用户名: 密码: 验证码:
狼毒乙素和新狼毒素A的药物代谢及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狼毒为传统草药,在我国临床使用已有非常悠久的历史,广泛用于治疗水肿、恶性肿瘤、白血病、慢性气管炎、皮肤病、妇科病、肺结核、肠结核、淋巴结核等症。狼毒乙素(ECB)的化学名为2,4-dihydroxy-6-methoxy-3-methyl-acetophenone,新狼毒素A(NCA)的化学名为(2S,2'S,3S,3'S)-5,5',7,7'-tetrahydroxy-2,2' -bis (4-hydroxyphenyl)-3,3'-bichroman-4,4' -dione。二者都是中药狼毒的主要有效成分,药理活性已有些报道。药理学研究表明狼毒乙素对耐药型和非耐药型结核杆菌具有明显抑制作用,是已上市药物结核灵片的主要有效成分之一。2,4-dihydroxy-6-methoxyl-methylene-3-methyl-acetophenone,一种狼毒乙素的结构类似物,最近被报导具强抗人宫颈癌细胞(Hela-60)活性,IC50值为95ng/mL。体外实验表明,新狼毒素A具有明显的抗前列腺癌细胞(LNCaP)活性。而狼毒乙素和新狼毒素A的药物代谢和动力学(DM/PK)至今尚未见研究。本文先从狼毒大戟与瑞香狼毒根中分离、制备狼毒乙素和新狼毒素A,再采用各种体内外实验模型对狼毒乙素和新狼毒素A的吸收、转运、代谢、排泄与动力学的性质进行了较系统的研究。本文的研究结果可为狼毒的临床应用及相关的新药研发提供理论和实验依据。
     1、新狼毒素A在MDCK和MDCK-MDR1细胞中的转运研究
     新狼毒素A在MDCK和MDCK-MDR1细胞上的转运实验表明,新狼毒素A在这两种细胞中的表观渗透系数均≤1×10-6cm/s,提示其口服后生物利用度较低。新狼毒素A在MDCK-MDR1细胞单层中的转运存在显著的外排现象,并可被P-糖蛋白(P-gp)的经典抑制剂维拉帕米所抑制,表明P-gp参与了新狼毒素A在MDCK-MDR1细胞中的外排转运,提示外排转运蛋白P-gp可能是制约其口服生物利用度的主要生理屏障因素之一。以罗丹明123(R123)作为P-gp的探针底物,评价新狼毒素A对P-gp转运功能的影响,结果表明100μmol/L的新狼毒素A对MDCK-MDR1细胞单层中由P-gp介导的R123外排有显著的抑制作用,提示新狼毒素A可能为P-gp抑制剂。另一方面,新狼毒素A对MDCK细胞具有比较明显的细胞毒性,但对MDCK-MDR1细胞的毒性显著减弱,可能是MDCK-MDR1细胞中高表达的外排蛋白P-gp参与了药物的外排,减少细胞内的蓄积,使毒性下降,也间接验证了新狼毒素A是P-gp底物的实验结果。
     2、狼毒乙素和新狼毒素A在大鼠肝微粒体和大鼠原代肝细胞中的代谢研究
     在β-NADPH存在下,狼毒乙素在大鼠肝微粒体中生成一个氧化代谢产物,质谱鉴定其结构是1-(2,4-dihydroxy-6-methoxy-3-methylphenyl)-2-hydroxyethanone,为单羟基化代谢物;在UDPGA存在下,狼毒乙素在大鼠肝微粒体中生成一个单取代葡萄糖醛酸苷,分离后经p-葡萄糖醛酸苷水解酶水解、质谱分析、核磁共振氢谱鉴定其结构为2-hydroxy-6-methoxy-3-methyl-acetophenone-4-O-β-glucuronide。孵育体系中同时加入β-NADPH和尿苷二磷酸葡萄糖醛酸(UDPGA)进行一相、二相级联代谢共孵育,结果超过80%的狼毒乙素均转化成单取代葡萄糖醛酸苷,提示狼毒乙素在大鼠体内主要经葡萄糖醛酸化代谢。新狼毒素A在大鼠肝微粒体中不发生氧化代谢,但在UDPGA存在下生成两个代谢产物,经葡萄糖醛酸苷水解酶水解和质谱分析,这两个代谢物均为单取代葡萄糖醛酸苷。狼毒乙素和新狼毒素A在大鼠肝微粒体中发生的葡萄糖醛酸化代谢及狼毒乙素发生的氧化代谢均符合米氏动力学方程。
     综合应用选择性化学诱导和抑制实验,进行筛选,大鼠肝微粒体中催化狼毒乙素代谢的酶主要是CYP3A, CYP2C11, CYP2C6和UGT1A6/9,其中UGT1A6的贡献更为显著;催化新狼毒素A葡萄糖醛酸化代谢的酶主要是UGT1A3/6/9。
     将新狼毒素A与大鼠原代肝细胞共孵育,没检测到代谢产物;将狼毒乙素与大鼠原代肝细胞共孵育,检测有痕量的两个代谢物,但相对肝微粒体,原代肝细胞的代谢活性要低很多。
     3、狼毒乙素和新狼毒素A的大鼠体内代谢、排泄和动力学研究
     狼毒乙素与新狼毒素A大鼠体内主要发生葡萄糖醛酸化代谢,代谢物分析均只检测到一个葡萄糖醛酸苷。狼毒乙素体内产生的葡萄糖醛酸苷跟体外产生的葡萄糖醛酸苷结构一致。从色谱保留时间判断,新狼毒素A体内产生的葡萄糖醛酸苷跟体外鼠肝微粒体产生的两个中的一个相对应,结构还在鉴定中。
