了磷在海洋-陆地-淡水湖泊/溪流-海洋的迁移过程。在该岛,磷的外来营养源包括物理输入、生物输入和大气沉降输入3种,其中生物输入(企鹅粪)占94.34%-99.74%,居于主导地位。磷的输出方式包括大气输出、物理输出(水流和风的输出),其中,以水流方式输出的物质的量较大。此外,以生物方式输入的磷在南极无冰区的保存量约为1358.39kg/y,其余则输入到近海中。
     本文创新点如下:
     1)首次从封闭和开放尺度上研究南极无冰区和近海磷的生物地球化学循环机制及循环通量,阐明了海洋向陆地的物质转移方式及其对无冰区生态系统的影响,以及陆地向海洋的物质转移方式及其对近海生态系统的影响,并从定量角度出发,明确企鹅转移的海洋来源的磷在南极无冰区和近海磷的生物地球化学循环中的重要作用。
     2)从南极苔藓植物、企鹅粪的无机磷和有机磷占总磷的比例出发,结合沉积物磷形态分析结果,从定量角度出发研究沉积物剖面物质来源,该方法可能是对利用有机地球化学方法分析企鹅和植物物质来源的有力补充。
One of the basic functions of the ecosystem is the material flow. Material flow is cycle, which belongs to the biogeochemical cycles. The formal implementation of the International Geosphere-Biosphere Programme (IGBP) in1991focuses on the biogeochemical cycles of material, and its goal is to illustrate the physical, chemical and biological processes which control of the earth system and its evolution of interacting, and to understand the function of human activity in the biogeochemical cycles of material.
     Phosphorus (P) is one of the basic biogenic elements. The cycle of P generally starts from the weathering of rocks and terminates in sediment. Thus, it belongs to the sedimentary cycle. Moreover, the period of P cycle is very long, so the deposition of P in the sediment is difficult in returning to the land timely. Thus, P cycle is also an incomplete cycle. Currently, many researchers have expressed worry about the global P scarcity in the21st century. The marine sediments have enormous P, which can return to land by sea level rise, upwelling seawater, commercial fishing and birds transfer. However, the study of the mechanism and the amount of P transfer from marine to the land is still limited.
     The marine ecosystem is dynamically interrelated with the terrestrial ecosystem. Antarctic penguins, seals and other marine organisms feed on the krill, fish and other foods in the Southern Ocean. When they breed regularly in the ice-free areas, they will transfer a large number of P in the form of gunao, debris, eggs, etc., from sea to land. Thus, this paper chooses Antarctica as study area, and focus on the closed and open scale of P biogeochemical cycles in the ice-free area and inshore zone. The contents are summarized as follows:
     1) In organisms (or guano) of different trophic levels, P content is enriched by as high as1.59×104-3.58×106times relative to the background value through the food chains of the Southern Ocean. Penguins are the largest number of seabirds in Antarctica. We chose three important colonies of penguins, the most important seabirds in Antarctica, and computed the annual quantity of P transferred by penguins from sea to land. Our results showed that adult penguins in Ardley Island, Vestfold Hills and Ross Island, could transfer in the form of guano up to12349kg/y,167036kg/y, and224200kg/y of P, respectively, over the entire breeding period. These quantities are equivalent of an annual input of5,77x1012-2.37×1013kg of seawater to land of Antarctica. Finally, we discussed in detail the factors of climate, environment, human disturbance, and food availability, etc., that impact of P transfer.
     2) This study focuses on the characteristic of elemental concentrations of moss, Andreaea Hedw and its relationships with different habitat environments at Zhongshan Station, East Antarctica. For this purpose, samples of moss and the underlying sand substrates from4sites around Zhongshan Station were collected and analyzed for the elemental concentrations of Fe、Mg、P、Na、Mn、Cu、Zn、Sr、 Ni and Pb. The elemental concentrations of mosses and sand substrates among the4sampling sites show some different characteristics. The average concentration of Fe in mosses and sands show highest level with10014.73mg/kg and24405.48mg/kg, respectively. Element Mg had the second highest mean concentration in both moss and sand, while the concentrations of the other8elements were inconsistent between moss and sand. Moreover, the relationships between elemental concentrations in moss and its habitat environments such as sand substrate, altitude, seabird impact, marine influence as well as the anthropogenic factor were discussed. Finally, we analyzed the relationship among mosses and the sand substrates.
     3) Distribution and vertical variation of P forms in the sediment cores from two typical lakes of Ardley Island were studied, using the standard measurement and test (SMT) procedure of P forms for the freshwater sediment. Combined with the percentages of inorganic phosphorous (IP) and organic phosphorous (OP) to total P (TP) in mosses and penguin guano, we analyzed the sources of material in the two profiles, and studied the correlation coefficients among the forms of P. Moreover, the correlation coefficients between sediment P and the loss on ignition at550℃, water content, TC and TN. Finally, the potential bio-availability phosphorus (BAP) was discussed.
     The results showed that IP has smaller proportion (28.71%) to TP in mosses. The two profiles were both affected by moss and penguin guano, and G1was more strongly influenced by penguin (95.05%) than Q2(90.99%). The TP concentration of G1and Q2were1032-4898mg/kg and960-2127mg/kg, respectively, and IP was the main part of the two core sediments. However, the distribution and vertical variation of P forms in the two profiles were inconsistent. Besides, difference was obvious in the correlation coefficients between different P fractions and sediment geochemical characteristics (loss on ignition at550℃, water content, TC, TN) in the two studied profiles. Estimation showed that the average contents of bio-availability phosphorus (BAP) in Gl and Q2were1322.17mg/kg and683.51mg/kg. Thus, Gl profile had much higher BAP than Q2, and the potential release of P to water bodies was also higher, which would have extremely role in maintenance the biodiversity of barren Antarctic ice-free ecosystems.
     4) Taking the Fildes Peninsula in West Antarctica as an example, we investigated the records of P transported by penguins, seals in terrestrial and freshwater ecosystems. Results showed that the input of P by marine animals would generally increase the P content in soil, plants, water and sediments etc.
     5) Taking Ardley Island, the maritime Antarctic, for instance, we studied the transport process and mechanism of the biogeochemical cycling of P and estimated the fluxes of P cycle. Results showed that P biogeochemical cycle in Antarctica includes the migration and transformation of P in the sea-land-lakes/streams-sea. In this island, there were three ways of external input, including physical transport, bio-transport, and atmospheric deposition. Remarkably, the P transported by penguins in the form of guano accounted for94.34%-99.74%of the total P input, thus has the dominant role. The output ways of P included atmospheric output, physical output (that is, water and wind output), and the amount of material output by water was biggest among the three ways. In addition, the amount of P conserved on ice-free areas by bio-transport of P was about1358.39kg/y, and most of them were entering into offshore of Antarctica.
     The innovations are as follows:
     1) For the first time, we study the biogeochemical cycling mechanism and cycle flux of P in ice-free areas and inshore zone in Antarctica from the closed and open scale. Then, we illustrate the ways of material transferred from sea to land and the influences that material pose on ecosystems of ice-free areas. Also, the ways of material transport to inshore zone and its impacts on coastal ecosystems are also discussed. Finally, we explicitly explain the dominant role of penguin in the biogeochemical of P in ice-free area and inshore zone of Antarctica.
     2) Distinguish the proportion of IP and OP to TP in mosses and penguin guano, combined with the forms of P in sediments, we investigate the material sources in sediments. This method will be the powerful compliment to the way, which uses organic geochemistry in distinguishing the sources from penguins and plants.
引文
白军红,邓伟,朱颜明.2002.湿地生物地球化学过程研究进展.生态学杂志,21(1):53-57.
    蔡晓明.2001.生态系统生态学.北京,科学出版社.
    曹建华,李小波,赵春梅,蒋菊生,谢贵水.2007.森林生态系统养分循环研究进展.热带农业科学,27(6):68-79.
    陈永川,汤利.2005.沉积物-水体界面氮磷的迁移转化规律研究进展.云南农业大学学报,20(4):527-533.
    东野脉兴,樊竹青,张灼,夏学惠,田升平,周建民.2003.云南滇池微生物对磷循环与沉积作用的实验研究.化工矿产地质,25(2):65-75.
    东野脉兴.1996.湖泊中磷的循环与沉积作用.化工矿产地质,18(4):258-262.
    董哲仁,孙东亚,赵进勇,张晶.2010.河流生态系统结构功能整体性概念模型.水科学进展,21(04):550-559.
    高建华,欧维新,杨桂山.2004.潮滩湿地N、P生物地球化学过程研究.湿地科学,2(03):220-227.
    高拯民.1982.生态系统的能流与生物地球化学循环——环境科学的重要理论基础.生态学杂志,1:32-35.
    戈峰.2002.现代生态学.北京,科学出版社.
    耿元波,章申,董云社,孟维奇.2003.无牧草原生态系统营养元素的生物地球化学特征.应用生态学报,14(02):219-222.