     对大鼠口服狼毒乙素的动力学行为进行了初步研究,建立了血浆中狼毒乙素葡萄糖醛酸苷测定的UPLC-MS方法。结果显示,大鼠口服狼毒乙素后,在血浆中只明显检测到其单取代葡萄糖醛酸苷。该葡萄糖醛酸苷在大鼠体内的动力学行为符合二室模型,达峰时间约为4小时,提示大鼠口服狼毒乙素后吸收迅速。
     大鼠口服新狼毒素A后,血浆中没有检测到明显的代谢产物,原形药物的浓度也非常低,提示大鼠口服新狼毒素A的吸收很差,这与新狼毒素A是P-gp底物有关。
     4、狼毒乙素和新狼毒素A在人肝微粒体、HepG2细胞及人重组酶中的代谢研究
     狼毒乙素在人肝微粒体中的代谢结果与鼠肝微粒体中的一致,提示狼毒乙素在人体内主要发生葡萄糖醛酸化代谢。新狼毒素A在人肝微粒体中只生成了一个单取代葡萄糖醛酸苷。
     综合选择性化学抑制及人重组酶实验对这两个底物的代谢活性分析结果,可推测人肝微粒体中参与狼毒乙素代谢的主要酶系是UGT1A6/9、CYP3A4、CYP2C9,其中最主要的是CYP3A4与UGT1A6;参与新狼毒素A代谢的主要酶系是UGT1A3/6/9。
     狼毒乙素与HepG2细胞孵育时,仅检测到痕量的一相代谢物,没有发现二相代谢物;新狼毒素A与HepG2细胞孵育时,也没发现二相代谢物,提示HepG2细胞对这两个底物的代谢活性很低。
Lang-du is a famous traditional herbal medicine and has long been used in China for the treatment of a wide range of ailments, including edema, malignant tumor, leukemia, chronic tracheitis, pulmonary tuberculosis, scrofula, intestinal tuberculosis, skin disease and gynecopathia. Ebracteolata compound B (ECB), chemically designated as 2,4-dihydroxy-6-methoxy-3-methyl-acetophenone and neochamaejasmin A (NCA), chemically designated (2S,2'S,3S,3'S)-5,5',7,7'-tetrahydroxy-2,2' - bis (4-hydroxyphenyl)- 3,3'-bichroman-4,4' -dione, are primary active ingredients of this medicine. ECB was reported to exhibit significant antibacterial activities on both tuberculosis bacillus and XDR-TB bacillus. Also, it is one major active component of the marketed drug "Jieheling Tablets". More interestingly, one homologous compound of ECB,2,4-dihydroxy-6-methoxyl-methylene-3-methylacetophenone, was recently demonstrated to possess obvious selective activity against human Hela-60 tumor cell with an IC50 value 95 ng/mL. NCA, was found to exhibit significant cytotoxicity in vitro against LNCaP cells. In this study, ECB and NCA were isolated and purified from the dried root of Euphorbia fischeriana and Stellera chamaejasme L. respectively and their absorption, transport, metabolism, excretion and pharmacokinetics profiles were investigated by using several in vitro and in vivo models.
     1. The transport of NCA across MDCK and MDCK-MDR1 cell monolayers
     In the MDCK and MDCK-MDR1 monolayer cell cultures, NCA showed a low cell permeability. The apparent permeability coefficient (Papp) values of apical to basolateral direction were less than 1×10-6 cm/s. The efflux ratios in both cells were much higher than 2.0. This efflux can be inhibited obviously by verapamil which is the classical inhibitor of P-glycoprotein (P-gp). Those findings indicated that NCA was transported by P-gp. NCA may have low bioavailability after oral administration owing to the involvement of P-gp in the NCA transport. Using Rhodamine 123 (R123) as the probe substrate probe of P-gp, we studied the effects of NCA on the P-gp, the most important transporter in the intestine. NCA at 100μmol/L had significant inhibition effects on the P-gp-mediated transport of R123 across the MDCK-MDR1 cell monolayers, indicating that NCA was likely a P-gp inhibitor. On the other hand, NCA displayed significantly higher cytotoxicity to MDCK cells than to MDCK-MDR1 cells, likely because of the involvement of P-gp and decreasing the NCA accumulation in MDCK-MDR1 cells and the result confirmed indirectly that NCA was the substrate of P-gp.
     2. Metabolism of ECB and NCA studied in vitro with rat liver microsomes and hepatocytes
     One monohydroxylation metabolite and one monoglucuronide were observed in rat liver microsomal incubates in the presence ofβ-NADPH or UDPGA, respectively. The monohydroxylation metabolite was determined by mass spectrometry to be 1-(2,4-dihydroxy-6-methoxy-3-methylphenyl)-2-hydroxyethanone, and monoglucuronide was determined by hydrolysis withβ-glucuronidase, mass spectrometry and 1HNMR to be 2-hydroxy-6-methoxy-3-methyl-acetophenone-4-O-β-glucuronide. But the mixed incubation of ECB with rat liver microsomes in the presence of bothβ-NADPH and UDPGA showed the monoglucuronide was the most major metabolite and more than 80% of ECB was converted into monoglucuronide, indicating glucuronidation was likely the major clearance pathway of ECB in rats.
     After NCA was incubated with rat liver microsomes, no oxidative metabolism was observed in the presence ofβ-NADPH. But in the presence of UDPGA, two metabolites were detected in the liver microsomal incubates and identified to be monoglucuronides by UPLC-MS analysis and hydrolysis usingβ-glucuronidase. The oxidative metabolism of ECB and the glucuronidation of ECB and NCA in rat liver microsomes all exhibited typical Michaelis-Menten patterns.
     The isoenzymes probably involved in ECB and NCA metabolism in rat liver microsomes were identified by using selective chemical inhibition and induction, respectively. The results indicated CYP3A, CYP2C11, CYP2C6 and UGT1A6/9 (especially UGT1A6) were important catalytic enzymes in ECB metabolism and UGT1A3/6/9 were important catalytic enzymes in NCA glucuronidation.
     No metabolites were detected after NCA was incubated with primary cultured rat hepatocytes. Two metabolites were observed after ECB was incubated with primary cultured rat hepatocytes, but only in trace amounts. Compared with rat liver microsomes, the metabolic ability toward ECB and NCA is much low.
     3. Metabolism, excretion and pharmacokinetics of ECB and NCA in rats
     Only glucuronidation metabolism with one monoglucuronide of ECB and NCA were observed in rats. The monoglucuronide of ECB observed in rats was identical to that formed in rat liver microsomes. The monoglucuronide of NCA observed in rats was identical to one of two monoglucuronides formed in rat liver microsomes and its structure needed to be elucidatd.
     A sensitive ultra performance liquid chromatography-mass spectrometry (UPLC-MS) method has been developed and validated for the quantitation of ECB-glucuronide in plasma. This analytical method has been applied successfully to study pharmacokinetics of ECB in rats. The pharmacokinetic parameters of ECB-glucuronide were estimated in rats following a single-dose oral administration of 100 mg/kg. In rats, ECB was rapidly metabolized to its monoglucuronide and the glucuronide was the only drug-derived compound clearly detected in plasma. Two-compartment model was used to estimate ECB-glucuronide pharmacokinetics by using DAS software. The plasma profile of ECB-glucuronide was found to be rapid with an apparent tmax occurring at 4 h, indicating that ECB was rapidly absorbed in rats following an oral administration. In rats following an oral administration of NCA, no metabolites were evidently detected in plasma. Moreover, the parent drug NCA was observed in plasma only in trace amounts, indicating that the oral absorption of NCA in vivo may be poor. One reason leading to the poor oral absorption of NCA was probably the involvement of P-gp.