    韩兴国,李凌浩,黄建辉.1999.生物地球化学概论.北京,高等教育出版社.
    侯立军,刘敏,许世远,欧冬妮,刘巧梅,刘华林,蒋海燕.2004.潮滩生态系统中生源要素氮的生物地球化学过程研究综述.地球科学进展,19(05):774-781.
    黄建辉,韩兴国.1995.森林生态系统的生物地球化学循环:理论和方法.植物学通报,12(生态学专辑):195-223.
    黄清辉,王东红,王春霞,马梅,王子健.2004.太湖梅梁湾和五里湖沉积物磷形态的垂向变化.中国环境科学,24(2):147-159.
    黄清辉,王子健.2006.淡水环境磷的生物有效性评估方法的发展动态.安全与环境学报,6(3):132-136.
    黄廷林,柴蓓蓓,邱二生,朱维晃.2010.水体-沉积物多相界面磷循环转化微生物作用实验研究.应用基础与工程科学学报,18(1):61-70.
    贾后磊,舒廷飞,温琰茂.2002.养殖水环境中磷的循环与平衡.水利渔业,22(1):37-39.
    蒋柏藩,顾益初.1989.石灰性土壤无机磷分级体系的研究.中国农业科学,22(3):58-66.
    李怀恩,胥彦玲,张强,倪永明.2006.黑河流域磷迁移转化过程连续模拟研究.环境科学,27(7):1292-1298.
    李悦,乌大年,薛永先.1998.沉积物中不同形态磷提取方法的改进及其环境地球化学意义.海洋环境科学,17(1):15-20.
    李长生.2001.生物地球化学的概念与方法二NDC模型的发展.第四纪研究,21(02):89-99.
    刘瑾,杨建军,梁新强,胡永峰,施积炎,陈英旭.2011.同步辐射X射线吸收近边结构光谱技术在磷素固相形态研究中的应用.应用生态学报,(10):2757-2764.
    刘世荣.1992.兴安落叶松人工林生态系统营养元素生物地球化学循环特征.生态学杂志,11(05):1-6.
    刘毅,陈吉宁.2006.滇池流域磷循环系统的物质流分析.环境科学,27(8):1549-1553.
    罗春燕,冀宏杰,张认连,雷秋良,龙怀玉.2009.有机废弃物的磷素形态研究进展.土壤通报,40(3):709-715.
    马敦超,胡山鹰,陈定江,李有润.2012.中国磷消费结构的变化特征及其对环境磷负荷的影响.环境科学,33(4):1376-1382.
    裴洪平,王维维,何金土,周宏.1998.杭州西湖引水后生态系统中磷循环模型.生态学报,18(6):648-653.
    彭奎,欧阳华,朱波.2005.农林复合生态系统氮素生物地球化学循环及其环境影响研究.中国生态农业学报,13(01):111-115.
    屈凡柱,于君宝,陈小兵,王永丽.2012.湿地土壤磷分级方法研究.土壤通报,43(01):243-248.
    任万平,李晓秀,张汪寿.2012.沉积物中磷形态及影响其释放的环境因素研究进展.环境污染与防治,34(9):53-60.
    宋金明.2000.海洋生物地球化学的产生与发展.世界科技研究与发展,22(3):72-74.
    孙宏发,刘占波,谢安.2006.湿地磷的生物地球化学循环及影响因素.内蒙古农业大学学报(自然科学版),27(01):148-152.
    孙儒泳,李庆芬,牛翠娟,娄安如.2002.基础生态学.北京,高等教育出版社.
    王惠,马振民,代力民.2007.森林生态系统硅素循环研究进展.生态学报,27(7):3010-3017.
    王涛,周健民,王火焰.2011.固体废弃物及土壤中磷的形态分析技术.土壤学报,48(1):185-191.
    王晓蓉,丁丽丽,牛晓君,任洪强.2003.磷化氢在湖泊磷生物地球化学循环中的作用.环境化学,22(5):485-489.
    王晓燕,阎恩松,欧洋.2009.基于物质流分析的密云水库上游流域磷循环特征.环境科学学报,29(7):1549-1560.
    王雨春,万国江.2000.红枫湖、百花湖沉积物中磷的存在形态研究.矿物学报,20(3):273-278.
    吴重华,王晓蓉,孙昊.1997.羊角月芽藻的生长与湖水中几种磷形态关系模型的建立.环境化学,16(4):341-347.
    熊汉锋,王运华.2005.湿地碳氮磷的生物地球化学循环研究进展.土壤通报,36(2):240-243.
    徐景琪.2010.太湖沉积物磷形态的空间分布研究.南京理工大学硕士学位论文.
    虞左明,王锐,沈小东,刘传芳,李瑾.1997.大红德永摇蚊种群生态在西湖氮磷循环中作用的调查研究.环境污染与防治,19(1):28-31.
    岳维忠,黄小平.2003.近海沉积物中氮磷的生物地球化学研究进展.台湾海峡,22(3):407-414.
    张林,吴宁,吴彦,罗鹏,刘琳,陈文年,胡红宇.2009.土壤磷素形态及其分级方法研究进展.应用生态学报,20(7):1775-1782.
    张玲,袁增伟,毕军.2009.物质流分析方法及其研究进展.生态学报,29(11):6189-6198.
    张绪良,谷东起,丰爱平,隋玉柱.2008.莱州湾南岸滨海湿地的氮、磷循环过程及调控对策.中国生态农业学报,16(5):1127-1133.
    张燕,孙英兰,袁道伟,余静,蔡惠文,张学庆.2007.胶州湾氮、磷浓度的三维数值模拟.中国海洋大学学报,37(1):21-26.
    赵琼,曾德慧.2005.陆地生态系统磷素循环及其影响因素.植物生态学报,29(1):153-163.
    周培疆,郑振华,余振坤,仇银燕,严国安,吴振斌.2001.普通小球藻生长与武汉东湖水体磷形态的相关研究.水生生物学报,25(6):571-575.
    周启星,黄国宏.2001.环境生物地球化学及全球环境变化.北京,科学出版社.
    周全来,蒋德明.2009.沙地土壤磷循环研究.生态学杂志,28(10):2117-2122.
    周志红.1996.农业生态系统中磷循环的研究进展.生态学杂志,15(5):62-66.
    庄亚辉.1997.全球生物地球化学循环研究的进展.地学前缘,4(1-2):163-168.
    Ashley K, Cordell D, Mavinic D.2011. A brief history of phosphorus:From the philosopher's stone to nutrient recovery and reuse. Chemosphere,84(6):737-746.
    Baturin GN.2003. Phosphorus cycle in the ocean. Lithology and Mineral Resources,38(2):101-119.
    Bowman R, Cole C.1978. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Science,125(2):95-101.
    Chang S, Jackson ML.1957. Fractionation of soil phosphorus. Soil Science,84(2):133.
    Cordell D, Drangert J-O, White S.2009. The story of phosphorus:Global food security and food for thought. Global Environmental Change,19(2):292-305.
    Cordell D.2010. The story of phosphorus:Sustainability implications of global phosphorus scarcity for food security. Doctoral thesis. Collaborative PhD between the Institute for Sustainable Futures, University of Technology, Sydney (UTS) & Department of Thematic Studies-Water and Environmental, Linkkping University, Sweden. No.509. Linkoping University Press, Linkoping. ISBN:9789173934404.
    Ellis JC, Farina JM, Witman JD.2006. Nutrient transfer from sea to land:the case of gulls and cormorants in the Gulf of Maine. Journal of Animal Ecology,75(2):565-574.
    Farina JM, Salazar S, Wallem KP, Witman JD, Ellis JC.2003. Nutrient exchanges between marine and terrestrial ecosystems:the case of the Galapagos sea lion Zalophus wollebaecki. Journal of Animal Ecology,72(5):873-887.
    Glindemann D, Stottmeister U, Bergmann A.1996. Free phosphine from the anaerobic biosphere. Environmental Science and Pollution Research,3(1):17-19.
    Golterman HL.1996. Fractionation of sediment phosphate with chelating compounds:a simplification, and comparison with other methods. Hydrobiologia,335(1):87-95.
    Guppy CN, Menzies NW, Moody PW, Compton BL, Blarney FP.2000. Analytical methods and quality assurance:A simplified, sequential, phosphorus fractionation method. Communications in Soil Science and Plant Analysis,31(11-14):1981-1991.
    Harrison SA.2006. The influence of seabird-derived nutrients on island ecosystems in the oligotrophic marine waters of south-western Australia. Graduate thesis abstract.
    He Z, Honeycutt CW, Griffin TS.2003. Comparative investigation of sequentially extracted phosphorus fractions in a sandy loam soil and a swine manure. Communications in Soil Science and Plant Analysis,34(11-12):1729-1742.
    Hedley M, Stewart J, Chauhan B.1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubation. Soil Science Society of America Journal,46:970-976.
    Hieltjes AHM, Lijklema L.1980. Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality,9(3):405-407.