     4. Metabolism of ECB and NCA studied in vitro with human liver microsomes, HepG2 Cells and recombinant human enzymes
     The metabolic profile in human liver microsomes was consistent with that observed in rat liver microsomes and rats, indicating glucuronidation was probably the major metabolic pathway of ECB in humans.
     When NCA was incubated with human liver microsomes, only one monoglucuronide was observed.
     The catalytic isoenzymes probably involved in ECB and NCA metabolism in humans were identified by using selective chemical inhibition in human liver microsomes and recombinant human enzymes. The results indicated CYP3A4, UGT1A6/9, especially CYP3A4 and UGT1A6, were important catalytic enzymes in ECB metabolism. UGT1A3/6/9 were important catalytic enzymes in NCA glucuronidation metabolism.
     No metabolites were detected after NCA was incubated with HepG2 cells; No glucuronide and only trace monohydroxylation metabolite were observed after ECB was incubated with HepG2 cells, indicating the metabolic ability toward ECB and NCA is very low.
引文
[1]廖廷生.正确认识和应用有毒中药[J].海峡药学,2007,19(11):120-122.
    [2]高禄纹.“有毒中药”的合理应用[J].中国中医药,2005,3(4):20-23.
    [3]李丽,刘昕,何书华.有毒中药的合理应用[J].中医杂志,2004,45(7):556-557.
    [4]李琦智,朱敏,郭力.有毒中药与中药不良反应的探讨[J].职业卫生与病
    [5]伤,2003,18(3):217-218.
    [6]笪红远.中药毒理学研究进展[J].中药药理与临床,2005,21(6):87-89.
    [7]曾苏.药物代谢学[M].杭州:浙江大学出版社,2008,28-94.
    [8]Li W, Liu Y, He YQ, Zhang JW, Gao Y, Ge GB, Liu HX, Huo H, Liu HT, Wang LM, Sun J, Wang Q, Yang L. Characterization of triptolide hydroxylation by cytochrome P450 in human and rat liver microsomes[J]. Xenobiotica,2008, 38(12):1551-1565.
    [9]Ye XC, Li WY, Yan Y, Mao CW, Cai RX, Xu HB, Yang XL. Effects of cytochrome P4503A inducer dexamethasone on the metabolism and toxicity of triptolide in rats[J]. Toxicol Lett,2010,192(2):212-220.
    [10]Liu L, Jiang ZZ, Liu J, Huang X, Wang T, Liu J, Zhang Y, Zhou ZX, Guo JL, Yang LN, Chen Y, Zhang LY. Sex differences in subacute toxicity and hepatic microsomal metabolism of triptolide in rats[J]. Toxicology,2010,271(1-2): 57-63.
    [11]Stiborova M, Frei E, Sopko B, Sopkova K, Markova V, Lankova M, Kumstyrova T, Wiessler M, Schmeiser HH. Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid:evidence for reductive activation by human NAD(P)H:quinone oxidoreductase[J]. Carcinogenesis,2003,24(10):1695-1703.
    [12]Chan W, Cui L, Xu GW, Cai ZW. Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry[J]. Rapid Commun Mass Spectrom,2006,20(11):1755-1760.
    [13]Chan W, Luo HB, Zheng YF, Cheng YK, Cai ZW. Investigation of the metabolism and reductive activation of carcinogenic aristolochic acids in rats[J]. Drug Metab Dispos,2007,35(6):866-874.
    [14]徐晓月,江振洲,黄鑫,张陆勇.马兜铃酸Ⅰ在大鼠体内的毒代动力学[J].安徽医药,2008,12(5):398-400.
    [15]Xue X, Xiao Y, Zhu H, Wang H, Liu Y, Xie T, Ren J. Induction of P450 1A by 3-methylcholanthrene protects mice from aristolochic acid-I-induced acute renal injury[J]. Nephrol Dial Transpl,2008,23(10):3074-3081.
    [16]Xiao Y, Ge M, Xue X, Wang C, Wang H, Wu X, Li L, Liu L, Qi X, Zhang Y, Li Y, Luo H, Xie T, Gu J, Ren J. Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity[J]. Kidney Int,2008,73(1): 1231-1239.
    [17]Stiborova M, Frei E, Hodek P, Wiessler M, Schmeiser HH. Human hepatic and renal microsomes, cytochromes P450 1A1/2, NADPH:cytochrome P450 reductase and prostaglandin H synthase mediate the formation of aristolochic acid-DNA adducts found in patients with urothelial cancer[J]. Int J Cancer,2005, 113(2):189-197.
    [18]朱林平.附子毒性研究概况[J].江西中医药,2004,35(6):53-55.
    [19]Ye L, Tang L, Gong Y, Lv C, Zheng ZJ, Jiang ZH, Liu ZQ. Characterization of metabolites and human P450 isoforms involved in the microsomal metabolism of mesaconitine[J]. Xenobiotica,2011,41(1):46-58.
    [20]Wang YG, Wang SQ, Liu YX, Yan LP, Dou GF, Gao Y. Characterization of metabolites and cytochrome P450 isoforms involved in the microsomal metabolism of aconitine[J]. J Chromatogr B,2006,844(2):292-300.
    [21]李文东,马辰.大鼠体内乌头碱代谢产物研究[J].中华临床医药,2004,5(16):4-6.
    [22]郭继芬,陈笑艳,钟大放.液相色谱-电喷雾离子阱质谱法检测体液中士的宁、马钱子碱及其主要代谢物[J].药物分析杂志,2001,21(3):167-170.
    [23]Xu YY, Si DY, Liu CX. Determination of strychnine and brucine in rat plasma using liquid chromatography electrospray ionization mass spectrometry[J]. J Pharmaceut Biomed,2009,49(2):487-491.
    [24]陈怀侠,杜鹏,韩凤梅,陈勇.液相色谱-串联质谱法鉴定大鼠血浆中的东莨菪碱及其代谢物[J].分析化学,2006,34(6):851-854.
    [25]陈怀侠,杜鹏,韩凤梅,陈勇.东莨菪碱及其大鼠体内代谢物的电喷雾串联质谱研究[J].质谱学报,2007,28(1):40-45.
    [26]Liu ZH, Zeng S. Cytotoxicity of ginkgolic acid in HepG2 cells and primary rat hepatocytes[J]. Toxicol Lett,2009,187(3):131-136.
    [27]Liu ZH, Chen J, Yu LS, Jiang HD, Yao TW, Zeng S. Structural elucidation of metabolites of ginkgolic acid in rat liver microsomes by ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry and hydrogen/deuterium exchange[J]. Rapid Commun Mass Spectrom,2009,23(13): 1899-1906.
    [28]何郁芳,谢秀娟,王美英.狼毒的药理作用和化学成分研究进展[J].河南科技大学学报(医学版),2004,22(1):79-80.
    [29]王文祥,丁杏苞.狼毒的化学与药理研究进展[J].国外医药:植物药分册,1996,11(6):252-254.
    [30]王亚维,张国洲,徐汉虹,赵善欢.瑞香狼毒杀虫活性成分的提取与分离[J].安徽农业科学,2004,32(4):671-672.
    [31]章振东,徐德昌.狼毒大戟的研究进展[J].中国甜菜糖业,2007,4:26-28.
    [32]高橼.月腺大戟根总黄酮对番茄枯萎病诱导抗性的研究[D].安徽农业大学,中国知网学位论文,2008.
    [33]高橼,万赛罗,蔡永萍,林毅.月腺大戟根总黄酮对尖孢镰刀菌抑制作用的研究[J].激光生物学报,2008,17(2):213-219.
    [34]赵奎君,刘锁兰,李洪敏.狼毒大戟中不同组分和成分抗结核杆菌作用的研究[J].中国药师,2007,10(11):1063-1065.
    [35]刘文粢,马晴高,秦国伟,吴晓云,顾熊飞.狼毒大戟的化学成分研究(Ⅱ)[J].中草药,2004,35(3):260.
    [36]刘文粢,何风雷,阮子镛,顾熊飞.狼毒大戟的化学成分研究[J].中国中药杂志,2001,26(3):180-182.
    [37]简丽,丁力军,庞丽纹.狼毒大戟水提取物中化学成分的分离与鉴定[J].精 细化工,2005,22(9):675-677.
    [38]Gulakowski RJ, McMahon JB, Buckheit Jr. RW, Gustafson KR, Boyd MR. Antireplicative and anticytopathic activities of prostratin, a non-tumor-promoting phorbol ester, against human immunodeficiency virus (HIV) [J]. Antivir Res, 1997,33(2):87-97.
    [39]Liu WK, Ho JCK, Qin GW, Che CT. Jolkinolide B induces neuroendocrine differentiation of human prostate LNCaP cancer cell line[J]. Biochem Pharmacol, 2002,63(5):951-957.
    [40]刘文粢,何风雷,阮子镛.狼毒大戟萜类和蒽醌类化合物的分离鉴定[J].中药材,1997,20(7):351-353.
    [41]杨洪武,王峥,郑学民.狼毒大戟活性成分体外抑瘤研究[J].辽宁中医杂志,2002,29(1):53-54.