    Holtan H, Kamp-Nielsen L, Stuanes A.1988. Phosphorus in soil, water and sediment:an overview. . Hydrobiologia,170(1):19-34.
    Huang T, Sun LG, Stark J, Wang YH, Cheng ZQ, Yang QC, Sun S.2011. Relative Changes in krill abundance inferred from Antarctic fur seal. PloS one,6(11):1-4.
    Hupfer M, Gachter R, Giovanoli R.1995. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Sciences-Research Across Boundaries,57(4): 305-324.
    Hupfer M, Lewandowski J.2008. Oxygen controls the phosphorus release from lake sediments-a long-lasting paradigm in limnology. International Review of Hydrobiology,93(4-5):415-432.
    Johnston JW, Bildstein KL.1990. Dietary salt as a physiological constraint in White Ibis breeding in an estuary. Physiological Zoology,63(1):190-207.
    Karl DM, Bjorkman KM.2001. Phosphorus cycle in seawater:dissolved and particulate pool inventories and selected phosphorus fluxes. Methods in Microbiology,30:239-270.
    Keatley BE, Douglas MSV, Blais JM, Mallory ML, Smol JP.2009. Impacts of seabird-derived nutrients on water quality and diatom assemblages from Cape Vera, Devon Island, Canadian High Arctic. Hydrobiogia,621:191-205.
    Kitchell JF, Schindler DE, Herwig BR, Post DM, Olson MH, Oldham M.1999. Nutrient cycling at the landscape scale:The role of diel foraging migrations by geese at the Bosque del Apache National Wildlife Refuge, New Mexico. Limnology and Oceanography,44(3):828-836.
    Maguire R, Sims JT, Dentel S, Coale F, Mah J.2001. Relationships between biosolids treatment process and soil phosphorus availability. Journal of Environmental Quality,-30(3):1023-1033.
    Michelutti N, Blais JM, Mallory ML, Brash J, Thienpont J, Kimpe LE, Douglas MSV, Smol JP. 2010. Trophic position influences the efficacy of seabirds as metal biovectors. Proceedings of the National Academy of Sciences,107(23):10543-10548.
    Michelutti N, Keatley BE, Brimble S, Blais JM, Liu H, Douglas MSV, Mallory ML, Macdonald RW, Smol JP.2009. Seabird-driven shifts in Arctic pond ecosystems. Proceedings of the Royal Society B:Biological Sciences,276(1656):591-576.
    Murphy RC.1981. The guano and the anchoveta fishery:John Wiley & Sons, New York NY.
    Naiman RJ, Bilby RE, Schindler DE, Helfield JM.2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems,5(4):399-417.
    Nedzarek A.2008. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarctic Science,20:135-145.
    Nedzarek A, Rakusa-Suszczewski S.2007. Nutrients and conductivity in precipitation in the coast of King George Island (Antarctica) in relation to wind speed and penguin colony distance. Polish Journal of Ecology,55:705-716.
    NystrSm KGK, Pehrsson O.1988. Salinity as a constraint affecting food and habitat choice of mussel-feeding diving ducks. Ibis,130(1):94-110.
    Odum EP, Barrett GW.2005. Fundamentals of Ecology. Fifth Edition.陆健健,王伟,王天慧,何文珊,李秀珍译.2009.北京:高等教育出版社.
    Paytan A, McLaughlin K.2007. The oceanic phosphorus cycle. Chemical Reviews,107(2):563-576.
    Polis GA, Anderson WB, Holt RD.1997. Toward an integration of landscape and food web ecology:the dynamics of spatially subsidized food webs. Annual Review of Ecology Systematics,28:289-316.
    Post DM, Taylor JP, Kitchell JF, Olson MH, Schindler DE, Herwig BR.1998. The role of migratory waterfowl as nutrient vectors in a managed wetland. Conservation Biology,12(4): 910-920.
    Psenner RV, Pucsko R, Sager M.1984. Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten-Versuch einer Definition okologisch wichtiger Fraktionen. Archiv Fiir Hydrobiologie Supplement,70:111-155.
    Qiao M, Zheng YM, Zhu YG.2011. Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere,84(6):773-778.
    Ruban V, Brigault S, Demare D, Philippe AM.1999. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France. Journal of Environmental Monitoring, 1(4):403-407.
    Ruban V, L6pez-Sanchez J, Pardo P, Rauret G, Muntau H, Quevauviller P.2001. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A synthesis of recent works. Fresenius'Journal of Analytical Chemistry,370(2):224-228.
    Ruttenberg KC 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography,37(7):1460-1482.
    Sanchez-Pinero F, Polis GA.2000. Bottom-up dynamics of allochthonous input:direct and indirect effects of seabirds on islands. Ecology,81(11):3117-3132.
    Schneider D, Duffy DC.1988. Historical variation in guano production from the Peruvian and Benguela upwelling ecosystems. Climatic Change,13(3):309-316.
    SOndergaard M, Jensen PJ, Jeppesen E.2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World Journal,1:427-442.
    Smil V.2000. Phosphorus in the environment:natural flows and human interferences. Annual Review of Energy and the Environment,25:53-88.
    Swap R, Garstang M, Greco S, Talbot R. Kallberg P.1992. Saharan dust in the Amazon Basin. Tellus B,44B:133-149.
    Talley DM, Huxel GR, Holyoak M.2006. Connectivity at the land-water interface. In:Sanjayan M, Crooks K (eds), Connectivity in Conservation, Cambridge University Press, Cambridge, UK: 97-1129.
    Tappin AD.2002. An examination of the fluxes of nitrogen and phosphorus in temperate and tropical estuaries:current estimates and uncertainties. Estuarine Coastal and Shelf Science, 55(6):885-901.
    Vanni MJ.2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics,33:341-370.
    Van Rossun F, Triest L.2010. Pollen dispersal in an insect-pollinated wet meadow herb along an urban river. Landscape and Urban Planning,95:201-208.
    Wang C, Zou LM, Wang PF, Lin ZP. 2009. Study on vertical distribution and activity factor of P forms in sediments of three urban shallow lakes in People's Republic of China. Environmental Geology,57(8):1799-1806.
    Williams J, Jaquet J, Thomas R.1976. Forms of phosphorus in the surficial sediments of Lake Erie. Journal of the Fisheries Board of Canada,33(3):413-429.
    Worsfold PJ, Gimbert LJ, Mankasingh U, Omaka ON, Hanrahan G, Gardolinski P, Haygarth PM, Turner BL, Keith-Roach MJ, McKelvie ID.2005. Sampling, sample treatment and quality assurance issues for the determination of phosphorus species in natural waters and soils. Talanta,66(2):273-293.
    卞林根,马永锋,逯昌贵,陆龙骅.2010.南极长城站(1985—2008)和中山站(1989—2008)风和降水等要素的气候特征.极地研究,22(4):321-333.
    董金海,王广洁,冯洁.1999.南极海豹类生态学.极地研究,11(2):136-142.
    国家海洋局官方网站http://www.chinare.gov.cn/njp/bxsm.htm
    黄涛,孙立广,吴白军,王玉宏.2007.戴维斯站区与长城站区企鹅粪土层生物标型元素的确定与比较.极地研究,19(4):247-254.
    马大卫,朱仁斌,孙建军,刘雅淑,孙立广.2010.极区鸟粪土中磷酸酶活性变化特征及其影响因素.极地研究,22(4):386-396.
    宋炜,袁丽娜,肖琳,詹忠,杨柳燕,蒋丽娟.2007.太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系.环境科学,28(10),2355-2360.
    沈静,徐汝梅,周国法,吴宝铃,黄凤鹏.1999.南极菲尔德斯半岛陆地、淡水、潮间带、浅海各生态系统的结构及其相互关系的研究.极地研究,11(02):100-112.
    孙立广,谢周清,刘晓东,尹学斌,朱仁斌.2006.南极无冰区生态地质学.北京:科学出版社.
    孙立广,谢周清,赵俊琳.2000.南极阿德雷岛湖泊沉积:企鹅粪土层识别.极地研究,12(2):105-112.
    王自磐.2004.南极菲尔德斯半岛海鸟与种群分布.极地研究,16(4):271-280.
    朱仁斌,孔德明,孙立广,耿金菊,王晓蓉.2006.南极大气中磷化氢的首次监测.科学通报,51(18):2212-2215.
    Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S.2009. Bacterial diversity associated with ornithogenic soil of the Ross Sea region, AntarcticaThis article is one of a selection of papers in the Special Issue on Polar and Alpine Microbiology. Canadian Journal of Microbiology,55(1):21-36.
    Augustine DJ, Frank DA.2001. Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology,82(11):3149-3162.
    Bailleul F, Pinaud D, Hindell M, Charrassin JB, Guinet C.2008. Assessment of scale-dependent foraging behaviour in southern elephant seals incorporating the vertical dimension:a development of the First Passage Time method. Journal of Animal Ecology,77(5):948-957.