    [42]Wang YB, Huang R, Wang HB, Jin HZ, Lou LG, Qin GW. Diterpenoids from the roots of Euphorbia fischeriana[J]. J Nat Prod,2006,69(6):967-970.
    [43]Ma QG, Liu WZ. Diterpenoids from Euphorbia fischriana[J]. Phytochem, 1997,44(4):663-666.
    [44]张慧文,鞠爱华,周秀娟.瑞香狼毒化学成分与生物活性研究进展[J].中药材,2006,29(11):1257-1261.
    [45]Xu ZH, Qin GW. New biflavanones and bioactive compounds from Stelleral chamaejasme L. [J]. Acta Pharmacol Sin,2001,36(9):669-671.
    [46]陈道峰,杨国红.瑞香狼毒等三种药用植物的生物活性成分[D].复旦大学,中国知网学位论文,2005.
    [47]李充璧,方天祺,于海瑞.瑞香狼毒有效成分的提取及性质分析[J].生物加工过程,2003,1(2):43-45.
    [48]龚晓霞,李文娟,欧阳秋.瑞香狼毒根中抑菌活性成分的研究[J].四川大学学报(自然科学版),2006,43(3):697-701.
    [49]郑宝江,胡海清.黑龙江省松嫩草地瑞香狼毒总黄酮含量的变化[J].东北林业大学学报,2006,34(4):59-60.
    [50]冯宝民,斐月湖.瑞香狼毒和柚皮抗癫痫活性成分的研究[D].沈阳药科 大学,中国知网学位论文,2002.
    [51]Liu WK, Cheung FWK, Liu BPL, Li CM, Ye WC, Che CT. Involvement of p21 and FasL in Induction of Cell Cycle Arrest and Apoptosis by Neochamaejasmin A in Human Prostate LNCaP Cancer Cells[J]. J Nat Prod,2008, 71(5):842-846.
    [52]Endo Y, Maruno M, Miura Netal. Novel diterpenes and the iruseanantiviral and anti HIV agents with low toxicity[P]. Japan,10287617,1998-10-27.
    [53]冯威健,池川哲郎,吉田光二.瑞香狼毒提取物尼地吗啉的抗癌活性[J].中华肿瘤杂志,1995,17(1):24-26.
    [54]Lkegawa T, Lkegawa A. Extraction of antitumor diterpenes from Stellera chamaejasme L.[P]. Japan,08310993,1996-4-26.
    [55]Feng WJ, Fujimoto Y. Antitumor Principles of Stelleral chamaejasme L.[J]. Chinese J Cancer Res,1997,9(2):89-94.
    [56]Ikegawa T, Ikegawa A. Chamejasmin and euchamar jasmin extraction from Stellera chamaejasme their anfiviral activities[P]. Japan,08311056,1996-11-26.
    [57]李充璧,方天祺,于海瑞等.瑞香狼毒有效成分的提取及性质分析[J].生物加工过程,2003,1(2):43-45.
    [58]张涵庆,丁云梅,陈桂英,董云发.月腺大戟根中有效成分的研究[J].植物学报,1987,29(4):429-431.
    [59]Zhang N, Cai H, Cai BC, Yang HJ, Li JS, Yang GM. Two new cytotoxic acetophenone derivatives from Euphorbia ebracteolata Hayata[J]. Fitoterapia, 2010,81(5):385-388.
    [60]李兵,郭环娟.HPLC测定狼毒大戟中狼毒乙素的含量[J].今日药学,2008,18(1):46-47.
    [61]赵奎君,徐国钧,金蓉鸾.HPLC法测定月腺大戟根中狼毒甲素及狼毒乙素的含量[J].中草药,1995,26(3):66.
    [62]何南生,周临,曾宪仪,夏平.狼毒大戟化学对照品研究[J].实用临床医学,2006,7(12):25-26.
    [63]粟晓黎,林瑞超,王兆基,关锡耀,徐树棋,丁大伦,郑秀云,冯国培.毒 性中药狼毒质量标准研究[J].中成药,2006,28(4):498-503.
    [64]结核灵片[S].中华人民共和国卫生部药品标准:中药成方制剂(第十三册).北京:化学工业出版社,1997:160.
    [65]郭环娟,李兵.HPLC测定结核灵片中狼毒乙素的含量[J].广东药学院学报,2009,25(2):171-172.
    [66]刘文粢,何风雷,阮子镛,顾熊飞,吴晓云,秦国伟.狼毒大戟的化学成分研究[J].中国中药杂志,2001,26(3):180-182.