    Ballard G, Toniolo V, Ainley DG, Parkinson CL, Arrigo KR, Trathan PN.2010. Responding to climate change:Adelie Penguins confront astronomical and ocean boundaries. Ecology, 91(7):2056-2069.
    Barbraud C, Weimerskirch H.2001. Contrasting effects of the extent of sea-ice on the breeding performance of an Antarctic top predator, the Snow Petrel Pagodroma nivea. Journal of Avian Biology,32(4):297-302.
    Bargagli R, Sanchez-Hernandez JC, Martella L, Monaci F.1998. Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biology,19(5):316-322.
    Barrett K, Anderson WB, Wait DA, Grismer LL.2005. Marine subsidies alter the diet and abundance of insular and coastal lizard populations. Oikos,109(1):145-153.
    Bate DB, Barrett JE, Poage MA, Virginia RA.2008. Soil phosphorus cycling in an Antarctic polar desert. Geoderma,144(1-2):21-31.
    Blais JM, Macdonald RW, Mackey D, Webster E, Harvey C, Smol JP.2007:Biologically mediated transport of contaminants to aquatic systems. Environmental Science & Technology,41(4): 1075-1084.
    Blecker SW, Ippolito JA, Barrett JE, Wall DH, Virginia RA, Norvell KL.2006. Phosphorus fractions in soils of Taylor Valley, Antarctica. Soil Science Society of America Journal,70(3): 806-815.
    Boersma PD.2008. Penguins as marine sentinels. Bioscience,58(7):597-607.
    Carneiro APB, Polito MJ, Sander M, Trivelpiece WZ.2010. Abundance and spatial distribution of sympatrically breeding Catharacta spp. (skuas) in Admiralty Bay, King George Island, Antarctica. Polar Biology,33(5):673-682.
    Casaux R, Baroni A, Ramon A, Carlini A, Bertolin M, DiPrinzio CY.2009. Diet of the Leopard Seal Hydrurga leptonyx at the Danco Coast, Antarctic Peninsula. Polar Biology,32(2):307-. 310.
    Celisa J, Jarab S, Gonzalez-Acunaa D, Barrab R, Espejoa W.2012. A preliminary study of trace metals and porphyrins in excreta of Gentoo penguins(Pygoscelis papua) at two locations of the Antarctic Peninsula. Archivos De Medicina Veterinaria,44:311-316.
    Cobley ND, Shears JR.1999. Breeding performance of gentoo penguins(Pygoscelis papua) at a colony exposed to high levels of human disturbance. Polar Biology,21(6):355-360.
    Cocks MP, Balfour DA, Stock WD.1998. On the uptake of ornithogenic products by plants on the inland mountains of Dronning Maud Land, Antarctica, using stable isotopes. Polar Biology, 20(2):107-111.
    Croxall JP, Trathan PN, Murphy EJ.2002. Environmental change and Antarctic seabird populations. Science,297:1510-1514.
    Croxall JP.1987. Seabirds:feeding ecology and role in marine ecosystems:Cambridge University Press.
    de Bruyn M, Hall BL, Chauke LF, Baroni C, Koch PL, Hoelzel AR.2009. Rapid response of a marine mammal species to Holocene climate and habitat change. Plos Genetics,5(7):1-11.
    Diamond AW, Devlin CM.2003. Seabirds as indicators of changes in marine ecosystems: ecological monitoring on Machias Seal Island. Environmental Monitoring and Assessment, 88:153-175.
    Dore JE, Priscu JC.2001. Phytoplankton phosphorus deficiency and alkaline phosphatase activity in the McMurdo Dry Valley lakes, Antarctica. Limnology and Oceanography,46(6):1331-1346.
    Ellis JC, Farifia JM, Witman JD.2006. Nutrient transfer from sea to land:the case of gulls and cormorants in the Gulf of Maine.Journal of Animal Ecology,75(2):565-574.
    Ellis JC.2005. Marine birds on land:a review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecology,181(2):227-241.
    Elster J, Komarek O.2003. Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctic. Antarctic Science,15(2):189-201.
    Emslie SD, Fraser W, Smith RC, Walker W.1998. Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarctic Science,10:257-268.
    Erskine PD, Bergstrom DM, Schmidt S, Stewart GR, Tweedie CE, Shaw JD.1998. Subantarctic Macquarie Island— a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia,117(1):187-193.
    Farifia JM, Salazar S, Wallem KP, Witman JD, Ellis JC.2003. Nutrient exchanges between marine and terrestrial ecosystems:the case of the Galapagos sea lion Zalophus wollebaecki. Journal of Animal Ecology,72(5):873-887.
    Giese M.1996. Effects of human activity on Adelie penguin Pygoscelis adeliae breeding success. Biological Conservation,75(2):157-164.
    Heine JC, Speir TW.1989. Ornithogenic Soils of the Cape Bird Adelie Penguin Rookeries, Antarctica. Polar Biology,10:89-99.
    Hernandez I, Perez-Pastor A, Llorens JLP.2000. Ecological significance of phosphomonoesters and phosphomonoesterase activity in a small Mediterranean river and its estuary. Aquatic Ecology,34(2):107-117.
    Huang J, Sun LG, Huang W, Wang XM, Wang YH.2010. The ecosystem evolution of penguin colonies in the past 8,500 years on Vestfold Hills, East Antarctica. Polar Biology,33(10): 1399-1406.
    Huang T, Sun LG, Wang YH, Liu XD, Zhu RB.2009A. Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills. Antarctic Science,21(6):571-578.
    Huang T, Sun LG, Wang YH, Zhu RB.2009B. Penguin occupation in the Vestfold Hills. Antarctic Science,21(02):131-134.
    Huang T, Sun LG, Stark J, Wang YH, Cheng ZQ, Yang QC, Sun S.2011 A. Relative changes in krill abundance inferred from Antarctic fur seal. PloS one,6(11):1-4.
    Huang T, Sun LG, Wang YH, Kong DM.2011B. Late Holocene Adelie penguin population dynamics at Zolotov Island, Vestfold Hills, Antarctica. Journal of Paleolimnology,45(2):273-285.
    Izaguirre I, Mataloni G, Vinocur A, Tell G.1993. Temporal and spatial variations of phytoplankton from Boeckella Lake (Hope Bay, Antarctic Peninsula). Antarctic Science,5(2):137-141.
    Jerez S, Motas M, Palacios MJ, Valera F, Cuervo JJ, Barbosa A.2011. Concentration of trace elements in feathers of three Antarctic penguins:geographical and interspecific differences. Environmental Pollution,159(10):2412-2419.
    Juchnowicz-Bierbasz M, Rakusa-Suszczewski S.2002. Nutrients and cations content in soil solutions from the present and abandoned penguin rookeries (Antarctica, King George Island). Polish Journal of Ecology,50(1):79-91.
    Kolb GS, Jerling L, Hamback PA.2010. The impact of cormorants on plant-arthropod food webs on their nesting islands. Ecosystems,13(3):353-366.
    Korczak-Abshire M.2010. Climate Change Influences on Antarctic Bird Populations. Papers on Global Change IGBP, 1(17):53-66.
    Li SK, Xiao X, Yin XB, Wang FP.2006:Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica. Extremophiles,10(5):461-467.
    Liu XD, Sun LG, Xie ZQ, Tin XB, Wang YH.2005. A 1300-year record of penguin populations at Ardley Island in the Antarctic, as deduced from the geochemical data in the ornithogenic lake sediments. Arctic, Antarctic, and Alpine Research,37(4):490-498.
    Liu XD, Sun LG, Xie ZQ, Yin XB, Zhu RB, Wang YH.2007. A preliminary record of the historical seabird population in the Larsemann Hills, East Antarctica, from geochemical analyses of Mochou Lake sediments. Boreas,36(2):182-197.
    Lynch HJ, Fagan WF, Naveen R.2010. Population trends and reproductive success at a frequently visited penguin colony on the western Antarctic Peninsula. Polar Biology,33(4):493-503.
    Lynch HJ, Naveen R, Trathan PN, Fagan WF.2012. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology,93(6):1367- 1377.
    Lyver PO'B, MacLeod C, Ballard G, Karl B, Barton K, Adams J, Ainley D, Wilson P.2011. Intra-seasonal variation in foraging behavior among Adelie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica. Polar Biology,34:49-67.
    McKinlay J, Southwell C, Trebilco R.2010. Integrating count effort by seasonally correcting animal population estimates (icescape):a method for estimating abundance and its uncertainty from count data using Adelie penguins as a case study. CCAMLR Science, 17:213-227.
    McMahon CR, Bester MN, Burton HR, Hindell MA, Bradshaw CJA.2005. Population status, trends and a re-examination of the hypotheses explaining the recent declines of the southern elephant seal Mirounga leonina. Mammal Review,35(1):82-100.
    Michelutti N, Keatley BE, Brimble S, Blais JM, Liu H, Douglas MSV, Mallory ML, Macdonald RW, Smol JP.2009. Seabird-driven shifts in Arctic pond ecosystems. Proceedings of the Royal Society B:Biological Sciences,276:591-596.
    Miller AK, Karnovsky NJ, Trivelpiece WZ.2009. Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands, Antarctica. Marine Biology,156: 2527-2537.
    Mulder CPH, Keall SN.2001. Burrowing seabirds and reptiles:impacts on seeds, seedlings and soils in an island forest in New Zealand. Oecologia,127(3):350-360.
    Murphy EJ, Watkins JL, Trathan PN, Reid K, Meredith MP, Thorpe SE, Johnston NM, Clarke A, Tarling GA, Collins MA.2007. Spatial and temporal operation of the Scotia Sea ecosystem:a review of large-scale links in a krill centred food web. Philosophical Transactions of the Royal Society B:Biological Sciences,362(1477):113-148.
    Myrcha A, Tatur A.1991. Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Polish Polar Research,12:3-24.
    Nedzarek A, Rakusa-Suszczewski S.2004. Decomposition of macroalgae and the release of nutrient in Admiralty Bay, King George Island, Antarctica. Polar Bioscience,17:26-35.
    Nedzarek A.2010. Change in N and P concentrations in antarctic streams as a response to change in penguin populations. Papers on Global Change,17:67-80.
    Nedzarek A.2008. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarctic Science,20(2):135-145.
    Nie YG, Liu XD, Sun LG, Emslie SD.2012. Effect of penguin and seal excrement on mercury distribution in sediments from the Ross Sea region, East Antarctica. Science of the Total Environment,433:132-140.
    Porazinska DL, Wall DH, Virginia RA.2002. Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biology,25(8):569-574.
    Rakusa-Suszczewski S.2003. Functioning of the geoecosystem for the West side of Admiralty Bay (King George Island, Antarctica):outline of research at Arctowski Station. Ocean and Polar Research,25(4):653-662.
    Rombola EF, Marschoff E, Coria N.2010. Inter-annual variability in Chinstrap penguin diet at South Shetland and South Orkneys Islands. Polar Biology,33(6):799-806.
    Roser D, Seppelt R, Ashbolt N.1993. Microbiology of ornithogenic soils from the Windmill Islands, Budd Coast, continental Antarctica:microbial biomass distribution. Soil Biology and Biochemistry,25(2):165-175.
    Sanchez-Pinero F, Polis GA.2000. Bottom-up dynamics of allochthonous input:direct and indirect effects of seabirds on islands. Ecology,81(11):3117-3132.
    Sigurdsson BD, Magnusson B.2009. Ecosystem respiration, vegetation development and soil nitrogen in relation to beeeding density of seagulls on a pristine volcanic island, Surtsey, Iceland. Biogeosciences Discussion,6:8393-8409.
    Siniff DB, Garrott RA, Rotella JJ, Fraser WR, Ainley DG.2008. Opinion Projecting the effects of environmental change on Antarctic seals. Antarctic Science,20(5):425-435.
    Smith VR.1976. The effect of burrowing species of Procellariidae on the nutrient status of inland tussock grasslands on Marion Island. Journal of South African Botany,42(2):265-272.
    Southwell C, McKinlay J, Emmerson L, Trebilco R, Newbery K.2010. Improving estimates of Adelie penguin breeding population size:developing factors to adjust one-off population counts for availability bias. CCAMLR Science,17:229-241.
    Stempniewicz L, Blachowiak-Samoryk K, Weslawski JM.2007. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem-A scenario. Deep Sea Research Part II:Topical Studies in Oceanography,54:2934-2945.
    Sun LG, Liu XD, Yin XB, Zhu RB, Xie ZQ, Wang YH.2004A. A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biology,27(8):495-501.
    Sun LG, Zhu RB, Yin XB, Liu XD, Xie ZQ, Wang YH.2004B. A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic. Polar Biology,27(11):670-678.
    Sun LG, Xie ZQ, Zhao JL.2000. A 3,000-year record of penguin populations. Nature,407(19): 858-858.
    Sun LG, Xie ZQ.2001B. Relics:penguin population programs. Science progress,84(1):31-44.
    Sun LG, Xie ZQ.2001 A. Changes in lead concentration in Antarctic penguin droppings during the past 3,000 years. Environmental Geology,40:1205-1208.
    Sun LG, Yin XB, Liu XD, Zhu RB, Xie ZQ, Wang YH.2006. A 2000-year record of mercury and ancient civilizations in seal hairs from King George Island, West Antarctica. Science of the Total Environment,368(1):236-247.
    Tatur A, Myrcha A.1983. Changes in chemical composition of waters running off from the penguin rookeries in the Admiralty Bay region (King George Island, South Shetland Islands, Antarctica). Polish Polar Research,4(1):113-126.
    Tatur A, Myrcha A.1984. Ornithogenic soils on King George Island, South Shetland Islands (Maritime Antarctic Zone). Polish Polar Research,5(1):31-60.
    Tatur A, Myrcha A.1989. Soils and vegetation in abandoned penguin rookeries (maritime Antarctic). Polar Biology,2:181-189.
    Tatur A.2002. Ornithogenic ecosystems in the maritime Antarctic-formation, development and disintegration. Geoecology of Antarctic Ice-Free Coastal Landscapes,154:161-184.
    Tatur A.1989. Ornithogenic soils of the maritime Antarctic. Polish Polar Research,10:481-532.
    Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM.2011. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proceedings of the National Academy of Sciences,108(18):7625-7628.
    Tscherko D, Baiter M, Beyer L, Chen J, Elster J, Kandeler E, Kuhn D, Blume HP.2003. Biomass and enzyme activity of two soil transects at King George Island, Maritime Antarctica. Arctic, Antarctic, and Alpine Research,35(1):34-47.
    Vidal E, Jouventin P, Frenot Y.2003. Contribution of alien and indigenous species to plant-community assemblages near penguin rookeries at Crozet archipelago. Polar Biology, 26(7):432-437.
    Wait DA, Aubrey DP, Anderson WB.2005. Seabird guano influences on desert islands:soil chemistry and herbaceous species richness and productivity. Journal of Arid Environments, 60(4):681-695.
    Wang JJ, Wang YH, Wang XM, Sun LG.2007. Penguins and vegetations on Ardley Island, Antarctica:evolution in the past 2,400 years. Polar Biology,30(11):1475-1481.
    Xiao X, Yin XB, Lin J, Sun LG, You ZY, Wang P, Wang FP. 2005. Chitinase genes in lake sediments of Ardley Island, Antarctica. Applied and Environmental Microbiology,71(12): 7904-7909.
    Xie ZQ, Sun LG.2008. A 1,800-year record of arsenic concentration in the penguin dropping sediment, Antarctic. Environmental Geology,55(5):1055-1059.
    Xie ZQ, Sun LG.2003. Fluoride content in bones of Adelie penguins and environmental media in Antarctica. Environmental Geochemistry and Health,25(4):483-490.
    Yang QC, Sun LG, Kong DM, Huang T, Wang YH.2010. Variation of Antarctic seal population in response to human activities in 20th century. Chinese Science Bulletin,55(11):1084-1087.
    Yin XB, Liu XD, Sun LG, Zhu RB, Xie ZQ, Wang YH.2006. A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments. Science of the Total Environment,371:252-257.
    Yin XB, Sun LG, Zhu RB, Liu XD, Ruan DY, Wang YH.2007. Mercury-selenium association in antarctic seal hairs and animal excrements over the past 1,500 years. Environmental Toxicology and Chemistry,26(3):381-386.
    Yogui GT, Sericano JL.2009. Levels and pattern of polybrominated diphenyl ethers in eggs of Antarctic seabirds:endemic versus migratory species. Environmental Pollution,157(3):975-980.
    Zhu RB, Kong DM, Sun LG, Geng JJ, Wang XR, Glindemann D.2006A. Tropospheric phosphine and its sources in coastal Antarctica. Environmental Science & Technology,40(24):7656-7661.
    Zhu RB, Liu YS, Sun JJ, Sun LG, Geng JJ.2009. Stimulation of gaseous phosphine production from Antarctic seabird guanos and ornithogenic soils. Journal of Environmental Sciences, 21(2):150-154.
    Zhu RB, Sun LG, Kong DM, Geng JJ, Wang N, Wang Q, Wang XR.2006B. Matrix-bound phosphine in Antarctic biosphere. Chemosphere,64(8):1429-1435.
    Zhu RB, Sun LG, Yin XB, Xie ZQ, Liu XD.2005. Geochemical evidence for rapid enlargement of a gentoo penguin colony on Barton Peninsula in the maritime Antarctic. Antarctic Science, 17(1):11-16.
    范成新,王春霞.2007.长江中下游湖泊环境地球化学与富营养化.北京,科学出版社.
    黄涛,孙立广,吴白军,王玉宏.2007.戴维斯站区与长城站区企鹅粪土层生物标型元素的确定与比较.极地研究,19(4):247-254.