    [67]Braun A, Hammerle S, Suda K. Cell cultures as tools in biopharmacy[J]. Eur J Pharm Sci.2000,11(2):S51-S60.
    [68]Veronesi B. Characterization of the MDCK cell line for screening neurotoxicants[J].Neurotoxicology,1996,17(2):433-444.
    [69]Irvine JD, Takahashi L, Lockhart K. MDCK(Madin -Darby canine kidney)cells:a tool for membrane permeability screening[J]. J Pharm Sci,1999, 88(1):28-33.
    [70]Artursson P, Borchardt R T. Intestinal drug absorption and metabolism in cell cultures:Caco-2 and beyond[J]. Pharm Res,1997,14(12):1655-1658.
    [71]Cho M J, Thompson D P, Cramer C T. The Madin Darby canine kidney(MDCK) epithelial cell monolayer as a model cellular transport barrier[J]. Pharm Res,1989,6(1):71-77.
    [72]Hsin YH, Cheng CH, Tzen JT. Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells[J]. Apoptosis,2006,11(12):2167-77.
    [73]Ludwig T, Riethmuller C, Gekle M. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport[J]. Kidney Int,2004,66(1): 196-202.
    [74]刘庆,王旗,杨秀伟,张宝旭.基于MDCKⅡ细胞的中药成分体外肾毒性评价[J].中国药理学与毒理学杂志,2007,21(6):521-528.
    [75]Lee JS, Paull K, Alvarez M. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen[J]. Mol Pharmacol,1994; 46(4):627-638.
    [76]Nabekura T, Kamiyama S, Kitagawa S. Effects of dietary chemopreventive phytochemicals on P-glycoprotein function[J]. Biochem Biophys Res Commun, 2005,327(3):866-870.
    [77]Walle UK, Walle T. Taxol Transport by Human Intestinal Epithelial Caco-2 Cells[J]. Drug Metab Dispos,1998,26(4):343-346.
    [78]Gibson GG, Skett P. Introduction to Drug Metabolism. Second. ed., Blankie Academic & Professional, London,1994,217-219.
    [79]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent[J]. Biol Chem,1951,193(1):265-75.
    [80]Yu LS, Yao TW, Zeng S. In vitro metabolism of zolmitriptan in rat cytochromes induced with β-naphthoflavone and the interaction between six drugs and zolmitriptan[J]. Chem Biol Interact,2003,146(3):263-272.
    [81]Luan LJ, Shao Q, Zeng S. Stereoselectivity and interaction between the glucuronidation of S-(-)- and R-(+)-propranolol in rat hepatic microsomes pretreated with different inducers[J]. Pharmazie,2005,60(3),221-224.
    [82]Picard N, Ratanasavanh D, Premaud A, Meur YL, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism[J]. Drug Metab Dispos,2005,33(1):139-146.
    [83]Meech R, Mackenzie PI. Structure and function of uridine diphosphate glucuronosyltransferases[J]. Clin Exp Pharmacol Physiol,1997,24(12):907-915.
    [84]Karl WB, Barbara SBH. Tissue-specific regulation of canine intestinal and hepatic phenol and morphine UDP-glucuronosyltransferases by (3-naphthoflavone in comparison with humans[J]. Biochem Pharmacol,2002,63(9):1683-1690.
    [85]Gradolatto A, Lavier MCC, Basly JP, Siess MH, Teyssier C. Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver[J]. Drug Metab Dispos,2004,32(1):58-65.
    [86]Liu HX, Liu Y, Zhang JW, Li W, Liu HT, Yang L. UDP-glucuronosyltransferase 1A6 is the major isozyme responsible for protocatechuic aldehyde glucuronidation in human liver microsomes[J]. Drug Metab Dispos,2008,36(8):1562-1569.
    [87]Tachibana M, Tanaka M, Masubuchi Y, Horie T. Acylglucuronidation of fluoroquinolone antibiotics by the UDP-glucuronosyltransferase 1A subfamily in human liver microsomes[J]. Drug Metab Dispos,2005,33(6):803-811.
    [88]Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC. Drug-drug interactions for UDP-glucuronosyltransferase substrates:a pharmacokinetic explanation for typically observed low exposure (AUCI/ACU) ratios[J]. Drug Metab Dispos,2004,32(11):1201-1208.
    [89]Yu LS, Lu SJ, Lin YG, Zeng S. Carboxyl-glucuronidation of mitiglinide by human UDP-glucuronosyltransferases[J]. Biochem Pharmacol,2007,73(11): 1842-1851.