    马经安,李红清.2002.浅谈国内外江河湖库水体富营养化状况.长江流域资源与环境.11(6):575-578.
    孙立广,谢周清,赵俊琳.2000.南极阿德雷岛湖泊沉积:企鹅粪土层识别.极地研究,12(2):105-112.
    Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vemet M, Fraser W.2007. Marine pelagic ecosystems:The West Antarctic Peninsula. Philosophical Transactions of the Royal Society B-Biological Sciences,362(1477):67-94.
    Holtan H, Kamp-Nielsen L, Stuanes AO.1988. Phosphorus in soil, water and sediment:an overview. Hydrobiologia,170(1):19-34.
    Liu XD, Zhao SP, Sun LG, Luo HH, Yin XB, Xie ZQ, Wang YH, Liu KX, Wu XH, Ding XF, Fu DP.2006. Geochemical evidence for the variation of historical seabird population on Dongdao Island of the South China Sea. Journal of Paleolimnology,36(3):259-279.
    Nedzarek A, Rakusa-Suszczewski S.2004. Decomposition of macroalgae and the release of nutrient in Admiralty Bay, King George Island, Antarctica. Polar Bioscience,17:26-35.
    Nedzarek A, Rakusa-Suszczewski S.2007. Nutrients and conductivity in precipitation in the coast of King George Island (Antarctica) in relation to wind speed and penguin colony distance. Polish Journal of Ecology,55:705-716.
    Ryding SO, Walter R.1992. The control of eutrophication of lakes and reservoirs.朱宣等译,北京,中国环境科学出版社.
    韩正兵,潘建明,扈传昱,余雯,薛斌.2010.南极普里兹湾真光层下水体中有机碳和无机碳分解比例的估算.极地研究,22:254-261.
    黄涛,孙立广,吴白军,王玉宏.2007.戴维斯站区与长城站区企鹅粪土层生物标型元素的确定与比较.极地研究,19:247-254.
    缪锦来,石红旗,姜英辉,张波涛,侯旭光.2002.南极冰藻生化组成及其与低温适应性关系的研究.海洋科学进展,20:43-50.
    孙立广,谢周清,刘晓东,尹学斌,朱仁斌.2006.南极无冰区生态地质学.北京:科学出版社.
    孙维萍,蔡明红,王海燕,邢闯,卢冰,Peter HU,Froehlich A.2010.阿德雷岛企鹅种群分布、繁殖行为及其环境影响因子分析.极地研究,22:33-41.
    王自磐.2004.南极菲尔德斯半岛海鸟与种群分布.极地研究,16:271-280.
    吴宝玲.1998.南极菲尔德斯半岛及其附近地区生态系统的研究.//国家海洋局极地考察办公室.中国南极考察科学研究成果与进展.北京:海洋出版社.pp 65-138.
    杨奇超,孙立广,孔德明,黄涛,王玉宏.2009.20世纪南极法尔兹半岛海豹数量变化及其影响因素.科学通报,54:3546-3552.
    赵俊琳,蒙宇,赵承义,周善元,朱光华,于润湖,刘培桐,李果.1989.乔治王岛菲尔德斯半岛地区环境背景值初探.极地研究,1:44-51.
    任爱清,张憨.2010.鱿鱼干贮藏期间品质变化规律.食品与生物技术学报,29(2):183-188.
    Ainley DG, Jacobs SS, Ribic CA, Gaffney I.1998. Seabird distribution and oceanic features of the Amundsen and southern Bellingshausen seas. Antarctic Science,10(02):111-123.
    Ainley D G.2002. The Adelie Penguin:bellwether of climate change. Columbia University Press, NewYork, USA.
    Ainley DG, Ribic CA, Ballard G, Heath S, Gaffney I, Karl BJ, Barton KJ, Wilson PR, Webb S. 2004. Geographic structure of AdSlie penguin populations:overlap in colony-specific foraging areas. Ecological Monographs,74:159-178.
    Atkinson A, Siegel V, Pakhomov E, Rothery P.2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature,432:100-103.
    Barbraud C, Weimerskirch H.2006. Antarctic birds breed later in response to climate change. Proceedings of the National Academy of Sciences USA,103:6248-6251.
    Brimble SK, Blais JM, Kimpe LE, Mallory ML, Keatley BE, Douglas MSV Smol JP.2009. Bioenrichment of trace elements in a series of ponds near a northern fulmar (Fulmarus glacialis) colony at Cape Vera, Devon Island. Canadian Journal of Fisheries and Aquatic Sciences,66:949-958.
    Carlini AR, Coria NR, Santos MM, Negrete J, Juuares MA, Daneri GA.2009. Responses of Pygoscelis adeliae and P. papua populations to environmental changes at Isla 25 de Mayo (King George Island). Polar Biology,32(10):1427-1433.
    Cobley ND, Shears JR.1999. Breeding performance of gentoo penguins (Pygoscelis papua) at a colony exposed to high levels of human disturbance. Polar Biology,21(6):355-360.
    Croxall J.1987.The status and conservation of Antarctic seals and seabirds:a review. Environment International,13(1):55-70.
    Daneri GA, Carline AR, Rodhouse PGK.2000. Cephalopod diet of the southern elephant seal, Mirounga leonina, at King George Island, South Shetland Islands. Antarctic Science, 12:16-19.
    Emslie SD, Fraser W, Smith RC, Walker W.1998. Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarctic Science,10:257-268.
    Emslie SD, McDaniel JD.2002. Adelie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar Biology,25(3):222-229.
    Farifla JM, Salazar S, Wallem KP, Witman JD, Ellis JC.2003. Nutrient exchanges between marine and terrestrial ecosystems:the case of the Galapagos sea lion Zalophus wollebaecki. Journal of Animal Ecology,72:873-887.
    Green K, Johnstone GW.1988. Changes in the diet of Adelie penguins breeding in east-Antarctica. Wildlife Research,15:103-110.
    Griffiths HJ.2010. Antarctic marine biodiversity-What do we know about the distribution of life in the Southern Ocean? PloS one,5(8):1-11.
    Hahn S, Bauer S, Klaassen M.2007. Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats. Freshwater Biblogy,52:2421-2433
    Hill SL, Murphy EJ, Reid K, Trathan PN, Constable AJ.2006. Modelling Southern Ocean ecosystems:krill, the food-web, and the impacts of harvesting. Biological Review,81:581-608.
    Holmes, ND, Giese M, Achurch H, Robinson S, Kriwoken LK.2006. Behaviour and breeding success of gentoo penguins Pygoscelis papua in areas of low and high human activity. Polar Biology,29(5):399-412.
    Huang T, Sun LG, Wang YH, Kong DM.2011. Late Holocene Adelie penguin population dynamics at Zolotov Island, Vestfold Hills, Antarctica. Journal of Paleolimnology,45:273-285.
    Huang T, Sun LG, Wang YH, Liu XD, Zhu RB.2009. Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills. Antarctic Science,21:571-578.
    Huntley ME, Sykes PF, Marin V.1989. Biometry and trophodynamics of Salpa thompsoni Foxton (Tunicata:Thaliacea) near the Antarctic Peninsula in austral summer,1983-1984. Polar Biolology,10:59-70.
    Iguchi N, Ikeda T.2004. Metabolism and elemental composition of aggregate and solitary forms of Salpa thompsoni (Tunicata:Thaliacea) in waters off the Antarctic Peninsula during austral summer 1999. Journal of Plankton Research,26:1025-1037
    Korczak-Abshire M.2010. Climate change influences on Antarctic bird populations. Papers on Global Change,17:53-66.
    Laws RM.1985. The ecology of the Southern Ocean. American Scientist,73:26-40.
    Lindeboom HJ.1984. The nitrogen pathway in a penguin rookery. Ecology,65:269-277.
    Lourenco HM, Anacleto P, Afonso C, Ferraria V, Martins MF, Carvalho ML, Lino AR, Nunes ML. 2009. Elemental composition of cephalopods from Portuguese continental waters. Food Chemistry,113:1146-1153.
    Lynch HJ, Fagan WF, Naveen R.2010. Population trends and reproductive success at a frequently visited penguin colony on the western Antarctic Peninsula. Polar Biology,33:493-503.
    Lynnes AS, Reid K, Croxall JP, Trathan PN.2002. Conflict or co-existence? foraging distribution and competition for prey between Ad61ie and chinstrap penguins. Marine Biology,141(6): 1165-1174.
    Lynnes AS, Reid K, Croxall JP.2004. Diet and reproductive success of Adelie and chinstrap penguins:linking response of predators to prey population dynamics. Polar Biology,27: 544-554.
    Lyver PO'B, MacLeod CJ, Ballard G, Karl BJ, Barton KJ, Adams J, Ainley DG, Wilson PR.2011. Intra-seasonal variation in foraging behavior among Ad61ie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica. Polar Biology,34:49-67
    Manny BA, Johnson WC, Wetzel RG.1994. Nutrient additions by waterfowl to lakes and reservoirs:predicting their effects on productivity and water-quality. Hydrobiologia,280: 121-132.
    Marschall HP.1988. The overwintering strategy of Antarctic krill under the pack-ice of the Weddell Sea. Polar Biology,9:129-135.
    Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M.2004. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biology,10:1973-1980.
    Murphy RC.1981. The guano and the anchoveta fishery. John Wiley & Sons, New York, NY.
    Murphy EJ, Watkins JL, Trathan PN, Reid K, Meredith MP, Thorpe SE, Johnston NM, Clarke A, Tarling GA, Collins MA.2007. Spatial and temporal operation of the Scotia Sea ecosystem:a review of large-scale links in a krill centred food web. Philosophical Transactions of the Royal Society B:Biological Sciences,362(1477):113-148.
    Myrcha A, Tatur A.1991. Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Polish Polar Research,12:3-24
    Nedzarek A.2010. Change in N and P concentrations in antarctic streams as a response to change in penguin populations. Papers on Global Change,17:67-80.
    Ninnes CE, Waas JR, Ling N, Nakagawa S, Banks JC, Bell DG, Bright A, Carey PW, Chandler J, Hudson QJ.2011. Environmental influences on Adeli6 penguin breeding schedules, endocrinology, and chick survival. General and Comparative Endocrinology,137(1): 139-147.
    Nishikawa J, Naganobu M, Ichii T, Ishii H, Terazaki M, Kawaguchi K.1995. Distribution of salps near the South Shetland Islands during austral summer,1990-1991 with special reference to krill distribution. Polar Biology,15:31-39.
    Pakhomov EA.2004. Salp/krill interactions in the eastern Atlantic sector of the Southern Ocean. Deep-Sea Research II,51:2645-2660.
    Pauly T, Nicol S, Higginbottom I, Hosie G, Kitchener J.2000. Distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (80-150°E) during the Austral summer of1995/1996. Deep-Sea Research II,47:2465-2488.
    Pitman RL, Durban JW.2010. Killer whale predation on penguins in Antarctica. Polar Biology, 33:1589-1594.
    Polis GA, Anderson WB, Holt RD.1997. Toward an integration of landscape and food web ecology:the dynamics of spatially subsidized food webs. Annual Review of Ecology Evolution and Systematics,28:289-316.
    Puddicombe RA, Johnstone GW.1988. The breeding season diet of Adelie penguins at the Vestfold Hills, East Antarctica. Hydrobiologia,165:239-253.
    Quetin LB, Ross RM, Fritsen CH, Vernet M.2007. Ecological responses of Antarctic krill to environmental variability:can we predict the future? Antarct Science,19:253-266.
    Rakusa-Suszczewski S.2003. Functioning of the geoecosystem for the West side of Admiralty Bay (King George Island, Antarctica):outline of research at Arctowski Station. Ocean and Polar Research,25:653-662.
    Rombola" EF, Marschoff E, Coria N.2010. Inter-annual variability in Chinstrap penguin diet at South Shetland and South Orkneys Islands. Polar Biology,33(6):799-806.
    Sekercioglu CH.2006. Increasing awareness of avian ecological function. Trends in Ecology and Evolution,21(8):464-471.
    Sun LG, Xie ZQ.2001. Relics:penguin population programs. Science Progress,84:31-44.
    Sun LG, Xie ZQ, Zhao JL.2000. A 3,000-year record of penguin populations. Nature,407: 858-858.
    Taylor RH.1962. The Adelie Penguin Pygoscelis adeliae at Cape Royds. Ibis,104:176-204.
    Thomas DN, Dieckmann GS.2002. Biogeochemistry of Antarctic sea ice. Oceanography and Marine Biology,40:143-169.
    Trathan PN, Forcada J, Atkinson R, Downie RH, Shears JR.2008. Population assessments of gentoo penguins(Pygoscelis papua) breeding at an important Antarctic tourist site, Goudier Island, Port Lockroy, Palmer Archipelago, Antarctica. Biological Conservation,141(12): 3019-3028.
    Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM.2011. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proceedings of the National Academy of Sciences USA,108:7625-7628.
    Trivelpiece WZ, Trivelpiece SG, Volkman NJ.1987. Ecological segregation of Adelie, gentoo, and chinstrap penguins at King George Island, Antarctica. Ecology,68:351-361.
    Whitehead MD, Johnstone GW.1990. The distribution and estimated abundance of Adelie penguins breeding in Prydz Bay, Antarctica. Polar Biology,3:91-98.
    安丽,曹同,俞鹰浩.2006.苔藓植物与环境重金属污染监测.生态学杂志,25(2):201-206.
    杜庆民,郑学海,蔡海超,薛永海,黄永惠.1989.用苔袋监测大气颗粒物及其它污染物的方法研究.生态学杂志,8(1):56-60.
    黄涛,孙立广.2012.东南极阿曼达湾湖泊沉积物物源的元素分析.极地研究,24(4):384-390.
    李锋,李天杰.1997.南极菲尔德斯半岛地区地衣和苔藓的生物地球化学特征.极地研究,9(4):299-303.
    蒲家彬,李宗品,邵秘华,尚龙生.1995.南极乔治王岛环境质量现状调查.南极研究,7(2):51-58.
    汪建君.2007.生物标志物在全新世古生态恢复中的应用与南极气溶胶特征.中国科学技术大学博士学位论文.
    王自磐.1991.南极中山站麦氏贼鸥生态研究,南极研究,3(3),46-55.
    吴虹玥,包维楷,王安.2005.苔藓植物的化学元素含量及其特点.生态学杂志,24(1):58-64.
    吴玉环,黄国宏,高谦,曹同.2001.苔藓植物对环境变化的响应及适应性研究进展.应用生态学报,12(6):943-946.
    杨琳璐,王中生,周灵燕,马元岫,王志科,营婷,宋圆圆,徐卫祥.2012.苔藓和地衣对环境变化的响应和指示作用.南京林业大学学报:自然科学版,36(3):137-143.
    赵烨,李天杰,赵俊琳.1998.人类活动对南极乔治王岛菲尔德斯半岛环境的影响.极地研究,10(04):262-271.
    Ares A, Aboal JR, Carballeira A, Giordano S, Adamo P, Fernandez JA.2012. Moss bag biomonitoring:a methodological review. Science of the Total Environment,432:143-158.
    Bargagli R, Brown DH, Nelli L.1995. Metal biomonitoring with mosses:procedures for correcting for soil contamination. Environmental Pollution,89(2):169-175.
    Bargagli R, Monaci F, Borghini F, Bravi F, Agnorelli C.2002. Mosses and lichens as biomonitors of trace metals:a comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environmental Pollution,116(2):279-287.
    Bargagli R, Sanchez-Hernandez JC, Martella L, Monaci F.1998. Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biology,19(5):316-322.
    Bargagli R, Smith RIL, Martella L, Monaci F, Sanchez-Hernandez JC, Ugolini FC.1999. Solution geochemistry and behaviour of major and trace elements during summer in a moss community at Edmonson Point, Victoria Land, Antarctica. Antarctic Science,11(1):3-12.
    Berg T, Steinnes E.1997. Use of mosses (Hylocomium splendens and Pleurozium schreheri) as biomonitors of heavy metal deposition:from relative to absolute deposition values. Environmental Pollution,98(1):61-71.
    Boutron CF, Patterson CC.1987. Relative levels of natural and anthropogenic lead in recent Antarctic snow. Journal of Geophysical Research,92:8454-8464.
    Cao T, An L, Wang M, Lou YX, Yu YH, Wu JM, Zhu ZR, Qing YK, Glime J.2008. Spatial and temporal changes of heavy metal concentrations in mosses and its indication to the environments in the past 40 years in the city of Shanghai, China. Atmospheric Environment, 42(21):5390-5402.
    de Caritat P, Reimann C, Bogatyrev I, Chekushin V, Finne TE, Halleraker JH, Kashulina G, Niskavaara H, Pavlov V, Ayras M.2001. Regional distribution of Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y in terrestrial moss within a 188,000 km2 area of the central Barents region:influence of geology, seaspray and human activity. Applied Geochemistry, 16(2):137-159.
    Fernandez JA, Carballeira A.2002. Biomonitoring metal deposition in Galicia (NW Spain) with mosses:factors affecting bioconcentration. Chemosphere,46(4):535-542.
    Gerdol R, Bragazza L, Marchesini R.2002. Element concentrations in the forest moss Hylocomium splendens:variation associated with altitude, net primary production and soil chemistry. Environmental Pollution,116(1):129-135.
    Godzik B.1991. Heavy metals and macroelements in the tundra of southern Spitsbergen:the effect of little auk Allealle (L.) colonies. Polar research,9(2):121-131.
    Liu XD, Sun LG, Xie ZQ, Yin XB, Zhu RB, Wang YH.2007. A preliminary record of the historical seabird population in the Larsemann Hills, East Antarctica, from geochemical analyses of Mochou Lake sediments. Boreas,36(2):182-197.