    [90]郑水莲,陈枢青,李新,曾苏.人尿苷二磷酸葡醛酸转移酶1A6重组酶对酚类和羧酸类化合物与葡醛酸结合的催化活性[J].中国药理学与毒理学杂志,2006,20(1):60-65.
    [91]Kaku T, Ogura K, Nishiyama T, Ohnuma T, Muro K, Hiratsuka A. Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1 A4[J]. Biochem Pharmacol,2004, 67(11):2093-2102.
    [92]King CD, Tang W, Ngui J, Tephly T, Braun M. Characterization of rat and human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of diclofenac[J]. Toxicol Sci,2001,61(1):49-53.
    [93]Xia ZL, Ying JY, Sheng R, Zeng S, Hu YZ, Yao TW. In vitro metabolism of BYZX in human liver microsomes and the structural elucidation of metabolite by liquid chromatography-mass spectrometry method[J]. J Chromatogr B,2007,857: 266-274.
    [94]Zhou H, Jiang HD, Yao TW, Zeng S. Fragmentation study on the phenolic alkaloid neferine and its analogues with anti-HIV activities by electrospray ionization tandem mass spectrometry with hydrogen/deuterium exchange and its application for rapid identification of in vitro microsomal metabolites of neferine[J]. Rapid Commun Mass Spectrom,2007,21(13):2120-2128.
    [95]Chen YK, Xie SG, Chen SQ, and Zeng S. Glucuronidation of flavonoids by recombinant UGT1A3 and UGT1A9[J]. Biochem Pharmacol,2008,76(3): 416-425.
    [96]Chen YK, Chen SQ, Li X, Wang XW, and Zeng S. Genetic variants of human UGT1A3:functional characterization and frequency distribution in a Chinese Han population[J]. Drug Metab Dispos,2006,34(9):1462-1467.
    [97]Qian MR, Chen SQ, Li X, and Zeng S. Cloning and expression of human UDP-glucuronosyltransferase 1A4 in Bac-to-Bac system[J]. Biochem Biophys Res Commun,2004,319(2):386-392.
    [98]王晓雯,曾苏.人细胞色素P450 3A4突变体CYP3A4.3, CYP3A4.4,CYP3A4.5和CYP3A4.18重组酶的异源表达与活性[J].中国药理学与毒理学杂志,2009,23(6):456-463.
    [99]Birringer M, Drogan D, and Flohe RB. Tocopherols are metabolized in HepG2 cells by side chain ω-oxidation and consecutive β-oxidation[J]. Free Radical Bio Med,2001,31(2):226-232.
    [100]Brandon EFA, Bosch TM, Deenen M J, Levink R, WaL EVD, Meerveld J BMV, Bijl M, Beijnen JH, Schellens JHM, and Meijerman I. Validation of in vitro cell models used in drug metabolism and transport studies; genotyping of cytochrome P450, phase Ⅱ enzymes and drug transporter polymorphisms in the human hepatoma (HepG2), ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, LS180) cell lines[J]. Toxicol Appl Pharm,2006,211(1):1-10.
    [101]Westerink WMA and Schoonen WGEJ. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells[J]. Toxicol in Vitro,2007,21(8):1592-1602.
    [102]Westerink WMA and Schoonen WGEJ. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells[J]. Toxicol in Vitro,2007,21(8):1581-1591.
    [103]Asai A, Sugawara T, Ono H, and Nagao A. Biotransformation of fucoxanthinol into amarouciaxanthin a in mice and HepG2 cells:formation and cytotoxicity of fucoxanthin metabolites[J]. Drug Metab Dispos,2004,32(2): 205-211.
    [104]Lancon A, Hanet N, Jannin B, Delmas D, Heydel JM, Lizard G, Chagnon MC, Artur Y, and Latruffe N. Resveratrol in human hepatoma HepG2 cells:metabolism and inducibility of detoxifying enzymes[J]. Drug Metab Dispos, 2007,35(5):699-703.
    [105]Renner UD, Piperopoulos G, Gebhardt R, Ehninger G, Zeller KP. The oxidative biotransformation of losoxantrone (Ci-941)[J]. Drug Metab Dispos, 2002,30(4):464-478.
    [106]Yamamoto Y, Yamazaki H, Ikeda T, Watanabe T, Iwabuchi H, Nakajima M, and Yokoi T. Formation of a novel quinone epoxide metabolite of troglitazone with cytotoxic to HepG2 cells[J]. Drug Metab Dispos,2002,30(2):155-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700