    Osyczka P, Dutkiewicz EM, Olech M.2007. Trace elements concentrations in selected moss and lichen species collected within Antarctic research stations. Polish Journal of Ecology,55(1): 39-48.
    Reimann C, Niskavaara H, Kashulina G, Filzmoser P, Boyd R, Volden T, Tomilina O, Bogatyrev I. 2001. Critical remarks on the use of terrestrial moss(Hylocomium splendens and Pleurozium schreberi) for monitoring of airborne pollution. Environmental Pollution,113(1):41-57.
    Rilhling A, Tyler G.1968. An ecological approach to the lead problem. Botaniska Notiser,121: 321-342.
    Samecka-Cymerman A, Wojtun B, Kolon K, Kempers AJ.2011. Sanionia uncinata (Hedw.) loeske as bioindicator of metal pollution in polar regions. Polar Biology,34(3):381-388.
    Smith VR.1976. The effect of burrowing species of Procellariidae on the nutrient status of inland tussock grasslands on Marion Island. Journal of South African Botany,42:265-272.
    Steinnes E.1995. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Science of the Total Environment,160:243-249.
    Stempniewicz L, Blachowiak-Samolyk K, Weslawski JM.2007. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem-A scenario. Deep-Sea Research Ⅱ,54:2934-2945.
    Wang ZP, Norman FI, Burgess JS, Ward SJ, Spate AP, Carson CJ.1996. Human influences on breeding of south polar skuas in the eastern Larsemann Hills, Princess Elizabeth Land, East Antarctica. Polar Record,32(180):43-50.
    Zechmeister HG.1995. Correlation between altitude and heavy metal deposition in the Alps. Environmental Pollution,89(1):73-80.
    黄涛,孙立广,吴自军,王玉宏.2007.戴维斯站区与长城站区企鹅粪土层生物标型元素的确定与比较.极地研究,19(4):247-254.
    李锋,李天杰.1997.南极长城站地区西湖水化学组成影响因子分析.极地研究,9(4):268-272.
    李植生,王骥,王洪铸,梁小民,冯伟松,雷志洪,陈旭东,梁彦龄.1997.南极菲尔德斯半岛地区与拉斯曼丘陵地区湖泊水化学比较研究.极地研究,9(3):176-181.
    赵俊琳,蒙宇,赵承义,周善元,朱光华,于润湖,刘培桐,李果.1989.乔治王岛菲尔德斯半岛地区环境背景值初探.极地研究,1(4):44-51.
    Bargagli R, Sanchez-Hernandez JC, Martella L, Monaci F.1998. Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biology,19(5):316-322.
    Izaguirre I, Mataloni G, Vinocur A, Tell G.1993. Temporal and spatial variations of phytoplankton from Boeckella Lake (Hope Bay, Antarctic Peninsula). Antarctic Science, 5(2):137-141.
    Liu XD, Sun LG, Yin XB.2004. Textural and geochemical characteristics of proglacial sediments: a case study in the foreland of the Nelson Ice Cap, Antarctica Acta Geologica Sinica (English Edition),78:970-981.
    Liu XD, Sun LG, Yin XB, Zhu RB, Xie ZQ, Wang YH.2005. A preliminary study of elemental geochemistry and its potential application in Antarctic seal palaepecology. Geochemical Journal,39(1):.47-59.
    Nedzarek A.2008. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica Antarctic Science,20:135-145.
    Sun LG, Xie ZQ, Zhao JL.2000. A 3,000-year record of penguin populations. Nature, 407(19):858-858.
    Sun LG, Zhu RB, Yin XB, Liu XD, Xie ZQ, Wang YH.2004. A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic. Polar Biology,27:670-678.
    Tatur A, Myrcha A.1984. Ornithogenic soils on King George Island, South Shetland Islands (Maritime Antarctic Zone). Polish Polar Research,5:31-60.
    Tatur A.1989. Ornithogenic soils of the maritime Antarctic. Polish Polar Research,10:481-532.
    Zhu RB, Kong DM, Sun LG, Geng JJ, Wang XR, Glindemann D.2006. Tropospheric phosphine and its sources in coastal Antarctica. Environmental Science & Technology,40:7656-7661.
    卞林根,马永锋,逯昌贵,陆龙骅.2010A.南极长城站(1985—2008)和中山站(1989—2008)地面温度变化.极地研究,22(1):1-9.
    卞林根,马永锋,逯昌贵,陆龙骅.2010B.南极长城站(1985—2008)和中山站(1989—2008)风和降水等要素的气候特征.极地研究,22(4):321-333.
    卢兵友,王留芳.1990.农业生态系统物质循环的系统分析.生态学杂志,9(3):38-41.
    沈静,徐汝梅,周国法,吴宝铃,黄凤鹏.1999.南极菲尔德斯半岛陆地、淡水、潮间带、浅海各生态系统的结构及其相互关系的研究.极地研究,11(2):100-112.
    秦先燕,黄涛,孙立广.2013.南极海-陆界面营养物质流动和磷循环.生态学杂志,32(1):195-203.
    孙立广,谢周清,赵俊琳.2000.南极阿德雷岛湖泊沉积:企鹅粪土层识别.极地研究,12(2):105-112.
    熊汉锋,王运华.2005.湿地碳氮磷的生物地球化学循环研究进展.土壤通报,36(2):240-243.
    赵俊琳,蒙宇,赵承义,周善元,朱光华,于润湖,刘培桐,李果.1989.乔治王岛菲尔德斯半岛地区环境背景值初探.极地研究,1(4):44-51.
    周全来,蒋德明.2009.沙地土壤磷循环研究.生态学杂志,28(10):2117-2122.
    Anderson WB, Polis GA.1998. Marine subsidies of island communities in the Gulf of California: evidence from stable carbon and nitrogen isotopes. Oikos,81:75-80.
    Farina JM, Salazar S, Wallem KP, Witman JD, Ellis JC.2003. Nutrient exchanges between marine and terrestrial ecosystems:the case of the Galapagos sea lion Zalophus wollebaecki. Journal of Animal Ecology,72:873-887.
    Iguchi N, IkedaT.2004. Metabolism and elemental composition of aggregate and solitary forms of Salpa thomps.oni (Tunicata:Thaliacea) in waters off the Antarctic Peninsula during austral summer 1999. Journal of Plankton Research,26:1025-1037.
    Myrcha A, Ochyra R, Tatur A.1991. Site of special scientific interest No.8, Western shore of Admiralty Bay, King George Island, South Shetland Islands//Klekowski RZ, OpaliEski KW, eds. First Polish-Soviet Antarctic Symp.'Arctowski 85'. Institute of Ecology Publishing Office, Warsaw:157-168.
    Myrcha A, Tatur A.1991. Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Polish Polar Research,12:3-24.
    Nedzarek A.2008. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarctic Science,20:135-145.
    Nedzarek A, Rakusa-Suszczewski S.2007. Nutrients and conductivity in precipitation in the coast of King George Island (Antarctica) in relation to wind speed and penguin colony distance. Polish Journal of Ecology,55:705-716.
    Polis GA, Hurd SD.1996. Linking marine and terrestrial food webs:allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. The American Naturalist,147:396-423.
    Rakusa-Suszczewski S.1995. Flow of matter in the Admiralty Bay area, King George Island, maritime Antarctica. Polar Biology,8:101-113.
    Rakusa-Suszczewski S.2003. Functioning of the geoecosystem for the West side of Admiralty Bay (King George Island, Antarctica):outline of research at Arctowski Station. Ocean and Polar Research,25:653-662.
    Sanchez-Pinero F, Polis GA.2000. Bottom-up dynamics of allochthonous input:Direct and indirect effects of seabirds on islands. Ecology,81(11):3117-3132.
    Smith RIL.1985. Nutrient cycling in relation to biological productivity in Antarctic and sub-Antarctic terrestrial and freshwater ecosystems//Siegfried WR, Condy PR, Laws RM, eds. Antarctic nutirent cycles and food webs. Springer, Berlin Heidelberg New York: 163-168.
    Tatur A.2002. Ornithogenic ecosystems in the maritime Antarctic-formation, development and disintegration//Beyer L, BOlter M, eds. Geoecology of Antarctic ice-free coastal landscapes. Ecological Studies,154, Springer Verlag:161-184.
    Tatur A, Myrcha A.1984. Ornithogenic soils on King George Island, South Shetland Islands (Maritime Antarctic Zone). Polish Polar Research,5:31-60.
    Zhu RB, Kong DM, Sun LG, Geng JJ, Wang XR, Glindemann D.2006A. Tropospheric phosphine and its sources in coastal Antarctica Environmental Science & Technology,40:7656-7661.
    Zhu RB, Sun LG, Kong DM, Geng JJ, Wang N, Wang Q, Wang XR.2006B. Matrix-bound phosphine in Antarctic biosphere. Chemosphere,64(8):1429-1435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700